1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
#include <torch/csrc/jit/passes/create_functional_graphs.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/utils/memory.h>
#include <cstddef>
#include <limits>
namespace torch {
namespace jit {
namespace {
struct FunctionalGraphSlicer {
FunctionalGraphSlicer(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
void run() {
bool changed = true;
// TODO: more sane strategy
size_t MAX_NUM_ITERATIONS = 4;
// First, analyze the functional subset of the graph, and then create
// functional graphs. The graph gets mutated when we create functional
// subgraphs, invalidating the AliasDb, so we need to do our analysis
// first.
for (size_t i = 0; i < MAX_NUM_ITERATIONS && changed; ++i) {
aliasDb_ = torch::make_unique<AliasDb>(graph_);
AnalyzeFunctionalSubset(graph_->block());
changed = CreateFunctionalGraphsImpl(graph_->block());
}
}
private:
bool isEmptyFunctionalGraph(Node* n) {
auto g = n->g(attr::Subgraph);
return g->inputs().size() == 0 && g->outputs().size() == 0;
}
void nonConstNodes(Block* block, size_t* num) {
for (auto it = block->nodes().begin();
it != block->nodes().end() && *num < minSubgraphSize_;
++it) {
Node* n = *it;
if (n->kind() == prim::Constant) {
continue;
}
*num = *num + 1;
for (Block* b : n->blocks()) {
nonConstNodes(b, num);
}
}
}
bool inlineIfTooSmall(Node* n) {
AT_ASSERT(n->kind() == prim::FunctionalGraph);
auto subgraph = SubgraphUtils::getSubgraph(n);
size_t num_modes = 0;
nonConstNodes(subgraph->block(), &num_modes);
if (num_modes < minSubgraphSize_) {
SubgraphUtils::unmergeSubgraph(n);
return true;
}
return false;
}
bool CreateFunctionalGraphsImpl(Block* block) {
/*
Iterate the block in reverse and create FunctionalSubgraphs.
When we encounter a node that isn't functional, we skip it. Otherwise,
we try to merge the functional node into the current functional subgraph.
If it can't be merged into the current functional subgraph node, then we
start a functional subgraph group.
*/
bool changed = false;
std::vector<Node*> functional_graph_nodes;
Node* functional_subgraph_node =
graph_->createWithSubgraph(prim::FunctionalGraph)
->insertBefore(block->return_node());
auto reverse_iter = block->nodes().reverse();
std::vector<Value*> graph_outputs;
for (auto it = reverse_iter.begin(); it != reverse_iter.end();) {
Node* n = *it++;
// constants get copied into the graph
if (n->kind() == prim::Constant || n == functional_subgraph_node) {
continue;
}
// if `n` is functional, all of its blocks will be merged into the
// new functional subgraph, so we only need to recurse if it is not
// functional
if (!functional_nodes_.count(n)) {
for (Block* b : n->blocks()) {
auto block_changed = CreateFunctionalGraphsImpl(b);
changed = block_changed && changed;
}
continue;
}
if (n->kind() == prim::FunctionalGraph &&
isEmptyFunctionalGraph(functional_subgraph_node)) {
functional_subgraph_node->destroy();
functional_subgraph_node = n;
continue;
}
changed = true;
if (aliasDb_->moveBeforeTopologicallyValid(n, functional_subgraph_node)) {
SubgraphUtils::mergeNodeIntoSubgraph(n, functional_subgraph_node);
} else {
functional_graph_nodes.emplace_back(functional_subgraph_node);
functional_subgraph_node =
graph_->createWithSubgraph(prim::FunctionalGraph)->insertAfter(n);
SubgraphUtils::mergeNodeIntoSubgraph(n, functional_subgraph_node);
}
}
functional_graph_nodes.emplace_back(functional_subgraph_node);
for (Node* functional_node : functional_graph_nodes) {
if (!inlineIfTooSmall(functional_node)) {
ConstantPooling(functional_node->g(attr::Subgraph));
}
}
return changed;
}
bool AnalyzeFunctionalSubset(Node* n) {
// TODO: clarify hasSideEffects, isNondeterministic
bool is_functional_node = true;
// Functional Graphs are not responsible for maintaining aliasing
// relationships. If an output of a functional graph escapes scope
// or is mutated then we might change semantics of the program if
// aliasing relationships are changed.
// We don't allow any node in the functional graph to output a value
// that escapes scope or is mutated, and we don't allow any mutating nodes
// into the graph.
// - allow functional graphs to have at most one value that can escape scope
// - allow outputs which alias the wildcard set but do not "re-escape"
for (Value* v : n->outputs()) {
bool has_writers = aliasDb_->hasWriters(v);
bool escapes_scope = aliasDb_->escapesScope(v);
if (has_writers) {
mutated_values_.insert(v);
}
is_functional_node = is_functional_node && !escapes_scope && !has_writers;
}
for (Block* block : n->blocks()) {
auto functional_block = AnalyzeFunctionalSubset(block);
is_functional_node = is_functional_node && functional_block;
}
is_functional_node = is_functional_node && !aliasDb_->isMutable(n);
if (is_functional_node) {
functional_nodes_.insert(n);
}
return is_functional_node;
}
void AnalyzeFunctionalSubset(at::ArrayRef<Block*> blocks) {
for (Block* block : blocks) {
AnalyzeFunctionalSubset(block);
}
}
bool AnalyzeFunctionalSubset(Block* block) {
bool is_functional_block = true;
// block inputs will not yet have been iterated through,
// so we need to add them to our set of mutated & escape values.
for (Value* v : block->inputs()) {
bool has_writers = aliasDb_->hasWriters(v);
if (has_writers) {
mutated_values_.insert(v);
}
}
// if a block output is not functional, then the corresponding output for
// the node that contains the block will not be functional either, so we do
// not need to analyze the block outputs here.
for (Node* n : block->nodes()) {
bool functional = AnalyzeFunctionalSubset(n);
is_functional_block = is_functional_block && functional;
}
return is_functional_block;
}
std::unordered_set<Node*> functional_nodes_;
std::unordered_set<Value*> mutated_values_;
std::shared_ptr<Graph> graph_;
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
size_t minSubgraphSize_ = 6;
};
void InlineFunctionalGraphs(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* n = *it;
it++;
for (Block* b : n->blocks()) {
InlineFunctionalGraphs(b);
}
if (n->kind() == prim::FunctionalGraph) {
SubgraphUtils::unmergeSubgraph(n);
}
}
}
} // namespace
void CreateFunctionalGraphs(const std::shared_ptr<Graph>& graph) {
// Run Constant Pooling so constants get hoisted
ConstantPooling(graph);
FunctionalGraphSlicer func(graph);
func.run();
// Creation of Functional Subgraphs & Deinlining creates excess constants
ConstantPooling(graph);
}
void InlineFunctionalGraphs(const std::shared_ptr<Graph>& graph) {
InlineFunctionalGraphs(graph->block());
}
} // namespace jit
} // namespace torch
|