1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
|
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <queue>
#include <unordered_map>
namespace torch {
namespace jit {
namespace {
// What is a simple mappable operator? It:
// - Has a single tensor output
// - Output and all tensor inputs have the same shape
// - Output and all tensor inputs have the same scalar type
// or all tensor inputs have the same scalar type and
// output is identified in PropagateInputShapes
// - Output and all tensor inputs should be on the same device
// - Produces dense non-overlapping outputs
// Some of these restrictions may be relaxable, but you should
// carefully read the code first, as we rely on these assumptions.
bool isSimpleMap(Node* node) {
static OperatorSet simple_mappable{{
"aten::_cast_Float(Tensor self, bool non_blocking) -> Tensor",
"aten::abs(Tensor self) -> Tensor",
"aten::acos(Tensor self) -> Tensor",
"aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::asin(Tensor self) -> Tensor",
"aten::atan(Tensor self) -> Tensor",
"aten::atan2(Tensor self, Tensor other) -> Tensor",
"aten::ceil(Tensor self) -> Tensor",
"aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor",
"aten::cos(Tensor self) -> Tensor",
"aten::cosh(Tensor self) -> Tensor",
"aten::div(Tensor self, Tensor other) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::expm1(Tensor self) -> Tensor",
"aten::erf(Tensor self) -> Tensor",
"aten::erfc(Tensor self) -> Tensor",
"aten::floor(Tensor self) -> Tensor",
"aten::fmod(Tensor self, Tensor other) -> Tensor",
"aten::frac(Tensor self) -> Tensor",
"aten::lgamma(Tensor self) -> Tensor",
"aten::log(Tensor self) -> Tensor",
"aten::log10(Tensor self) -> Tensor",
"aten::log1p(Tensor self) -> Tensor",
"aten::log2(Tensor self) -> Tensor",
"aten::logit(Tensor self, float? eps=None) -> Tensor",
"aten::lerp(Tensor self, Tensor end, Scalar weight) -> Tensor",
"aten::lerp(Tensor self, Tensor end, Tensor weight) -> Tensor",
"aten::max(Tensor self, Tensor other) -> Tensor",
"aten::min(Tensor self, Tensor other) -> Tensor",
"aten::mul(Tensor self, Tensor other) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::pow(Tensor self, Tensor exponent) -> Tensor",
"aten::pow(Tensor self, Scalar exponent) -> Tensor",
"aten::pow(Scalar self, Tensor exponent) -> Tensor",
"aten::reciprocal(Tensor self) -> Tensor",
"aten::relu(Tensor self) -> Tensor",
"aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor",
"aten::remainder(Tensor self, Tensor other) -> Tensor",
"aten::round(Tensor self) -> Tensor",
"aten::rsqrt(Tensor self) -> Tensor",
"aten::sigmoid(Tensor self) -> Tensor",
"aten::sin(Tensor self) -> Tensor",
"aten::sinh(Tensor self) -> Tensor",
"aten::sqrt(Tensor self) -> Tensor",
"aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::tan(Tensor self) -> Tensor",
"aten::rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
"aten::tanh(Tensor self) -> Tensor",
"aten::trunc(Tensor self) -> Tensor",
"aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::mul(Tensor self, Scalar other) -> Tensor",
"aten::div(Tensor self, Scalar other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Scalar other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Scalar other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Scalar other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Scalar other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Scalar other) -> Tensor",
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::lt(Tensor self, Scalar other) -> Tensor",
"aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor",
"aten::where(Tensor condition, Tensor self, Tensor other) -> Tensor",
"aten::type_as(Tensor self, Tensor other) -> Tensor",
}};
if (!node->isMemberOf(simple_mappable)) {
return false;
}
for (Value* input : node->inputs()) {
if (input->type()->isSubtypeOf(*TensorType::get()) ||
input->type()->isSubtypeOf(*FloatType::get())) {
continue;
}
if (input->node()->kind() != prim::Constant) {
return false;
}
}
return true;
}
struct GraphFuser {
using FusionCallback = std::function<bool(GraphFuser*, Node*)>;
Block* block_;
AliasDb* aliasDb_;
std::shared_ptr<Graph> graph_;
FusionCallback callback_ = [](GraphFuser* gf, Node* n) {
return gf->isFusableDefault(n, gf->strict_fuser_check_);
};
Symbol kind_ = prim::FusionGroup;
bool strict_fuser_check_ = false;
// nvrtc has a limit on the number of arguments allowed in a CUDA kernel.
// The specific limit is a function of constant memory size, amount available
// to pass arguments, and some implementation dependence. Select a safe
// limit here.
// This limit is also applied to other devices in the fuser by default.
// Change with setInputArgLimit
size_t subgraph_arg_limit_ = 128;
GraphFuser(AliasDb* aliasDb, Block* block, bool strict_fuser_check)
: block_(block),
aliasDb_(aliasDb),
strict_fuser_check_(strict_fuser_check) {}
// Custom passes require kind to specified
GraphFuser(
AliasDb* aliasDb,
Block* block,
FusionCallback callback,
Symbol kind,
bool strict_fuser_check = false)
: block_(block),
aliasDb_(aliasDb),
callback_(std::move(callback)),
kind_(kind),
strict_fuser_check_(strict_fuser_check) {}
void setInputArgLimit(size_t limit) {
subgraph_arg_limit_ = limit;
}
value_list tensorInputs(Node* node) {
return filter(node->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(*TensorType::get());
});
}
bool isFusable(Node* node) {
return callback_(this, node);
}
bool isFusableDevice(Value* v, bool strict_fuser_check) {
if (!v->type()->isSubtypeOf(*TensorType::get())) {
return true;
}
auto device = v->type()->expectRef<TensorType>().device();
if (!device) {
return !strict_fuser_check;
}
if ((*device).is_cpu()) {
return canFuseOnCPULegacy();
} else if ((*device).is_cuda()) {
return canFuseOnGPU();
} else if ((*device).is_xpu()) {
return false;
} else {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Unknown device for graph fuser");
}
}
// Default fusability check - used when the user doesn't pass in
// a callback.
bool isFusableDefault(Node* node, bool strict_fuser_check) {
bool fusableDevice = true;
for (const auto& output : node->outputs()) {
if (output->uses().size() > 0) {
fusableDevice &= isFusableDevice(output, strict_fuser_check);
}
}
return fusableDevice && isFusableMap(node);
}
bool isFusableMap(Node* node) {
// We don't want to bother with cross-block node movements, as they
// are not necessarily correct.
if (node->owningBlock() != block_)
return false;
return node->kind() == prim::FusionGroup || isSimpleMap(node);
}
bool isFusableCatNode(Node* node) {
if (node->kind() != aten::cat)
return false;
if (!node->is_constant(attr::dim))
return false;
auto tensors_node = node->namedInput(attr::tensors)->node();
if ((tensors_node->inputs().size() + node->outputs().size()) >
subgraph_arg_limit_) {
return false;
}
if (tensors_node->kind() != prim::ListConstruct)
return false;
// NB: Note that technically other uses of the list aren't a big problem for
// us. It would be enough to place the prim::FusedConcat before the
// prim::ListConstruct, and allUsersAreThisConsumerOrOccurAfterIt would
// still be satisfied. However, I don't expect this to be necessary any time
// soon, and so we're simply assuming that we don't have to deal with it.
if (tensors_node->output()->uses().size() > 1)
return false;
return true;
}
bool calculatesSize(Node* node) {
return node->matches("aten::size(Tensor self) -> int[]");
}
bool allUsersAreThisConsumerOrCalcSizes(Node* consumer, Value* producer) {
auto defining_node = producer->node();
for (auto o : defining_node->outputs()) {
for (auto u : o->uses()) {
if (u.user != consumer && !calculatesSize(u.user))
return false;
}
}
return true;
}
Graph& getSubgraph(Node* n) {
AT_ASSERT(n->kind() == kind_);
return *n->g(attr::Subgraph);
}
void mergeFusionGroups(Node* consumer_group, Node* producer_group) {
// Now we have two fusion groups!
// Revert the fusion - place all inner nodes of producer back in the outer
// graph.
std::vector<Node*> temporary_nodes;
auto producer_subgraph = &getSubgraph(producer_group);
// Initialize a map of inner graph values to outer graph values
std::unordered_map<Value*, Value*> inner_to_outer;
auto inner_inputs = producer_subgraph->inputs();
auto outer_inputs = producer_group->inputs();
for (const auto i : c10::irange(inner_inputs.size())) {
inner_to_outer[inner_inputs[i]] = outer_inputs[i];
}
// Clone all nodes
for (auto inner : producer_subgraph->nodes()) {
Node* outer = block_->owningGraph()->createClone(
inner, [&](Value* k) -> Value* { return inner_to_outer.at(k); });
outer->insertBefore(producer_group);
temporary_nodes.emplace_back(outer);
auto inner_outputs = inner->outputs();
auto outer_outputs = outer->outputs();
for (const auto i : c10::irange(inner_outputs.size())) {
inner_to_outer[inner_outputs[i]] = outer_outputs[i];
}
}
// Replace uses of producer_group outputs and destroy the producer
auto subgraph_outputs = producer_subgraph->outputs();
for (const auto i : c10::irange(subgraph_outputs.size())) {
auto outer_output = inner_to_outer.at(subgraph_outputs[i]);
producer_group->outputs()[i]->replaceAllUsesWith(outer_output);
// new producer outputs have same aliasing properties as outer_output
aliasDb_->replaceWithNewValue(producer_group->outputs()[i], outer_output);
}
producer_group->destroy();
producer_group =
nullptr; // Just to get a clear error in case someone uses it
// Inline the temporary nodes into the first group
auto consumer_subgraph = &getSubgraph(consumer_group);
for (auto it = temporary_nodes.rbegin(); it != temporary_nodes.rend();
++it) {
Node* node = *it;
Node* merged = mergeNodeIntoGroup(consumer_group, node);
// If any of the outputs are still used then we need to add them
auto outputs = node->outputs();
for (const auto i : c10::irange(outputs.size())) {
auto output = outputs[i];
if (output->uses().size() == 0)
continue;
consumer_subgraph->registerOutput(merged->outputs()[i]);
auto new_output = consumer_group->addOutput();
output->replaceAllUsesWith(new_output);
aliasDb_->replaceWithNewValue(output, new_output);
new_output->setType(output->type());
}
node->destroy();
}
}
// insert a producer node into a consuming fusion group.
// DOES NOT WORK if n is a consumer of an output of the fusion group
// returns the node _inside_ the group that represents the node
Node* mergeNodeIntoGroup(Node* group, Node* n) {
AT_ASSERT(n->kind() != kind_);
auto& subgraph = getSubgraph(group);
// map from nodes in the surrounding graph to parameters in the fusion
// group's subgraph that correspond to them
std::unordered_map<Value*, Value*> inputs_map;
size_t i = 0;
size_t tensor_insert_idx = 0;
AT_ASSERT(group->inputs().size() == subgraph.inputs().size());
for (auto input : group->inputs()) {
inputs_map[input] = subgraph.inputs()[i++];
if (input->type()->isSubtypeOf(*TensorType::get()))
tensor_insert_idx = i;
}
// add n's inputs to the fusion group's input list if we don't already have
// them
// we insert tensors first because the fuser assumes that to be the case
// (as a legacy from tensors only)
WithInsertPoint guard(*subgraph.nodes().begin());
for (auto input : n->inputs()) {
if (inputs_map.count(input) == 0) {
if (input->type()->isSubtypeOf(*TensorType::get())) {
auto in_group = subgraph.insertInput(tensor_insert_idx);
in_group->setType(input->type());
inputs_map[input] = in_group;
group->insertInput(tensor_insert_idx, input);
tensor_insert_idx++;
} else if (
(input->type()->isSubtypeOf(*FloatType::get()) &&
input->node()->kind() != prim::Constant) ||
(n->kind() == aten::_grad_sum_to_size &&
input->type()->isSubtypeOf(*ListType::ofInts()))) {
auto in_group = subgraph.addInput();
in_group->setType(input->type());
inputs_map[input] = in_group;
group->addInput(input);
} else {
// We don't support passing in scalars as arguments to fused kernels,
// so we generally don't allow fusing tensor-scalar operations unless
// the scalar is constant. In those cases we inline the constants
// directly in the body of the fused group.
AT_ASSERT(input->node()->kind() == prim::Constant);
Node* in_const =
subgraph.createClone(input->node(), [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
});
subgraph.insertNode(in_const);
inputs_map[input] = in_const->output();
}
}
}
// copy n into the graph, remapping its inputs to internal nodes
Node* in_graph = subgraph.createClone(
n, [&](Value* k) -> Value* { return inputs_map[k]; });
// if n's outputs are already inputs to the fusion group,
// we need to remove them because n is now inside the fusion group.
//
// i.e.,
// x = f(w); group(x, y, z) becomes group(w, y, z).
// x, y, z = f(w); group(x, y, z) becomes group(w).
//
// remapping nodes that used the input to the newly-merged node
// n is not an input when the fusion group is empty
auto inputs = group->inputs();
for (size_t i = 0; i < n->outputs().size(); ++i) {
auto it = std::find(inputs.begin(), inputs.end(), n->outputs()[i]);
if (it != inputs.end()) {
size_t p = it - inputs.begin();
group->removeInput(p);
subgraph.inputs()[p]->replaceAllUsesWith(in_graph->outputs()[i]);
subgraph.eraseInput(p);
}
}
return subgraph.insertNode(in_graph);
}
// turn consumer node n into a fusion group with just n inside
// to prepare for fusion and replace uses of n with the new group
Node* createSingletonFusionGroup(Node* n) {
auto group = block_->owningGraph()->createWithSubgraph(kind_);
// propogate position information for the new node so we can always
// have a valid mapping
group->insertBefore(n);
Node* mergedNode = mergeNodeIntoGroup(group, n);
getSubgraph(group).registerOutput(mergedNode->output());
auto sel = group->addOutput();
sel->copyMetadata(n->output());
aliasDb_->replaceWithNewValue(n->output(), sel);
n->replaceAllUsesWith(group);
n->destroy();
return group;
}
at::optional<Node*> tryFuse(Node* consumer, Value* producer) {
// this handles cases where producer can be moved _into_ the fusion group of
// consumer.
// TODO: extend to fusion of consumer into _producer's_ fusion blob
// if the consumer allInputsAreThisProducer(consumer,producer)
// we can move the consumer up into the producer.
// but this requires better handling of merging fusion groups so it is not
// done now
bool shouldFuse = isFusable(producer->node()) &&
// Rearrange nodes such that all uses of producer are after the
// consumer. Fusion will rewrite those later uses to use the version of
// producer generated by the fused blob. In this case, producer becomes
// an output of the fusion group.
aliasDb_->moveBeforeTopologicallyValid(producer->node(), consumer);
if (!shouldFuse) {
return at::nullopt;
}
if ((consumer->inputs().size() + consumer->outputs().size() +
producer->node()->inputs().size() +
producer->node()->outputs().size()) > subgraph_arg_limit_) {
return at::nullopt;
}
auto group = consumer;
if (consumer->kind() != kind_) {
group = createSingletonFusionGroup(consumer);
}
if (producer->node()->kind() == kind_) {
mergeFusionGroups(group, producer->node());
return group;
}
AT_ASSERT(producer->node()->outputs().size() == 1);
Node* merged = mergeNodeIntoGroup(group, producer->node());
// remaining uses of this producer can occur because we allow
// fusion in cases where uses remain after the consumer
// if these exist, re-route them to the version of producer
// created in FusionGroup
if (producer->uses().size() != 0) {
getSubgraph(group).registerOutput(merged->output());
Value* new_producer = group->addOutput();
new_producer->copyMetadata(producer);
aliasDb_->replaceWithNewValue(producer, new_producer);
producer->replaceAllUsesWith(new_producer);
}
producer->node()->destroy();
return group;
}
bool canFuseChunk(Node* consumer, Value* producer) {
if (consumer->kind() != prim::FusionGroup) {
return false;
}
// Does the chunk have constant chunks/dim?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk)
return false;
// And all uses of the chunk are in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer) {
return false;
}
}
}
// And isn't a no-op chunk (chunks == 1). Have CSE clean this up.
// We could fuse this but it's better to just delete the node.
if (chunk->i(attr::chunks) == 1) {
return false;
}
return true;
}
c10::optional<Node*> findFusedChunk(Node* group, Value* input) {
AT_ASSERT(group->kind() == prim::FusionGroup);
auto it = std::find(group->inputs().begin(), group->inputs().end(), input);
if (it == group->inputs().end()) {
return c10::nullopt;
}
size_t input_index = it - group->inputs().begin();
auto& subgraph = getSubgraph(group);
auto* subgraph_input = subgraph.inputs().at(input_index);
// If subgraph_input is an input to prim::ConstantChunk, it will have 1 use
auto* node = subgraph_input->uses().at(0).user;
if (node->kind() == prim::ConstantChunk) {
AT_ASSERT(subgraph_input->uses().size() == 1);
return node;
}
return c10::nullopt;
}
void fuseChunkByReusingExistingFusedChunk(
Node* group,
Node* chunk,
Node* existingFusedChunk) {
if (chunk->outputs().size() != existingFusedChunk->outputs().size()) {
return;
}
auto& subgraph = getSubgraph(group);
for (size_t i = 0; i < chunk->outputs().size(); ++i) {
// Find the input to the FusionGroup (group)
auto* replacement_val = existingFusedChunk->outputs().at(i);
auto* val = chunk->outputs().at(i);
auto it = std::find(group->inputs().begin(), group->inputs().end(), val);
auto input_index = it - group->inputs().begin();
// Rewrite the graph to use replacement_val
auto group_input = subgraph.inputs().at(input_index);
group_input->replaceAllUsesWith(replacement_val);
// Remove the input, it's no longer needed
group->removeInput(input_index);
subgraph.eraseInput(input_index);
}
chunk->destroy();
}
// There are two invariants for prim::ConstantChunk:
// (1) the tensor input to prim::ConstantChunk must be an input to the fusion
// group (2) no two ConstantChunks in the same FusionGroup can share a tensor
// input.
graph_node_list::iterator fuseChunk(Node* consumer, Value* producer) {
auto* chunk = producer->node();
AT_ASSERT(consumer->kind() == prim::FusionGroup);
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
// if producer's input is already an input to a prim::ConstantChunk node,
// we cannot add a new prim::ConstantChunk node because of invariant (2).
auto* chunked_tensor = producer->node()->input();
if (auto existingFusedChunk = findFusedChunk(consumer, chunked_tensor)) {
fuseChunkByReusingExistingFusedChunk(
consumer, chunk, *existingFusedChunk);
return consumer->reverseIterator();
}
// Move prim::ConstantChunk into the FusionGroup
mergeNodeIntoGroup(consumer, chunk);
chunk->destroy();
return consumer->reverseIterator();
}
value_list sortReverseTopological(ArrayRef<Value*> inputs) {
value_list result;
for (auto i : inputs) {
if (i->node()->owningBlock() == block_) {
result.push_back(i);
}
}
// Sort in reverse topological order
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
return a->node()->isAfter(b->node());
});
return result;
}
graph_node_list::iterator scanNodeForChunks(Node* consumer) {
if (consumer->kind() == prim::FusionGroup) {
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (!canFuseChunk(consumer, producer)) {
continue;
}
return fuseChunk(consumer, producer);
}
}
return ++consumer->reverseIterator();
}
at::ArrayRef<Value*> broadcast_tensors(value_list inputs) {
AT_ASSERT(inputs.size() > 0);
auto* g = inputs[0]->owningGraph();
auto* input_list =
g->insertNode(g->createList(TensorType::get(), inputs))->output();
aliasDb_->createValue(input_list);
auto* output_list = g->insert(aten::broadcast_tensors, {input_list});
aliasDb_->createValue(output_list);
auto* unpack_node = g->insertNode(
g->create(prim::ListUnpack, {output_list}, inputs.size()));
// We are doing:
// input_list = listConstruct(a, b, ...)
// output_list = broadcast_tensors(input_list)
// a_broadcasted, b_broadcasted = listUnpack(output_list)
// `a_broadcasted` should receive the same aliasing info as `a`
TORCH_INTERNAL_ASSERT(unpack_node->outputs().size() == inputs.size());
for (const auto i : c10::irange(inputs.size())) {
Value* original_input = inputs[i];
Value* broadcasted_output = unpack_node->outputs()[i];
aliasDb_->copyValue(original_input, broadcasted_output);
}
return unpack_node->outputs();
}
void insertExplicitBroadcast(Node* node) {
WithInsertPoint insert_guard{node};
auto tensors = tensorInputs(node);
auto new_tensors = broadcast_tensors(tensors);
// Replace tensors inputs with broadcasted values
auto new_tensors_it = new_tensors.begin();
for (size_t i = 0; i < node->inputs().size(); ++i) {
if (node->inputs()[i]->type()->isSubtypeOf(*TensorType::get())) {
AT_ASSERT(new_tensors_it != new_tensors.end());
node->replaceInput(i, *(new_tensors_it++));
}
}
}
Node* promoteChunkToBroadcastingChunk(Node* chunk) {
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
size_t nchunks = chunk->i(attr::chunks);
Node* bchunk =
chunk->owningGraph()->create(prim::BroadcastingChunk, nchunks);
bchunk->addInput(chunk->input());
for (const auto i : c10::irange(nchunks)) {
auto* old_output = chunk->outputs().at(i);
auto* new_output = bchunk->outputs().at(i);
new_output->copyMetadata(old_output);
aliasDb_->replaceWithNewValue(old_output, new_output);
old_output->replaceAllUsesWith(new_output);
}
bchunk->copyAttributes(*chunk);
bchunk->insertAfter(chunk);
chunk->destroy();
return bchunk;
}
// in places where op can be fused into a consumer but chunk is in the way
// distribute chunk to op's operands:
// replace a,b = chunk(op(x,y,z)) with:
// x', y', z' = broadcast_tensors([x, y, z])
// x0,x1 = chunk(x') (x0 has a's type, x1 has b's type)
// y0,y1 = chunk(y') (y0 has a's type, y1 has b's type)
// z0,z1 = chunk(z') (z0 has a's type, z1 has b's type)
// a = op(x0,y0,z0) (a,b have their same size but are now contiguous)
// b = op(x1,y1,x1)
//
// The graph fuser uses an intermediate prim::BroadcastingChunk node to
// represent this behavior concisely. BroadcastingChunk(x, y, z) broadcasts
// all of its inputs and then chunks each input, in order, the same way.
// The above graph is equivalent to:
// x0, x1, y0, y1, z0, z1 = BroadcastingChunk(x, y, z)
// a = op(x0,y0,z0)
// b = op(x1,y1,x1)
//
// NB: The explicit broadcast is important for correctness.
// Let's say we have:
// %z = aten::mul(%x, %y)
// %z.1, %z.2 = aten::chunk(%z, ...)
// ... = prim::FusionGroup(%z.1, %z.2, ...)
// It's possible that %x and %y do not have the same size as %z and
// need to be expanded first so that they can be chunked like %z
//
// NB: Chunk motion only occurs with fusable consumers, which implies
// that there is always some other operation, e.g., a+b, that happens
// after the chunk, and will be put into the fusion group. This is
// important, because distributing the chunk changes the contiguity
// of a and b, and so the results would be invalid, except that we know
// that simple_mappable operations will restore contiguity before
// we exit the fusion group.
//
// NB: The intermediate BroadcastingChunk is important for moving chunks past
// more than one operation: the graph fuser is not able to easily move
// operations around broadcast_tensors + chunk nodes. Let f, g, h be fusible
// ops
// x = f(v, w)
// z = g(x, y)
// a, b = chunk(z)
// c = h(a, b)
// becomes (with the broadcast_tensors + chunk approach):
// x = f(v, w)
// x', y' = broadcast_tensors([x, y])
// ax, bx = chunk(x')
// ay, by = chunk(y')
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// The broadcast_tensors node makes it harder to move f into the resulting
// FusionGroup of g, g, and h. Keeping the broadcasting and chunk behavior
// together results in:
// x = f(v, w)
// ax, bx, ay, by = BroadcastingChunk(x, y)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// making it easier to move f after the BroadcastingChunk:
// ay, by, av, bv, aw, bw = BroadcastingChunk(y, v, w)
// ax = f(av, aw)
// by = f(bv, bw)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
bool tryToMoveChunk(Node* consumer, Value* producer) {
// is the output from a chunk/bchunk node?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk &&
chunk->kind() != prim::BroadcastingChunk)
return false;
// try to find a producer to move after the chunk/bchunk. The producer must
// be fusible into the consumer.
auto it = std::find_if(
chunk->inputs().begin(),
chunk->inputs().end(),
[&](Value* producer_for_chunk) {
return isFusableMap(producer_for_chunk->node()) &&
allUsersAreThisConsumerOrCalcSizes(chunk, producer_for_chunk);
});
if (it == chunk->inputs().end()) {
return false;
}
Value* producer_for_chunk = *it;
size_t producer_index = it - chunk->inputs().begin();
// all uses of the chunk must be in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer)
return false;
}
}
// multiple return operators
Node* producer_for_chunk_node = producer_for_chunk->node();
AT_ASSERT(producer_for_chunk_node->outputs().size() == 1);
// Convert chunk to bchunk, if it isn't one already. The bchunk represents a
// broadcast and one or more chunk operations.
auto* bchunk = chunk;
if (chunk->kind() == prim::ConstantChunk) {
bchunk = promoteChunkToBroadcastingChunk(chunk);
}
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
std::vector<Value*> producer_chunk_outputs;
for (const auto i : c10::irange(nchunks)) {
producer_chunk_outputs.push_back(
bchunk->output(nchunks * producer_index + i));
}
// Add each of op's operands to the bchunk node.
// chunked_inputs[input_nr][chunk_output_idx]
// = Node* for chunk_output_idx'th output of the chunk(inputs[input_nr])
std::vector<std::vector<Value*>> chunked_inputs;
for (auto input : producer_for_chunk_node->inputs()) {
// XXX: we only work with pointwise ops in here, so we know it is valid to
// push the concat only through tensor arguments (and all other args can
// be safely ignored).
if (!input->type()->isSubtypeOf(*TensorType::get()))
continue;
// if 'input' is already an input to the bchunk, reuse it.
auto bchunk_inputs = bchunk->inputs();
auto it = std::find(bchunk_inputs.begin(), bchunk_inputs.end(), input);
if (it != bchunk_inputs.end()) {
chunked_inputs.emplace_back();
auto input_index = std::distance(bchunk_inputs.begin(), it);
for (const auto chunki : c10::irange(nchunks)) {
chunked_inputs.back().push_back(
bchunk->outputs().at(nchunks * input_index + chunki));
}
continue;
}
// NB: I decided not to use cloneFrom here, because if we make cloneFrom
// copy selects one day, it is definitely not what you want here (selects
// have different types).
// TODO: Perhaps we should use cloneFrom now, as it seems unlikely
// to copy select nodes now that we have refactored to have a Value
// distinct from Node.
bchunk->addInput(input);
chunked_inputs.emplace_back(); // alas, to not be C++17
for (auto chunk_sel : producer_chunk_outputs) {
Value* input_chunk_sel = bchunk->addOutput();
input_chunk_sel->setType(chunk_sel->type());
// Add a fresh value for each output element of the broadcasting chunk
// node. This is safe because it will be consumed only by the chunked
// ops.
aliasDb_->createValue(input_chunk_sel);
chunked_inputs.back().push_back(input_chunk_sel);
}
}
// apply the op to each chunk of the chunked operands,
// and then rewrite the graph to use them!
for (auto chunk_sel : producer_chunk_outputs) {
auto original_inputs = producer_for_chunk_node->inputs();
Node* chunked_op =
block_->owningGraph()->create(producer_for_chunk_node->kind());
chunked_op->copyAttributes(*producer_for_chunk_node);
chunked_op->output()->setType(chunk_sel->type());
auto chunked_inputs_it = chunked_inputs.begin();
for (Value* original_input : original_inputs) {
if (original_input->type()->isSubtypeOf(*TensorType::get())) {
AT_ASSERT(chunked_inputs_it != chunked_inputs.end());
chunked_op->addInput(
// NOLINTNEXTLINE(clang-analyzer-core.DivideZero)
chunked_inputs_it->at(chunk_sel->offset() % nchunks));
++chunked_inputs_it;
} else {
chunked_op->addInput(original_input);
}
}
bchunk->owningGraph()->insertNode(chunked_op);
chunk_sel->replaceAllUsesWith(chunked_op->output());
aliasDb_->replaceWithNewValue(chunk_sel, chunked_op->output());
}
bchunk->removeInput(producer_index);
for (const auto i : c10::irange(nchunks)) {
(void)i; // Suppress unused variable warning
bchunk->eraseOutput(nchunks * producer_index);
}
// The output of producer_for_chunk_node could have been used in some
// aten::size operators, so we need to clean those up as well (we simply
// broadcast all its tensor inputs).
// We need to insert these early in the graph, i.e. immediately after
// the producer_for_chunk_node as we will have the _size_if_not_same
// that may be before the bchunk.
WithInsertPoint guard2(producer_for_chunk_node);
auto size_calc_uses = producer_for_chunk_node->output()->uses();
if (!size_calc_uses.empty()) {
auto tensor_inputs = filter(
producer_for_chunk_node->inputs(),
[](Value* v) { return v->type()->isSubtypeOf(*TensorType::get()); });
auto tensor_sizes = fmap(tensor_inputs, [&](Value* v) {
Value* output = v->owningGraph()->insert(aten::size, {v});
aliasDb_->createValue(output);
return output;
});
AT_ASSERT(!tensor_sizes.empty());
Value* output_size = tensor_sizes.size() == 1
? tensor_sizes[0]
: broadcastSizes(tensor_sizes, aliasDb_);
for (Use u : size_calc_uses) {
u.user->output()->replaceAllUsesWith(output_size);
u.user->destroy();
}
}
producer_for_chunk_node->destroy();
return true;
}
// returns where to continue scanning, and whether any fusion was made
std::pair<graph_node_list::iterator, bool> scanNode(Node* consumer) {
if (isFusable(consumer)) {
// handle inputs in reverse topological order as well...
// otherwise in f(a,a+b) it will appear a is used twice if we consider
// the f-a fusion before the f-(a+b) fusion first.
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (tryToMoveChunk(consumer, producer)) {
// the chunk before this consumer was re-arranged to allow fusion,
// we scan this consumer again to perform the fusion
return std::make_pair(consumer->reverseIterator(), true);
}
auto fusion_group = tryFuse(consumer, producer);
if (fusion_group) {
// after fusion, consumer moves into a FusionGroup, so inputs is no
// longer valid so we rescan the new FusionGroup for more fusions...
return std::make_pair(fusion_group.value()->reverseIterator(), true);
}
}
}
return std::make_pair(++consumer->reverseIterator(), false);
}
void replaceIntermediateBroadcastingChunks() {
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
auto* node = *it;
++it; // We might delete node, so increment the iterator now.
if (node->kind() != prim::BroadcastingChunk) {
continue;
}
auto* bchunk = node;
insertExplicitBroadcast(bchunk);
auto* graph = block_->owningGraph();
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
// Split the bchunk into bchunks.inputs().size() number of chunk nodes.
for (size_t input_offset = 0; input_offset < bchunk->inputs().size();
input_offset++) {
auto* input = bchunk->inputs().at(input_offset);
Node* new_chunk =
graph->insertNode(graph->create(prim::ConstantChunk, input, 0));
new_chunk->copyAttributes(*bchunk);
for (const auto output_offset : c10::irange(nchunks)) {
auto new_output = new_chunk->addOutput();
auto old_output =
bchunk->outputs().at(input_offset * nchunks + output_offset);
new_output->copyMetadata(old_output);
aliasDb_->replaceWithNewValue(old_output, new_output);
old_output->replaceAllUsesWith(new_output);
}
}
bchunk->destroy();
}
}
// Builds up expressions that compute shapes of all intermediates (and
// outputs) of the fusion group, based on the sizes of inputs. You should run
// DCE to remove those that you end up not using.
std::unordered_map<Value*, Value*> buildShapeExpressions(Node* fusion_group) {
WithInsertPoint insert_guard{fusion_group->next()};
std::unordered_map<Value*, Value*> shape_of;
Graph* graph = fusion_group->owningGraph();
auto subgraph = fusion_group->g(attr::Subgraph);
auto inputs = fusion_group->inputs();
auto sinputs = subgraph->inputs();
AT_ASSERT(inputs.size() == sinputs.size());
for (const auto i : c10::irange(inputs.size())) {
if (inputs[i]->type()->isSubtypeOf(*TensorType::get())) {
Value* soutput = graph->insert(aten::size, {inputs[i]});
aliasDb_->createValue(soutput);
shape_of[sinputs[i]] = soutput;
}
}
// When we have a guarantee that an output won't be removed, because it's
// used in expressions that don't involve size checks, we can use its size
// instead of computing a long chain of broadcasts, starting from the
// beginning of the kernel.
auto outputs = fusion_group->outputs();
auto soutputs = subgraph->outputs();
AT_ASSERT(outputs.size() == soutputs.size());
for (const auto i : c10::irange(outputs.size())) {
if (usedOnlyInSize(outputs[i]))
continue;
Value* soutput = graph->insert(aten::size, {outputs[i]});
aliasDb_->createValue(soutput);
shape_of[soutputs[i]] = soutput;
}
for (Node* n : subgraph->nodes()) {
// XXX: Use of shape_of.emplace is crucial to the output shape
// optimization!
if (n->kind() == prim::FusedConcat) {
// This is a bit more involved, because we have to account for the case
// when inputs have different shapes, but fortunately those tensors are
// always outputs, and so we can simply avoid replacing their queries,
// because it won't help us.
continue;
}
if (n->kind() == prim::Constant) {
continue;
}
if (n->kind() == prim::ConstantChunk) {
Node* sizes_node = graph->insertNode(
graph->create(prim::ChunkSizes, shape_of.at(n->input()), 2));
sizes_node->i_(attr::dim, n->i(attr::dim));
sizes_node->i_(attr::chunks, n->i(attr::chunks));
for (Value* output : sizes_node->outputs()) {
aliasDb_->createValue(output);
}
Value* regular_size = sizes_node->outputs().at(0);
Value* last_size = sizes_node->outputs().at(1);
regular_size->setType(ListType::ofInts());
last_size->setType(ListType::ofInts());
auto outputs = n->outputs();
for (Value* o : outputs.slice(0, outputs.size() - 1)) {
shape_of.emplace(o, regular_size);
}
shape_of.emplace(outputs.at(outputs.size() - 1), last_size);
continue;
}
auto tensor_inputs = filter(n->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(*TensorType::get());
});
auto shapes =
fmap(tensor_inputs, [&](Value* v) { return shape_of.at(v); });
AT_ASSERT(!shapes.empty());
shape_of.emplace(
n->output(),
shapes.size() == 1 ? shapes[0] : broadcastSizes(shapes, aliasDb_));
}
return shape_of;
}
void removeOutputsUsedOnlyInSize(Node* fusion_group) {
if (fusion_group->kind() != prim::FusionGroup)
return;
auto subgraph = fusion_group->g(attr::Subgraph);
auto shape_of = buildShapeExpressions(fusion_group);
auto outputs = fusion_group->outputs().vec();
auto soutputs = subgraph->outputs().vec();
// XXX: Iterating in this order is not only good for performance reasons!
// It is also crucial for correctness (i has to reflect the current true
// index of outputs[i])!
for (int64_t i = static_cast<int64_t>(outputs.size()) - 1; i >= 0; --i) {
auto output = outputs[i];
auto soutput = soutputs[i];
if (usedOnlyInSize(output) && shape_of.count(soutput) > 0) {
auto uses = output->uses();
for (Use u : uses) {
AT_ASSERT(u.user->matches("aten::size(Tensor self) -> int[]"));
u.user->output()->replaceAllUsesWith(shape_of.at(soutput));
u.user->destroy();
}
fusion_group->eraseOutput(i);
subgraph->eraseOutput(i);
}
}
}
bool canFuseWithConcat(Value* producer, Node* before_check) {
if (!isFusable(producer->node())) {
return false;
}
// NB: it is important that this check happens after isFusable, which checks
// that the blocks match, and it's not a special node like prim::Param
if (!aliasDb_->couldMoveBeforeTopologically(
producer->node(), before_check)) {
return false;
}
// If the number of kernel args could exceed the limit, skip.
if ((before_check->inputs().size() + before_check->outputs().size() +
producer->node()->inputs().size() +
producer->node()->outputs().size()) > subgraph_arg_limit_) {
return false;
}
// Fusion groups can be merged with concat's group if and only if
// the value they produce isn't already coming from a concat
if (producer->node()->kind() == prim::FusionGroup) {
auto subgraph = producer->node()->g(attr::Subgraph);
auto* node = subgraph->outputs().at(producer->offset())->node();
return node->kind() != prim::FusedConcat;
}
return true;
}
Node* createFusedConcat(Node* node) {
AT_ASSERT(node->kind() == aten::cat);
Graph* graph = node->owningGraph();
Node* list_construct = node->namedInput(attr::tensors)->node();
int64_t dim = node->get<int64_t>(attr::dim).value();
Node* fused_cat = graph->create(prim::FusedConcat, list_construct->inputs())
->i_(attr::dim, dim);
fused_cat->insertBefore(list_construct);
fused_cat->output()->copyMetadata(node->output());
aliasDb_->copyValue(node->output(), fused_cat->output());
// NB: this deletes the fused_cat node from the original graph
return createSingletonFusionGroup(fused_cat);
}
void fuseConcats() {
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();
++it) {
Node* cat = *it;
if (!isFusableCatNode(cat)) {
continue;
}
Node* list_construct = cat->namedInput(attr::tensors)->node();
Node* fused_cat = createFusedConcat(cat);
Value* fused_cat_out = fused_cat->output();
auto sorted_inputs = sortReverseTopological(fused_cat->inputs());
size_t input_idx = 0;
bool any_fused = false;
while (input_idx < sorted_inputs.size()) {
Value* input = sorted_inputs[input_idx++];
if (!canFuseWithConcat(input, fused_cat)) {
continue;
}
any_fused = true;
auto maybe_group = tryFuse(fused_cat, input);
AT_ASSERT(maybe_group && maybe_group == fused_cat);
// We could have destroyed multiple inputs when performing this fusion,
// so we have to recompute the list and iterate over it again.
sorted_inputs = sortReverseTopological(fused_cat->inputs());
input_idx = 0;
}
if (any_fused) {
cat->output()->replaceAllUsesWith(fused_cat_out);
it.destroyCurrent();
if (list_construct->output()->uses().empty()) {
list_construct->destroy();
}
} else {
fused_cat->destroy();
}
}
}
void optimizeFusedGraphs() {
for (Node* node : block_->nodes()) {
if (node->kind() != prim::FusionGroup) {
continue;
}
auto subgraph = node->g(attr::Subgraph);
EliminateDeadCode(subgraph);
EliminateCommonSubexpression(subgraph);
ConstantPooling(subgraph);
}
}
void run() {
// TODO: old fuser is not maintained internally, somewhere it is being turned on
// inadvertently for certain workflows. make this a no-op until we identify
// location
#if defined(FBCODE_CAFFE2)
return;
#endif
// Run the pass until no changes are made.
// This is necessary, because the algorithm can miss out on certain fusion
// opportunities if ran only once. Consider this graph:
//
// %1 = f(...)
// %2 = g(%1)
// %3 = h(%1)
// %4 = l(%3)
// return (%4, %2)
//
// where f, g, h, l are simple map ops.
// The first iteration will fuse %4 and %3, and see that %1 is an input, but
// can't be fused, because it has a different use before the fusion group
// in our topological ordering. Then, %2 will be considered, and fused with
// %1. If we do another iteration, the algorithm will consider the fusion of
// these two groups and fix the situation.
bool any_changed = true;
while (any_changed) {
any_changed = false;
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool changed;
std::tie(it, changed) = scanNode(*it);
any_changed |= changed;
}
}
fuseConcats();
optimizeFusedGraphs();
// The graph fuser can add intermediate prim::BroadcastingChunk nodes.
// Replace them with broadcasts + chunks.
replaceIntermediateBroadcastingChunks();
// Fuse starting chunks into the group.
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
it = scanNodeForChunks(*it);
}
// Remove outputs that have been added only because we need their size
for (Node* n : block_->nodes()) {
removeOutputsUsedOnlyInSize(n);
}
for (Node* node : block_->nodes()) {
for (Block* sub_block : node->blocks()) {
GraphFuser(aliasDb_, sub_block, callback_, kind_, strict_fuser_check_)
.run();
}
}
}
};
void PeepholeOptimizeShapeExpressions(Block* block, AliasDb* db) {
auto nodes = block->nodes();
for (auto it = nodes.begin(); it != nodes.end(); ++it) {
Node* node = *it;
for (Block* subblock : node->blocks()) {
PeepholeOptimizeShapeExpressions(subblock, db);
}
if (node->kind() == prim::BroadcastSizes) {
// Remove no-op broadcasts.
if (node->inputs().size() == 1) {
node->output()->replaceAllUsesWith(node->input());
it.destroyCurrent();
continue;
}
// Deduplicate inputs, but use their unique() values to ensure
// this process only depends on the graph.
std::map<size_t, Value*> unique_to_value;
for (Value* input : node->inputs()) {
unique_to_value.emplace(input->unique(), input);
}
if (unique_to_value.size() != node->inputs().size()) {
std::vector<Value*> inputs;
inputs.reserve(unique_to_value.size());
for (auto& entry : unique_to_value) {
inputs.push_back(entry.second);
}
if (inputs.size() == 1) {
node->output()->replaceAllUsesWith(inputs[0]);
} else {
WithInsertPoint insert_guard{node};
node->output()->replaceAllUsesWith(broadcastSizes(inputs, db));
}
it.destroyCurrent();
--it; // Revisit the node with deduplicated inputs
continue;
}
// Remove compose simple chains of broadcasts into a single node.
const auto& uses = node->output()->uses();
if (uses.size() == 1 && uses[0].user->kind() == prim::BroadcastSizes) {
Node* user = uses[0].user;
user->removeInput(uses[0].offset);
// NB: we don't care about deduplication in here, as we will visit user
// later.
for (Value* i : node->inputs()) {
user->addInput(i);
}
it.destroyCurrent();
}
}
}
}
} // anonymous namespace
static bool cpu_fuser_enabled_legacy = false;
bool canFuseOnCPULegacy() {
return cpu_fuser_enabled_legacy;
}
void overrideCanFuseOnCPULegacy(bool value) {
cpu_fuser_enabled_legacy = value;
}
void FuseGraph(std::shared_ptr<Graph>& graph, bool strict_fuser_check) {
AliasDb db(graph);
GraphFuser(&db, graph->block(), strict_fuser_check).run();
Lint(&db);
// After FuseGraph some common subexpressions may come back
EliminateCommonSubexpression(graph);
// We might have emitted a fair amount of useless shape propagating code, so
// remove it
EliminateDeadCode(graph);
// Improve the quality of shape propagation code that was left
PeepholeOptimizeShapeExpressions(graph->block(), &db);
}
void CustomFuseGraph(
std::shared_ptr<Graph>& graph,
const std::function<bool(Node*)>& fn,
Symbol kind,
size_t arg_limit) {
AliasDb db(graph);
auto g = GraphFuser(
&db,
graph->block(),
[=](GraphFuser* gf, Node* n) { return fn(n) || n->kind() == kind; },
kind);
g.setInputArgLimit(arg_limit);
g.run();
Lint(&db);
}
} // namespace jit
} // namespace torch
|