1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <ATen/core/symbol.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
namespace torch {
namespace jit {
namespace {
static constexpr int64_t kUnrollFactor = 8;
static constexpr int64_t kMaxBodySize = 32;
static constexpr int64_t kMaxBodyRepeats = 64;
bool isTrueConstant(Value* val) {
c10::optional<bool> maybe_value = constant_as<bool>(val);
return maybe_value && *maybe_value;
}
bool isForLoop(Node* node) {
if (node->kind() != prim::Loop)
return false;
Value* start_cond = node->inputs().at(1);
Value* continue_cond = node->blocks().at(0)->outputs().at(0);
return isTrueConstant(start_cond) && isTrueConstant(continue_cond);
}
// Counts the size of this block, stopping and returning once reaches limit
// instructions.
int64_t limitedBlockSize(Block* body, int64_t limit) {
auto it = body->nodes().begin();
auto end = body->nodes().end();
for (int64_t i = 0; i < limit; ++it) {
for (Block* subblock : it->blocks()) {
i += limitedBlockSize(subblock, limit - i);
}
if (!it->notExecutedOp()) {
++i;
}
if (it == end) {
return i;
}
}
return limit;
}
bool isSmallBlock(Block* body) {
return limitedBlockSize(body, kMaxBodySize + 1) <= kMaxBodySize;
}
// XXX: This function can only be called with a loop that is guaranteed to
// execute EXACTLY ONCE.
void inlineBody(Node* loop) {
auto graph = loop->owningGraph();
auto body = loop->blocks().at(0);
WithInsertPoint insert_point_guard{loop};
std::unordered_map<Value*, Value*> value_map;
auto get_value = [&](Value* v) {
auto it = value_map.find(v);
if (it != value_map.end())
return it->second;
return v;
};
// Loop node has extra (max_iters, initial_cond) inputs,
// body has an extra (loop_counter) input.
for (size_t i = 2; i < loop->inputs().size(); ++i) {
value_map[body->inputs()[i - 1]] = loop->inputs()[i];
}
for (Node* orig : body->nodes()) {
Node* clone = graph->insertNode(graph->createClone(orig, get_value));
for (size_t i = 0; i < orig->outputs().size(); ++i) {
value_map[orig->outputs()[i]] = clone->outputs()[i];
}
}
for (size_t i = 0; i < loop->outputs().size(); ++i) {
loop->outputs().at(i)->replaceAllUsesWith(
get_value(body->outputs().at(i + 1)));
}
// XXX: it is extremely important to destroy the loop in here. DCE might not
// be able to conclude that it's safe, because the loop might contain side
// effects.
loop->destroy();
}
// inserts a copy of body, passing inputs to the inputs of the block
// it returns the a list of the Values for the output of the block
std::vector<Value*> insertBlockCopy(
Graph& graph,
Block* body,
at::ArrayRef<Value*> inputs) {
TORCH_INTERNAL_ASSERT(inputs.size() == body->inputs().size());
std::unordered_map<Value*, Value*> value_map;
auto get_value = [&](Value* v) {
auto it = value_map.find(v);
if (it != value_map.end())
return it->second;
return v;
};
auto inputs_it = inputs.begin();
for (Value* input : body->inputs()) {
value_map[input] = *inputs_it++;
}
for (Node* node : body->nodes()) {
Node* new_node = graph.insertNode(graph.createClone(node, get_value));
auto outputs_it = new_node->outputs().begin();
for (Value* output : node->outputs()) {
value_map[output] = *outputs_it++;
}
}
return fmap(body->outputs(), get_value);
}
void repeatBody(Block* body, size_t times, Block* dest) {
auto graph = body->owningGraph();
WithInsertPoint insert_point_guard(dest);
for (Value* input : body->inputs()) {
dest->addInput()->copyMetadata(input);
}
std::vector<Value*> io = dest->inputs().vec();
TORCH_INTERNAL_ASSERT(
!body->inputs().at(0)->hasUses(), "loop counter should be unused");
for (const auto i : c10::irange(times)) {
(void)i; // Suppress unused variable warning
io[0] = body->inputs().at(0);
io = insertBlockCopy(*graph, body, io);
}
for (Value* output : io) {
dest->registerOutput(output);
}
// It's likely that we have some dead nodes now - for example the "true"
// constant that prevents the loop from breaking. We shouldn't wait too long
// before removing them because they might artificially increase the loop size
// and prevent outer loop unrolling.
EliminateDeadCode(dest, false);
}
// Replaces the builtin loop counter with a "mutable" variable outside of the
// loop.
void replaceLoopCounter(Node* loop) {
Graph* graph = loop->owningGraph();
Block* body = loop->blocks().at(0);
WithInsertPoint guard(loop);
Value* init_counter = graph->insertConstant(0);
loop->insertInput(2, init_counter);
loop->insertOutput(0)->setType(IntType::get());
Value* internal_counter = body->insertInput(1)->setType(init_counter->type());
body->inputs()[0]->replaceAllUsesWith(internal_counter);
WithInsertPoint insertPointGuard{body->return_node()};
Value* result = graph->insert(aten::add, {internal_counter, 1});
body->insertOutput(1, result);
}
void unroll(Node* loop) {
Graph* graph = loop->owningGraph();
Block* body = loop->blocks().at(0);
// We will be using a "mutable" counter outside of the loop instead of the
// default one, because this will allow us to share it between the unrolled
// loop and its epilogue. This is necessary only if the loop counter is
// actually used in the body.
if (body->inputs()[0]->uses().size() > 0)
replaceLoopCounter(loop);
// Some optimization for constant-length loops. If we know they won't run too
// many times, then we can unroll them entirely.
Value* trip_count = loop->inputs().at(0);
c10::optional<int64_t> const_len = constant_as<int64_t>(trip_count);
if (const_len && *const_len < kMaxBodyRepeats) {
Block* dest = loop->addBlock();
repeatBody(body, *const_len, dest);
loop->eraseBlock(0);
inlineBody(loop);
return;
}
WithInsertPoint insert_point_guard{loop};
// Clone the loop before we unroll it. The clone will become the epilogue.
Node* loop_epilogue =
graph->createClone(loop, [](Value* v) { return v; })->insertAfter(loop);
for (size_t i = 0; i < loop->outputs().size(); ++i) {
loop->outputs()[i]->replaceAllUsesWith(loop_epilogue->outputs()[i]);
loop_epilogue->replaceInput(i + 2, loop->outputs()[i]);
}
Block* dest = loop->addBlock();
repeatBody(body, kUnrollFactor, dest);
loop->eraseBlock(0);
// Change the iteration counts of both loops
Value* iter_count = loop->inputs().at(0);
Value* unrolled_iter_count = graph->insert(
aten::__round_to_zero_floordiv, {iter_count, kUnrollFactor});
loop->replaceInput(0, unrolled_iter_count);
loop_epilogue->replaceInput(
0,
graph->insert(
aten::sub,
{iter_count,
graph->insert(aten::mul, {unrolled_iter_count, kUnrollFactor})}));
}
bool UnrollLoops(Block* block, bool constant_only) {
bool changed = false;
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
// XXX: unroll might destroy the current node, so we need to pre-increment
// the iterator
Node* node = *it;
++it;
for (Block* subblock : node->blocks()) {
changed |= UnrollLoops(subblock, constant_only);
}
if (!isForLoop(node)) {
continue;
}
if (constant_only) {
if (node->inputs().at(0)->node()->kind() != prim::Constant) {
continue;
}
} else if (!isSmallBlock(node->blocks().at(0))) {
continue;
}
unroll(node);
changed = true;
}
return changed;
}
} // anonymous namespace
static void addCondAsOutput(Node* loop) {
LoopView loop_view(loop);
loop->addInput(loop_view.inputCond());
auto block_cond_input = loop_view.bodyBlock()->addInput();
block_cond_input->copyMetadata(loop_view.inputCond());
auto cond_output_index =
loop_view.bodyBlock()->registerOutput(loop_view.nextCond());
loop_view.bodyBlock()->outputs()[cond_output_index]->copyMetadata(
loop_view.nextCond());
auto cond_output = loop->addOutput();
cond_output->copyMetadata(loop_view.nextCond());
}
bool LoopsPeeler::run(const std::shared_ptr<Graph>& graph) {
GRAPH_DUMP("Before LoopsPeeler", graph);
collectLoops(graph->block());
peelLoops();
GRAPH_DUMP("After LoopsPeeler", graph);
return true;
}
void LoopsPeeler::collectLoop(Node* n) {
if (callback_(n)) {
if (in_loop_) {
GRAPH_DEBUG("Loop ", getHeader(in_loop_), " will be unrolled");
loops_to_peel_.push_back(in_loop_);
in_loop_ = nullptr;
}
}
}
void LoopsPeeler::collectLoops(Block* block) {
// we do a pre-order traversal to reduce the number
// of peeled loops.
for (auto n : block->nodes()) {
collectLoop(n);
}
collectLoop(block->return_node());
// process child blocks
for (auto n : block->nodes()) {
auto old_in_loop_ = in_loop_;
if (n->kind() == prim::Loop) {
in_loop_ = n;
}
for (auto b : n->blocks()) {
collectLoops(b);
}
in_loop_ = old_in_loop_;
}
}
void LoopsPeeler::peelLoops() {
for (auto loop : loops_to_peel_) {
PeelLoop(loop, num_iterations_);
}
}
bool PeelProfilingLoops(const std::shared_ptr<Graph>& graph) {
auto peel_predicate = [](Node* n) {
for (auto i : n->inputs()) {
if (i->type()->isSubtypeOf(*TensorType::get())) {
return true;
}
}
return false;
};
LoopsPeeler lp(peel_predicate);
return lp.run(graph);
}
Node* PeelLoop(Node* n, size_t times) {
GRAPH_DEBUG("Peeling the loop ", getHeader(n), " ", times, " times");
auto graph = n->owningGraph();
auto orig_loop = LoopView(n);
WithInsertPoint wip(n);
auto times_const = graph->insertConstant(static_cast<int64_t>(times));
// N.B. even though a caller may request to peel `times` iterations
// `maxTripCount` of the original loop might be less than that
// so we should take the minimum of the two
auto min_trip_count =
graph->insert(prim::min, {orig_loop.maxTripCount(), times_const});
// make the peeled clone
auto peeled_copy = graph->createClone(n, [](Value* v) { return v; });
addCondAsOutput(peeled_copy);
LoopView new_lv(peeled_copy);
graph->insertNode(peeled_copy);
// only run until the peeled count
new_lv.replaceMaxTripCount(min_trip_count);
// substract `maxTripCount` of the original loop by the number iterations
// the peeled loop runs
auto new_max_trip_count =
graph->insert(aten::sub, {orig_loop.maxTripCount(), min_trip_count});
orig_loop.replaceMaxTripCount(new_max_trip_count);
// update the termination condition
auto cond_index = peeled_copy->outputs().size() - 1;
orig_loop.replaceInputCondition(peeled_copy->output(cond_index));
static const size_t LOOP_DEPS_WITH_COND_OFFSET = 2;
for (size_t i = 0; i < peeled_copy->outputs().size() -
1 /* leave off the termination condition */;
i++) {
n->replaceInput(LOOP_DEPS_WITH_COND_OFFSET + i, peeled_copy->output(i));
}
// the induction variable also needs to be adjusted by the number of
// iterations the peeled loop runs
{
WithInsertPoint peeled_wip(*orig_loop.bodyBlock()->nodes().begin());
// we can't create the expression: `new_counter` = `old_counter` + 1 yet
// because when we
// run `old_counter->replaceAllUsesWith(new_counter)`, we will get
// `new_counter = new_counter + 1`
auto adjusted_iter_counter =
graph->insert(aten::add, {min_trip_count, min_trip_count});
orig_loop.currentTripCount()->replaceAllUsesWith(adjusted_iter_counter);
adjusted_iter_counter->node()->replaceInput(
0, orig_loop.currentTripCount());
}
return peeled_copy;
}
bool UnrollLoops(std::shared_ptr<Graph>& graph) {
bool changed = UnrollLoops(graph->block(), false);
if (changed) {
EliminateDeadCode(graph);
}
return changed;
}
bool UnrollConstantLoops(std::shared_ptr<Graph>& graph) {
bool changed = UnrollLoops(graph->block(), true);
if (changed) {
EliminateDeadCode(graph);
}
return changed;
}
} // namespace jit
} // namespace torch
|