1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
#include <torch/csrc/jit/passes/guard_elimination.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <memory>
#include <unordered_set>
namespace torch {
namespace jit {
struct GuardElimination {
GuardElimination(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)), aliasDb_(std::make_unique<AliasDb>(graph_)) {}
void run() {
const size_t MAX_ATTEMPTS = 5;
size_t attempts = MAX_ATTEMPTS;
while (attempts-- && moveGuardsToDefs(graph_->block())) {
}
GRAPH_DUMP("After moveGuardsToDefs", graph_);
coalesceGuards(graph_->block());
GRAPH_DUMP("After coalesceGuards", graph_);
removeDominatedGuards(graph_->block());
GRAPH_DUMP("After removeDominatedGuards", graph_);
eliminateRedundantGuards(graph_->block());
GRAPH_DUMP("After eliminateRedundantGuards", graph_);
}
static bool isLoweredGradOf(Node* n) {
if (n->kind() != prim::If) {
return false;
}
return n->input(0)->node()->kind() == prim::AutogradAnyNonZero;
}
bool moveGuardsToDefs(Block* b) {
bool changed = false;
for (auto it = b->nodes().begin(); it != b->nodes().end();) {
auto n = *it;
if (n->kind() == prim::Guard) {
// grab the next node before we move this one all the way back
it++;
auto guardee = n->inputs().at(0)->node();
// alias analysis will try to hoist a node out of a loop
// if asked. if guardee is in a loop, it should only
// be moved to the beginning of the basic block
// given the current implementation of AliasAnalysis
if (guardee->owningBlock() != n->owningBlock()) {
guardee = *n->owningBlock()->nodes().begin();
}
bool moved = aliasDb_->moveAfterTopologicallyValid(n, guardee);
changed |= moved;
if (moved) {
GRAPH_UPDATE(
"Moved ",
n->output()->debugName(),
" to ",
n->inputs().at(0)->debugName());
}
} else {
it++;
for (Block* ib : n->blocks()) {
moveGuardsToDefs(ib);
}
}
}
if (b->owningNode() &&
isLoweredGradOf(
b->owningNode()) /*b->owningNode()->kind() == prim::If*/) {
for (auto it = b->nodes().begin(); it != b->nodes().end();) {
auto block_node = *it++;
if (block_node->kind() != prim::Guard) {
break;
}
block_node->moveBefore(b->owningNode());
changed = true;
}
}
return changed;
}
void coalesceGuards(Block* b) {
// uses on *all* parameters are moved to the same anchor node
// and they may come in different order after the anchor node
// e.g. (anchor, guard_x, guard_y, guard_x, guard_y)
// this pass recognizes contigious streches of guards and
// keeps track of the guards it's seen for each def. the next time
// the guard on the same def, it simply removes it.
std::unordered_map<Value*, Node*> inputs_to_guards;
for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
auto n = *it;
if (n->kind() == prim::Guard) {
if (inputs_to_guards.count(n->input())) {
auto prev = inputs_to_guards[n->input()];
n->output()->replaceAllUsesWith(prev->output());
GRAPH_UPDATE(
"Replacing ",
n->output()->debugName(),
" with ",
prev->output()->debugName());
it.destroyCurrent();
} else {
inputs_to_guards.insert({n->input(), n});
}
} else if (n->kind() != prim::Constant) {
inputs_to_guards.clear();
for (Block* ib : n->blocks()) {
coalesceGuards(ib);
}
}
}
}
void removeDominatedGuards(Block* b) {
// If a Node guards a value which isn't mutated, then that node
// can replace all other guards of the value which it dominates
for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
auto n = *it;
if (n->kind() == prim::Guard) {
Value* input = n->input();
if (aliasDb_->hasWriters(input)) {
continue;
}
Value* guard_output = n->output();
// find all uses of the input that the guard node dominates
std::vector<Use> uses = input->uses();
while (uses.size() > 0) {
auto use = uses.at(uses.size() - 1);
uses.pop_back();
// not all uses are guarded
if (use.user->kind() != prim::Guard) {
continue;
}
if (!use.user->isDominatedBy(n)) {
continue;
}
// the dominated guard type may be different from the dominator
// if it is only executed for a subtype, or if it is executed
// in a different global context for grad enabled
// check that the types are equal before continuing
auto dominator_type = guard_output->type();
auto dominated_type = use.user->output()->type();
if (*dominator_type == *dominated_type) {
use.user->replaceInput(use.offset, guard_output);
}
}
// remove redundant dominated guards
std::vector<Use> users = n->output()->uses();
for (auto use : users) {
auto user = use.user;
if (user->kind() == prim::Guard) {
GRAPH_UPDATE(
"Removing dominated guard ", user, " and replacing with ", n);
user->output()->replaceAllUsesWith(guard_output);
user->destroy();
}
}
} else {
for (Block* ib : n->blocks()) {
removeDominatedGuards(ib);
}
}
}
}
// we need to make sure there are no ops in between guardee's
// output and its guard except for other guards as they can
// invalidate shape information.
bool guardsOutput(Node* guard) {
auto output = guard->input()->node();
auto it = guard;
while (it != output) {
if (it->kind() != prim::Guard && it->kind() != prim::Constant) {
GRAPH_DEBUG(
"found an unexpected node ",
*it,
" while trying to eliminate ",
*guard);
return false;
}
it = it->prev();
}
return true;
}
void eliminateRedundantGuards(Block* b) {
// a very simple pass to eliminate redundant guards for ops
// whose outputs are fully determined by their inputs
// i.e. if inputs to such ops are guarded we are allowed
// to remove a guard on ops' outputs
for (auto it = b->nodes().rbegin(); it != b->nodes().rend();) {
auto n = *it;
if (n->kind() == prim::Guard && guardsOutput(n) &&
removableGuard(n->inputs().at(0)->node())) {
auto pttp = n->output()->type();
n->output()->replaceAllUsesWith(n->inputs().at(0));
n->inputs().at(0)->setType(pttp);
GRAPH_UPDATE(
"Eliminating the redundant guard ", n->output()->debugName());
it.destroyCurrent();
} else {
it++;
for (Block* ib : n->blocks()) {
eliminateRedundantGuards(ib);
}
}
}
}
// `checkInputs` check the invariants specified in `removableGuard`
// on inputs to `n`. The invariants must hold, or an input must
// be a `prim::Constant` or be included as an exception in `except`
bool checkInputs(
Node* n,
const std::unordered_set<size_t>& except,
bool allow_numbers) {
bool all_inputs_guarded = true;
size_t i = 0;
for (auto input : n->inputs()) {
if ((input->node()->kind() == prim::Guard &&
!input->type()->expectRef<TensorType>().isSummarized()) ||
input->node()->kind() == prim::Constant ||
(allow_numbers && input->type()->isSubtypeOf(*NumberType::get())) ||
except.count(i) != 0) {
AT_ASSERT(
input->node()->kind() != prim::Guard ||
input->type()->expect<TensorType>());
} else {
GRAPH_DEBUG(
"input ",
input->debugName(),
" isn't guarded, type ",
*input->type());
all_inputs_guarded = false;
break;
}
i++;
}
return all_inputs_guarded;
}
private:
// `removableGuard` relies on the properties checked by `isSummarized()`
// and passes shouldn't insert nodes between a guard and its uses that
// may alter those properties.
// `removableGuard` expects type information to come directly from
// Profiler. Passes shouldn't try to alter type information provided by
// profiling
// While we can derive very simple rules stating when it's valid to remove
// `prim::Guard` on operation's output if all of its inputs are guarded for
// some
// categories of operations
// there's no comprehensive set of rules that covers all the operations
// available in PyTorch
// If your operation falls into one of the categories described below, you
// should add it
// to switch statement below that contains the other operations in the said
// category.
// Otherwise, you will need to derive the rules for your case on your own.
// Generally, any operation that is stateful in any way or uses its underlying
// data
// to compute any properties `isSummarized()` isn't amenable to guard
// elimination.
// Categories:
// * Functional-like(e.g. add, sub, le) operations with broadcast semenatics
// Guards can be removed if all inputs are guarded and `isSummarized()`
// returns
// false or inputs are `prim::Constant`
bool removableGuard(Node* n) {
const static auto no_exceptions = std::unordered_set<size_t>{};
switch (n->kind()) {
case aten::add:
case aten::add_:
case aten::sub:
case aten::mul:
case aten::div:
case aten::t:
case aten::sigmoid:
case aten::sin:
case aten::cos:
case aten::tan:
case aten::sinh:
case aten::cosh:
case aten::tanh:
case aten::asin:
case aten::acos:
case aten::atan:
case aten::atan2:
case aten::floor:
case aten::fmod:
case aten::ceil:
case aten::trunc:
case aten::sqrt:
case aten::rsqrt:
case aten::remainder:
case aten::mm:
case aten::min:
case aten::max:
case aten::type_as:
case aten::ge:
case aten::gt:
case aten::lt:
case aten::le:
case aten::eq:
case aten::ne:
case aten::neg:
case prim::ConstantChunk:
case aten::size:
case aten::abs:
case aten::sign:
case aten::pow:
case aten::relu:
case aten::threshold:
case prim::AutogradAdd:
case prim::AutogradZero:
case aten::rand_like:
case aten::erf:
case aten::erfc:
case aten::exp:
case aten::expm1:
case aten::log:
case aten::log2:
case aten::log10:
case aten::frac:
case aten::lerp:
case aten::lgamma:
case aten::reciprocal:
case aten::addcmul:
case aten::where:
case aten::_cast_Float:
case aten::_cast_Long:
case aten::__and__:
case aten::__or__:
case aten::__xor__:
case aten::__lshift__:
case aten::__rshift__:
case aten::bitwise_not:
case aten::bitwise_and:
case aten::bitwise_or:
case aten::bitwise_xor:
return checkInputs(n, no_exceptions, true);
case aten::softmax:
return checkInputs(n, std::unordered_set<size_t>{1}, true);
case aten::multinomial:
return checkInputs(n, std::unordered_set<size_t>{2, 3}, false);
case aten::flatten:
case aten::argmax:
case aten::squeeze:
case aten::avg_pool2d:
return checkInputs(n, no_exceptions, false);
case aten::conv1d:
case aten::conv2d:
case aten::conv3d:
return checkInputs(n, std::unordered_set<size_t>{2, 6}, false);
case aten::slice:
return !n->input(0)->type()->expectRef<TensorType>().isSummarized() &&
// check that the dimension argument is constant
n->input(1)->node()->kind() == prim::Constant &&
// the start offset is constant
n->input(2)->node()->kind() == prim::Constant &&
// the end offset is constant
n->input(3)->node()->kind() == prim::Constant &&
// the stride is constant
n->input(4)->node()->kind() == prim::Constant;
case aten::max_pool1d:
case aten::max_pool2d:
case aten::max_pool3d:
return !n->input(0)->type()->expectRef<TensorType>().isSummarized() &&
// check that the kernel size is constant
n->input(1)->node()->kind() == prim::Constant &&
// check that the stride is constant
n->input(2)->node()->kind() == prim::Constant &&
// check that the padding is constant
n->input(3)->node()->kind() == prim::Constant &&
// check that the dilation is constant
n->input(4)->node()->kind() == prim::Constant &&
// check that the ceil_mode is constant
n->input(5)->node()->kind() == prim::Constant;
case aten::unsqueeze:
// check that the dimension argument is constant
return !n->input(0)->type()->expectRef<TensorType>().isSummarized() &&
n->input(1)->node()->kind() == prim::Constant;
case aten::cat:
// check that the dimension argument is constant
return n->input(1)->node()->kind() == prim::Constant &&
n->input(0)->node()->kind() == prim::ListConstruct &&
// no extra nodes in between aten::cat and prim::ListConstruct
n->prev() == n->input(0)->node() &&
// check the inputs to prim::ListConstruct (not aten::cat)
checkInputs(n->input(0)->node(), no_exceptions, false);
case aten::clamp:
// the second and third args do not affect shapes
return checkInputs(n, std::unordered_set<size_t>{1, 2}, false);
// after some optimizations we might end up with two Guards back-to-back
// which case we can remove the one whose input is also prim::Guard
case aten::_grad_sum_to_size:
// skip checking size argument
if (checkInputs(n, std::unordered_set<size_t>{1}, false)) {
auto asize = n->input(1)->node();
if (asize->kind() == prim::Constant) {
return true;
} else if (asize->matches("aten::size(Tensor self) -> int[]")) {
// aten::size is effectively a constant
if (asize->input()
->type()
->expectRef<TensorType>()
.sizes()
.concrete_sizes()) {
return true;
}
}
}
return false;
// this is checked by one of the tests in test_jit_fuser.py
case prim::ListUnpack: {
// check if the input is a constant chunk
// used for LSTM fusions
auto chunk = n->input(0)->node();
if (chunk->kind() != aten::chunk) {
return false;
}
return checkInputs(chunk, no_exceptions, false);
}
// this is checked by one of the tests in test_jit_fuser.py
case aten::broadcast_tensors: {
auto list_construct = n->input(0)->node();
if (list_construct->kind() != prim::ListConstruct) {
return false;
}
return checkInputs(list_construct, no_exceptions, false);
}
case prim::Guard:
case prim::GradOf:
return true;
default:
GRAPH_DEBUG("cannot remove ", n->kind().toQualString());
return false;
}
}
std::shared_ptr<Graph> graph_;
std::unique_ptr<AliasDb> aliasDb_;
static std::unordered_set<Symbol> simple_ops_;
};
void EliminateRedundantGuards(std::shared_ptr<Graph> graph) {
GuardElimination ge(std::move(graph));
ge.run();
}
} // namespace jit
} // namespace torch
|