1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
#include <ATen/Config.h>
#include <ATen/code_template.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/mkldnn_rewrite.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
namespace torch {
namespace jit {
#if AT_MKLDNN_ENABLED()
c10::VaryingShape<int64_t> getSizesOf(Node* n, size_t idx) {
auto tt = n->input(idx)->type()->cast<TensorType>();
return tt->sizes();
}
void insertPrePackedConvOpForNode(Node* n) {
constexpr int POS_INPUT = 0;
constexpr int POS_WEIGHT = 1;
if (!tensorexpr::isContiguous(
n->input(POS_INPUT), at::MemoryFormat::ChannelsLast)) {
GRAPH_DEBUG(
"insertPrePackedConvOpForNode: input is not ChannelsLast contiguous");
return;
}
if (!tensorexpr::isContiguous(
n->input(POS_WEIGHT), at::MemoryFormat::ChannelsLast)) {
GRAPH_DEBUG(
"insertPrePackedConvOpForNode: weight is not ChannelsLast contiguous");
return;
}
// Leave depthwise conv2d to NNC
if (tensorexpr::conv2dIsSupportedJit(n)) {
GRAPH_DEBUG("insertPrePackedConvOpForNode: leave depthwise conv2d to NNC");
return;
}
WithInsertPoint guard(n);
auto graph = n->owningGraph();
auto input_sizes = getSizesOf(n, POS_INPUT);
IValue input_size_value(*input_sizes.concrete_sizes());
auto input_size = graph->insertConstant(input_size_value);
auto prepack_node = graph->create(
Symbol::fromQualString("mkldnn_prepacked::conv2d_prepack"), 1);
// skip input value
for (auto i = 1; i < n->inputs().size(); i++) {
Value* v = n->input(i);
prepack_node->addInput(v);
}
prepack_node->addInput(input_size);
auto attr = graph->insertConstant(IValue("none"));
prepack_node->addInput(attr);
prepack_node->output()->setType(
getCustomClass("__torch__.torch.classes.mkldnn.ConvOpContext"));
graph->insertNode(prepack_node);
auto prepack_conv = graph->insertNode(
graph->create(Symbol::fromQualString("mkldnn_prepacked::conv2d_run"), 1));
prepack_conv->addInput(n->input(0));
prepack_conv->addInput(prepack_node->output());
prepack_conv->output()->setType(n->output()->type()->cast<TensorType>());
n->output()->replaceAllUsesWith(prepack_conv->output());
}
bool isTensorTypeCPU(Node* node) {
for (const auto& input : node->inputs()) {
auto type = input->type()->cast<TensorType>();
if (!type) {
continue;
}
auto device = type->device();
if (!device) {
return false;
}
if (!device->is_cpu()) {
return false;
}
}
return true;
}
void insertPrePackedConvOp(Block* b) {
for (Node* n : b->nodes()) {
for (Block* b : n->blocks()) {
insertPrePackedConvOp(b);
}
if (n->kind() == aten::conv2d) {
if (isTensorTypeCPU(n)) {
insertPrePackedConvOpForNode(n);
}
}
}
EliminateDeadCode(b);
}
void insertMkldnnPrePackedConv2dOp(std::shared_ptr<Graph>& graph) {
insertPrePackedConvOp(graph->block());
}
void insertMkldnnPrePackedOps(std::shared_ptr<Graph>& graph) {
insertMkldnnPrePackedConv2dOp(graph);
}
void insertMkldnnPrePackedOps(script::Module& module) {
for (auto& method : module.get_methods()) {
auto graph = method.graph();
insertMkldnnPrePackedOps(graph);
}
for (script::Module m : module.children()) {
insertMkldnnPrePackedOps(m);
}
}
void FuseReluWithPackedOps(std::shared_ptr<Graph>& graph) {
auto conv_op_rstring = at::jit::CodeTemplate(R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %input_size:int[], %dummy_attr:str):
%packed_weight_bias = mkldnn_prepacked::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%input_size, %dummy_attr)
%conv2d_res = mkldnn_prepacked::conv2d_run(%input, %packed_weight_bias)
%res = aten::${op}(%conv2d_res)
return (%res))");
auto conv_op_fused_rstring = at::jit::CodeTemplate(R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %input_size:int[], %dummy_attr:str):
%attr: str = prim::Constant[value="${op_attr}"]()
%packed_weight_bias : __torch__.torch.classes.mkldnn.ConvOpContext = mkldnn_prepacked::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%input_size, %attr)
%res = mkldnn_prepacked::conv2d_run(%input, %packed_weight_bias)
return (%res))");
for (auto const& it : mkldnn::fusion_rewrite_map) {
std::string op = it.first;
if (op == std::string("none")) {
continue;
}
at::jit::TemplateEnv env;
env.s("op", op);
at::jit::TemplateEnv env_fused;
env_fused.s("op_attr", op);
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(
conv_op_rstring.format(env), conv_op_fused_rstring.format(env_fused));
auto filters = it.second;
rewriter.runOnGraph(graph, filters);
}
}
void PrePackingOpsFolder(Block* b) {
auto is_foldable_op = [](const Node* n) -> bool {
return (
n->kind() ==
Symbol::fromQualString("mkldnn_prepacked::conv2d_prepack"));
};
std::unordered_set<Node*> nodes_to_delete;
for (Node* n : b->nodes()) {
for (Block* block : n->blocks()) {
PrePackingOpsFolder(block);
}
if (is_foldable_op(n)) {
auto optional_outputs = torch::jit::runNodeIfInputsAreConstant(n);
if (optional_outputs) {
auto outputs = optional_outputs.value();
TORCH_CHECK(outputs.size() == 1, "Prepack ops have single output");
Value* prepack_op_value = n->output(0);
auto graph = n->owningGraph();
WithInsertPoint ins(prepack_op_value->node());
auto weak_class_obj =
outputs[0].toObject()->copy_to_weak_compilation_ref();
Value* packed_weight = graph->insertConstant(weak_class_obj)
->setType(n->output(0)->type());
prepack_op_value->replaceAllUsesWith(packed_weight);
nodes_to_delete.insert(n);
}
}
}
for (auto n : nodes_to_delete) {
n->removeAllInputs();
}
for (auto n : nodes_to_delete) {
n->destroy();
}
}
void FoldPrePackingOps(std::shared_ptr<Graph>& graph) {
PrePackingOpsFolder(graph->block());
}
void FuseConvWithEltwise(std::shared_ptr<Graph>& graph) {
GRAPH_DEBUG(
"Before insertMkldnnPrePackedOps. Beginning of FuseConvWithEltwise\n",
*graph);
insertMkldnnPrePackedOps(graph);
GRAPH_DEBUG(
"After insertMkldnnPrePackedOps, before FuseReluWithPackedOps\n", *graph);
FuseReluWithPackedOps(graph);
GRAPH_DEBUG(
"After FuseReluWithPackedOps, before FoldPrePackingOps\n", *graph);
FoldPrePackingOps(graph);
GRAPH_DEBUG("After FoldPrePackingOps. End of FuseConvWithEltwise\n", *graph);
}
#else
void FuseConvWithEltwise(std::shared_ptr<Graph>& graph) {
GRAPH_DEBUG("MKLDNN Not enabled");
}
#endif // AT_MKLDNN_ENABLED()
} // namespace jit
} // namespace torch
|