1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <ATen/TensorOperators.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty_like.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/rsqrt.h>
#include <ATen/ops/zeros_like.h>
#endif
#include <stack>
namespace torch {
namespace jit {
std::tuple<at::Tensor, at::Tensor> computeUpdatedConvWeightAndBias(
const ConvBNParameters& p) {
at::Tensor bn_var_rsqrt = at::rsqrt(p.bn_rv + p.bn_eps);
const int64_t ndim = p.conv_w.dim();
at::DimVector sizes(ndim, 1);
sizes.at(0) = -1;
auto conv_w_dtype = p.conv_w.dtype();
auto conv_b_dtype = p.conv_b.dtype();
at::Tensor new_w = p.conv_w * (p.bn_w * bn_var_rsqrt).reshape(sizes);
at::Tensor new_b = (p.conv_b - p.bn_rm) * bn_var_rsqrt * p.bn_w + p.bn_b;
return std::make_tuple(new_w.to(conv_w_dtype), new_b.to(conv_b_dtype));
}
namespace {
using graph_rewrite_helper::PatternInfo;
static bool hastensor(Module& m, const char* name) {
return m.hasattr(name) && m.attr(name).isTensor();
}
void replaceConvBiasWithGetAttr(Module& module) {
for (const auto& method : module.get_methods()) {
auto graph = method.graph();
// Only looks for _convolution pattern.
// Thus assumes that tracing will have always gotten rid of aten::conv2d or
// aten::conv3d. If it did not, BN folding will fail.
const PatternInfo& pattern_convolution = PatternInfo::parse_from_str(R"(
graph(%a, %w, %b, %stride:int[], %padding:int[], %dilation:int[],
%transposed:bool, %output_padding:int[], %groups:int, %benchmark:bool,
%deterministic:bool, %cudnn_enabled:bool, %allow_tf32:bool):
%conv_out = aten::_convolution(%a, %w, %b, %stride, %padding, %dilation,
%transposed, %output_padding, %groups, %benchmark, %deterministic, %cudnn_enabled, %allow_tf32)
return (%conv_out) )");
const PatternInfo& pattern_convolution_deprecated =
PatternInfo::parse_from_str(R"(
graph(%a, %w, %b, %stride:int[], %padding:int[], %dilation:int[],
%transposed:bool, %output_padding:int[], %groups:int, %benchmark:bool,
%deterministic:bool, %cudnn_enabled:bool):
%conv_out = aten::_convolution(%a, %w, %b, %stride, %padding, %dilation,
%transposed, %output_padding, %groups, %benchmark, %deterministic, %cudnn_enabled)
return (%conv_out) )");
auto replace_pattern = [&](const PatternInfo& pattern_convolution) {
const Graph& pattern_convolution_graph =
*pattern_convolution.pattern_graph;
const auto& convolution_vmap = pattern_convolution.vmap;
const auto& matches =
findPatternMatches(pattern_convolution_graph, *graph);
for (const auto& match : matches) {
// We come here only if the bias was not present in the module.
// In that case, the corresponding graph will not have getAttr("bias")
// Insert that in the graph.
// And change _convolution to take the new value.
auto conv_node =
match.values_map.at(convolution_vmap.at("conv_out"))->node();
WithInsertPoint ins(conv_node);
Value* bias_attr_val = graph->insertGetAttr(graph->inputs()[0], "bias")
->setType(TensorType::get());
constexpr size_t conv_bias_index = 2;
conv_node->replaceInput(conv_bias_index, bias_attr_val);
}
};
replace_pattern(pattern_convolution);
replace_pattern(pattern_convolution_deprecated);
}
}
void addBiasForConvIfNone(Module& module, const std::string& pattern_name) {
auto t = module.type()->expect<ClassType>();
const std::string real_typename = t->name()->qualifiedName();
const std::string demangled_typename = removeTorchMangle(real_typename);
bool is_floating_point_conv =
((demangled_typename == "__torch__.torch.nn.modules.conv.Conv1d") ||
(demangled_typename == "__torch__.torch.nn.modules.conv.Conv2d") ||
(demangled_typename == "__torch__.torch.nn.modules.conv.Conv3d"));
if (is_floating_point_conv) {
if (!t->hasAttribute("bias")) {
auto optional_tensor_type = OptionalType::create(TensorType::get());
t->addAttribute("bias", optional_tensor_type, true);
auto optional_tensor = c10::optional<at::Tensor>();
module.setattr("bias", optional_tensor);
replaceConvBiasWithGetAttr(module);
}
}
for (Module m : module.children()) {
addBiasForConvIfNone(m, pattern_name);
}
}
class FoldConvBatchNormHelper {
public:
/**
* In this step we find all Conv - BatchNorm patterns in the graph
* and extract the corresponding parameters for these two modules,
* and record informations for the modifications of the graph without
* actually performing these modifications.
*/
void analyze(Module& module, const PatternInfo& pattern);
/**
* In this step we perform all the modifications including
* setting the attributes for conv module, rewriting values
* and deleting nodes in the graph
*/
void transform();
private:
bool tryExtractingConvBNParameters(
Module& conv,
Module& bn,
ConvBNParameters& r);
std::unordered_map<ModulePtr, std::tuple<at::Tensor, at::Tensor>>
conv_module_and_params_;
// A map from graph to a list of tuple of paths of matched conv and bn module
// e.g. if we have a graph `g` containing following code
// x = self.sub.conv1(..)
// x = self.sub.bn1(..)
// x = self.sub.conv2(..)
// x = self.sub.bn2(..)
// then the value for graph `g` in this map will be:
// [(['sub', 'conv1'], ['sub', 'bn1']), (['sub', 'conv2'], ['sub', 'bn2'])]
// the first entry of the list is the paths to first conv-bn match
// the second entry of the list is the path to second match
std::unordered_map<
Graph*,
std::vector<
std::tuple<std::vector<std::string>, std::vector<std::string>>>>
conv_bn_paths_;
std::unordered_map<Value*, Value*> rewrite_map_;
std::vector<Value*> values_to_rewrite_;
std::unordered_set<Node*> nodes_to_delete_;
};
bool extractOptionalBNParams(const script::Module& bn, ConvBNParameters& r) {
auto bn_forward = bn.get_method("forward");
auto graph = bn_forward.graph();
const PatternInfo& pattern_bn = PatternInfo::parse_from_str(R"(
graph(%a, %weight, %bias, %running_mean, %running_var,
%training, %momentum, %eps, %cudnn_enabled):
%bn_out = aten::batch_norm(%a, %weight, %bias, %running_mean,
%running_var, %training, %momentum, %eps, %cudnn_enabled)
return (%bn_out) )");
const Graph& pattern_bn_graph = *pattern_bn.pattern_graph;
const auto& bn_vmap = pattern_bn.vmap;
const auto& matches = findPatternMatches(pattern_bn_graph, *graph);
if (matches.size() > 1) {
return false;
}
if (bn.hasattr("eps")) {
r.bn_eps = bn.attr("eps").toDouble();
} else {
auto optional_eps = toIValue(matches[0].values_map.at(bn_vmap.at("eps")));
if (!optional_eps) {
return false;
}
r.bn_eps = optional_eps.value().toDouble();
}
r.bn_w = at::ones_like(bn.attr("running_mean").toTensor());
if (bn.hasattr("weight")) {
if (bn.attr("weight").isTensor()) {
r.bn_w = bn.attr("weight").toTensor();
}
} else {
auto optional_bn_weight =
toIValue(matches[0].values_map.at(bn_vmap.at("weight")));
if (!optional_bn_weight) {
return false;
}
if (optional_bn_weight.value().isTensor()) {
r.bn_w = optional_bn_weight.value().toTensor();
}
}
r.bn_b = at::zeros_like(bn.attr("running_mean").toTensor());
if (bn.hasattr("bias")) {
if (bn.attr("bias").isTensor()) {
r.bn_b = bn.attr("bias").toTensor();
}
} else {
auto optional_bn_bias =
toIValue(matches[0].values_map.at(bn_vmap.at("bias")));
if (!optional_bn_bias) {
return false;
}
if (optional_bn_bias.value().isTensor()) {
r.bn_b = optional_bn_bias.value().toTensor();
}
}
return true;
}
bool FoldConvBatchNormHelper::tryExtractingConvBNParameters(
Module& conv,
Module& bn,
ConvBNParameters& r) {
if (!hastensor(conv, "weight") || !conv.hasattr("bias") ||
!hastensor(bn, "running_mean") || !hastensor(bn, "running_var")) {
return false;
}
r.bn_rm = bn.attr("running_mean").toTensor();
r.bn_rv = bn.attr("running_var").toTensor();
if (!extractOptionalBNParams(bn, r)) {
return false;
}
r.conv_w = conv.attr("weight").toTensor();
r.conv_b = at::zeros_like(r.bn_rm);
auto bias_opt = conv.attr("bias").toOptional<at::Tensor>();
if (bias_opt) {
r.conv_b = *bias_opt;
}
return true;
}
void FoldConvBatchNormHelper::analyze(
Module& module,
const PatternInfo& pattern) {
const Graph& pattern_graph = *pattern.pattern_graph;
const auto& vmap = pattern.vmap;
Value* pattern_conv_out = vmap.at("conv_out");
Value* pattern_bn_out = vmap.at("bn_out");
Value* pattern_bn_submodule = vmap.at("batchnorm");
Node* pattern_conv = pattern_conv_out->node();
Node* pattern_bn = pattern_bn_out->node();
// We will put submodules into this worklist and keep processing items from it
// one by one. We start by just putting the top module there.
std::stack<Module> worklist({module});
while (!worklist.empty()) {
Module current = worklist.top();
worklist.pop();
// Queue submodules for processing
for (const Module& submodule : current.children()) {
worklist.push(submodule);
}
// Process all method of the current module
for (auto& method : current.get_methods()) {
GRAPH_DUMP(
current.type()->name()->name() + "::" + method.name() +
"() before Conv-BatchNorm folding",
method.graph());
const auto& matches = findPatternMatches(pattern_graph, *method.graph());
GRAPH_DEBUG("number of Conv-BatchNorm matches: ", matches.size());
Graph* g = method.graph().get();
if (!conv_bn_paths_.count(g)) {
// This is to make sure we don't visit one graph multiple times
conv_bn_paths_[g] = {};
for (const Match& match : matches) {
if (!std::all_of(
pattern.filters.begin(),
pattern.filters.end(),
[&](const MatchFilter& f) { return f(match, vmap); })) {
continue;
}
GRAPH_DEBUG("Checking next match...");
// Get the conv and bn submodule
Node* matched_conv = match.nodes_map.at(pattern_conv);
Node* matched_bn = match.nodes_map.at(pattern_bn);
Node* matched_bn_submodule =
match.values_map.at(pattern_bn_submodule)->node();
Value* conv_instance = matched_conv->input(0);
Value* bn_instance = matched_bn->input(0);
Value* self = g->inputs()[0];
auto conv_module_path = getModuleAccessPath(conv_instance, self);
auto bn_module_path = getModuleAccessPath(bn_instance, self);
Module conv_submodule = findChildModule(current, conv_module_path);
Module bn_submodule = findChildModule(current, bn_module_path);
ConvBNParameters params;
if (!tryExtractingConvBNParameters(
conv_submodule, bn_submodule, params)) {
GRAPH_DEBUG(
"Conv and BN modules didn't have all required parameters or attributes...");
continue;
}
conv_bn_paths_[g].push_back(
std::make_tuple(conv_module_path, bn_module_path));
// We are using a separate vector for saving Values we want to rewrite
// to make sure that the order in which we perform these
// transformations is deterministic. Iterating through keys of
// rewrite_map would result in non-determinism that might not manifest
// as a bug now, but can bite us later.
values_to_rewrite_.push_back(matched_bn->output());
rewrite_map_[matched_bn->output()] = matched_conv->output();
GRAPH_UPDATE(
"Rewriting %",
matched_bn->output()->debugName(),
" with %",
matched_conv->output()->debugName());
nodes_to_delete_.insert(matched_bn);
nodes_to_delete_.insert(matched_bn_submodule);
GRAPH_UPDATE("Deleting ", *matched_bn);
GRAPH_UPDATE("Deleting ", *matched_bn_submodule);
auto slot = conv_submodule.type()->getAttributeSlot("bias");
TORCH_CHECK(
conv_submodule.type()->is_parameter(slot),
"Expected conv module to have a bias parameter");
} // matches
}
for (const auto& conv_bn : conv_bn_paths_.at(g)) {
Module conv_submodule = findChildModule(current, std::get<0>(conv_bn));
Module bn_submodule = findChildModule(current, std::get<1>(conv_bn));
ConvBNParameters params;
TORCH_INTERNAL_ASSERT(tryExtractingConvBNParameters(
conv_submodule, bn_submodule, params));
auto new_w_b = computeUpdatedConvWeightAndBias(params);
conv_module_and_params_[conv_submodule._ivalue()] = new_w_b;
} // conv_bn module
} // methods
} // while
}
void FoldConvBatchNormHelper::transform() {
for (const auto& item : conv_module_and_params_) {
Module conv(item.first);
auto w_b = item.second;
conv.setattr("weight", std::get<0>(w_b));
conv.setattr("bias", std::get<1>(w_b));
}
// Perform planned rewritings
for (auto v : values_to_rewrite_) {
v->replaceAllUsesWith(rewrite_map_.at(v));
}
// Perform planned deletions
for (auto n : nodes_to_delete_) {
n->removeAllInputs();
}
for (auto n : nodes_to_delete_) {
n->destroy();
}
}
} // namespace
Module FoldConvBatchNorm(const Module& module) {
Module m = module.clone();
addBiasForConvIfNone(m, "Conv2d");
addBiasForConvIfNone(m, "Conv3d");
// Conv2d + BatchNorm2d
const PatternInfo pattern2d = PatternInfo::parse_from_str(
R"(
graph(%self, %input, %conv, %batchnorm):
%conv_out = prim::CallMethod[name="forward"](%conv, %input)
%bn_out = prim::CallMethod[name="forward"](%batchnorm, %conv_out)
return (%bn_out))",
{is_conv2d_module, is_batchnorm2d_module});
// Conv3d + BatchNorm3d
const PatternInfo pattern3d = PatternInfo::parse_from_str(
R"(
graph(%self, %input, %conv, %batchnorm):
%conv_out = prim::CallMethod[name="forward"](%conv, %input)
%bn_out = prim::CallMethod[name="forward"](%batchnorm, %conv_out)
return (%bn_out))",
{is_conv3d_module, is_batchnorm3d_module});
const std::vector<std::reference_wrapper<const PatternInfo>> patterns = {
pattern2d, pattern3d};
for (const auto& pattern : patterns) {
FoldConvBatchNormHelper h;
h.analyze(m, pattern);
h.transform();
}
return m;
}
} // namespace jit
} // namespace torch
|