1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
#include <torch/csrc/jit/passes/onnx.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/symbolic.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/onnx/onnx_log.h>
#include <torch/csrc/jit/passes/onnx/shape_type_inference.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/utils/pybind.h>
#include <sstream>
#include <unordered_map>
namespace torch {
namespace jit {
void removePrintOps(Block* block) {
for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end;
++it) {
for (auto b : it->blocks()) {
removePrintOps(b);
}
if (it->kind() == prim::Print || it->kind() == aten::warn) {
for (size_t i = 0; i < it->inputs().size();) {
auto input = it->inputs().at(i);
// only handling constants bc of potential side effects
if (input->uses().size() == 1 &&
input->node()->kind() == prim::Constant) {
it->removeInput(i);
input->node()->destroy();
} else {
++i;
}
}
it.destroyCurrent();
}
}
}
void RemovePrintOps(std::shared_ptr<Graph>& graph) {
removePrintOps(graph->block());
GRAPH_DUMP("After RemovePrintOps: ", graph);
}
void checkONNXCompatibility(const c10::FunctionSchema& schema) {
// in ONNX, all inputs are tensors, no support for tensor list
// so at most one input tensor list is supported
bool has_tensor_list = false;
const auto& args = schema.arguments();
for (const auto& arg : args) {
if (arg.name() == "_caffe2_preallocated_outputs") {
continue;
}
auto type = arg.type();
if (type->kind() == TypeKind::OptionalType) {
type = reinterpret_cast<OptionalType*>(type.get())->getElementType();
// recursive optional type is not supported
AT_ASSERT(type->kind() != TypeKind::OptionalType);
}
if (type->kind() == TypeKind::ListType) {
const auto& elem_type =
reinterpret_cast<ListType*>(type.get())->getElementType();
if (elem_type->isSubtypeOf(*TensorType::get())) {
AT_ASSERTM(
!has_tensor_list,
"ONNX export supports at most one TensorList as input.");
has_tensor_list = true;
}
}
}
}
void preprocessCaffe2Ops(Block* block) {
for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end;
++it) {
for (auto b : it->blocks()) {
preprocessCaffe2Ops(b);
}
if (it->kind().is_caffe2()) {
const auto& schema = it->schema();
checkONNXCompatibility(schema);
std::vector<Value*> origin_inputs;
for (Value* v : it->inputs()) {
origin_inputs.push_back(v);
}
it->removeAllInputs();
const auto& args = schema.arguments();
size_t origin_inputs_index = 0;
for (const auto& arg : args) {
auto type = arg.type();
AT_ASSERT(origin_inputs_index < origin_inputs.size());
const auto& origin_input = origin_inputs[origin_inputs_index++];
if (type->kind() == TypeKind::OptionalType &&
origin_input->mustBeNone()) {
continue;
}
if (type->isSubtypeOf(*TensorType::get())) {
it->addInput(origin_input);
} else if (
type->kind() == TypeKind::BoolType ||
type->kind() == TypeKind::IntType) {
const auto* constant_node = origin_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
it->i_(Symbol::attr(arg.name()), constant_node->i(attr::value));
} else if (type->kind() == TypeKind::FloatType) {
const auto* constant_node = origin_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
it->f_(Symbol::attr(arg.name()), constant_node->f(attr::value));
} else if (type->kind() == TypeKind::StringType) {
const auto* constant_node = origin_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
it->s_(Symbol::attr(arg.name()), constant_node->s(attr::value));
} else if (type->kind() == TypeKind::ListType) {
const auto& list_node = origin_input->node();
const auto& elem_type = type->castRaw<ListType>()->getElementType();
AT_ASSERT(
list_node->kind() == prim::ListConstruct ||
list_node->kind() == prim::Constant);
if (elem_type->isSubtypeOf(*TensorType::get())) {
AT_ASSERT(list_node->kind(), prim::ListConstruct);
const auto& tensor_list = origin_input->node()->inputs();
for (const auto& t : tensor_list) {
it->addInput(t);
}
} else if (elem_type->kind() == TypeKind::FloatType) {
std::vector<double> values;
if (list_node->kind() == prim::ListConstruct) {
for (const auto* elem_input : list_node->inputs()) {
const auto* constant_node = elem_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
values.push_back(constant_node->f(attr::value));
}
} else { // is a constant list
values = list_node->fs(attr::value);
}
it->fs_(Symbol::attr(arg.name()), values);
} else {
throw std::runtime_error(
"Unhandled scalar arg: " + arg.name() +
", type: " + c10::typeKindToString(elem_type->kind()));
}
} else {
throw std::runtime_error(
"Unsupported input type of arg " + arg.name() +
" in Caffe2 operator: " + c10::typeKindToString(type->kind()));
}
}
}
}
EliminateDeadCode(
block, true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
}
void PreprocessCaffe2Ops(std::shared_ptr<Graph>& graph) {
preprocessCaffe2Ops(graph->block());
GRAPH_DUMP("After PreprocessCaffe2Ops: ", graph);
}
// Transform PythonOps into Nodes that match ONNX semantics.
std::shared_ptr<Graph> ToONNX(
std::shared_ptr<Graph>& graph,
::torch::onnx::OperatorExportTypes operator_export_type) {
auto constant_value_map = ConstantValueMap::getInstance();
ConstantValueMap::ClearMaps();
auto new_graph = std::make_shared<Graph>(graph->current_scope());
std::unordered_map<Value*, Value*> env;
try {
BlockToONNX(graph->block(), new_graph->block(), operator_export_type, env);
} catch (std::runtime_error& ex) {
ONNX_LOG(
"ONNX graph being constructed during exception:\n",
new_graph->toString());
throw;
}
GRAPH_DUMP("after ToONNX: ", new_graph);
ConstantValueMap::ClearMaps();
return new_graph;
}
// BlockToONNX.
// is_sub_block = true means the old_block (aten graph) is in the sub block
// (e.g., if sub block), and we want to convert it into its parent block in onnx
// graph. In this case, we don't register the input/output or eliminate the dead
// code.
std::unordered_map<Value*, Value*> BlockToONNX(
Block* old_block,
Block* new_block,
::torch::onnx::OperatorExportTypes operator_export_type,
std::unordered_map<Value*, Value*>& env,
bool is_sub_block) {
torch::autograd::SymbolicContext ctx{};
ctx.block = new_block;
GRAPH_DEBUG(
"BlockToONNX: graph of old block: ",
old_block->owningGraph()->toString());
// Initialize context and environment
if (!is_sub_block) {
for (auto input : old_block->inputs()) {
auto n = ctx.block->addInput()->copyMetadata(input);
env[input] = n;
}
}
// Finally, visit all nodes in the graph
for (auto node : old_block->nodes()) {
NodeToONNX(node, ctx.block, operator_export_type, env);
}
if (is_sub_block) {
return env;
}
for (auto output : old_block->outputs()) {
ctx.block->registerOutput(env.at(output));
}
// Run dce to clean-up unused functional and inplace ops.
EliminateDeadCode(
ctx.block,
true,
DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
return {};
}
bool ConstantFoldCondition(torch::jit::Value* output) {
auto fold_condition = output->node()->kind() != c10::onnx::Constant &&
ConstantValueMap::HasValue(output->debugName());
auto reliable_value =
ConstantValueMap::GetTypeReliable(output->debugName()).value_or(false);
return fold_condition && reliable_value;
}
void NodeToONNX(
Node* old_node,
Block* new_block,
::torch::onnx::OperatorExportTypes operator_export_type,
std::unordered_map<Value*, Value*>& env) {
py::object onnx = py::module::import("torch.onnx");
py::object onnx_globals = py::module::import("torch.onnx._globals");
py::object onnx_registration =
py::module::import("torch.onnx._internal.registration");
// Setup all the lambda helper functions.
// Returns a node that n maps to in the new graph
auto envFn = [&env](Value* n) -> Value* {
auto it = env.find(n);
TORCH_CHECK(it != env.end(), "Dangling node reference");
TORCH_CHECK(it->second, "Unused node was subsequently used");
return it->second;
};
// Put the new outputs in our environment map, and copy the type from the
// input graph if they were not set by the symbolic. This is called only
// with results of symbolic call (not for nodes that are just cloned).
auto setOutputs = [&](const std::string& op_name,
Node* node,
const value_list& outputs) {
auto old_outputs = node->outputs();
// Count all outputs, excluding Handles
auto num_old_outputs = old_outputs.size();
if (outputs.size() != num_old_outputs) {
std::ostringstream ss;
ss << "symbolic for " << op_name
<< " produced an incorrect number of outputs (expected ";
ss << num_old_outputs << ", but got " << outputs.size() << ")";
throw std::runtime_error(ss.str());
}
// For const node, it does not need params_dict info, so set it to {}.
const ParamMap empty_params_dict = {};
auto opset_version = py::cast<int>(
onnx_globals.attr("GLOBALS").attr("export_onnx_opset_version"));
for (const auto i : c10::irange(num_old_outputs)) {
auto old = old_outputs[i];
if (outputs[i]) {
bool exist_in_env =
(env.end() !=
std::find_if(
env.begin(), env.end(), [&outputs, i](const auto& vt) {
return vt.second == outputs[i];
}));
// Update ONNX value debug name with ATen value debug name if existed.
// Skip if ONNX value already exist in environment.
// This implies the op is a noop, and the value is owned by
// other node created elsewhere.
if (old->hasDebugName() && !exist_in_env) {
auto old_name = outputs[i]->debugName();
auto new_name = old->debugNameBase();
auto debug_names = new_block->owningGraph()->debugNames();
auto exist_name = debug_names.find(new_name);
outputs[i]->setDebugName(new_name);
if (exist_name != debug_names.end()) {
// setDebugName changes name of existing value with same name.
// Set again to revert the changes, but update name for new value
// with suffix.
exist_name->second->setDebugName(new_name);
}
ConstantValueMap::UpdateValueName(old_name, outputs[i]->debugName());
}
// Allow symbolic() to skip specifying the type of the return node.
// Unfortunately, they are on the hook for all internal nodes
// (though in practice, the types are not computed.)
//
// If onnx shape inference is turned on, the new outputs will have
// types inferred, and they will be merged with the old types.
if (ConstantFoldCondition(outputs[i])) {
// Create a const node if the node output value is in
// ConstantValueMap.
auto value =
ConstantValueMap::GetValue(outputs[i]->debugName()).value();
Node* const_node =
new_block->owningGraph()->create(c10::onnx::Constant);
const_node->t_(attr::value, value);
const_node->output()->setType(TensorType::create(value));
// Copy over source location and scope information to all nodes
// created by the symbolic
const_node->copyMetadata(node);
new_block->appendNode(const_node);
ONNXShapeTypeInference(const_node, empty_params_dict, opset_version);
env[old] = const_node->output();
} else {
// ConstantValueMap has been set in shape inference,
// set_constant_value_map = false here to avoid redundancy.
MergeInferredTypeAndSetMap(
outputs[i], old->type(), outputs[i]->type(), false);
// Copy over source location and scope information to all nodes
// created by the symbolic
// Do not set metadata if outputs[i] is already in env.
if (!exist_in_env) {
outputs[i]->node()->copyMetadata(node);
}
env[old] = outputs[i];
}
} else {
// Null output means that the ONNX op doesn't have outputs corresponding
// to certain PyTorch outputs
env[old] = nullptr;
if (!old->uses().empty()) {
std::ostringstream ss;
ss << "symbolic for " << op_name << " returned None for the output "
<< i;
ss << " (indicating conversion for that particular output is not supported), ";
ss << "but the network uses this output later";
// TODO: Say what actually used it
throw std::runtime_error(ss.str());
}
}
}
};
// Clone the node and add it to the new graph
auto cloneNode = [&](Node* node) {
auto n_ = new_block->appendNode(
new_block->owningGraph()->createClone(node, envFn));
for (const auto i : c10::irange(node->outputs().size())) {
// n_->outputs()[i]->setType(node->outputs()[i]->type());
env[node->output(i)] = n_->output(i);
}
};
// Inline the prim::PythonOp sub-block nodes and append them to the onnx graph
auto inlineAutograd = [&](Node* PythonOpNode) {
for (auto subblock : PythonOpNode->blocks()) {
for (const auto i : c10::irange(PythonOpNode->inputs().size())) {
env[subblock->inputs()[i]] = env[PythonOpNode->inputs()[i]];
}
for (auto* node : subblock->nodes()) {
NodeToONNX(node, new_block, operator_export_type, env);
}
for (const auto i : c10::irange(PythonOpNode->outputs().size())) {
env[PythonOpNode->outputs()[i]] = env[subblock->outputs()[i]];
}
}
};
// Cast output of symbolic() python implementation
auto processSymbolicOutput = [&](const std::string& op_name,
Node* n,
const py::object& raw_output) {
if (raw_output.ptr() == Py_None) {
cloneNode(n);
return;
}
// Cast the outputs back to C++ and put them in the new graph
std::vector<Value*> outputs;
try {
if (py::isinstance<Value>(raw_output)) {
outputs = value_list{py::cast<Value*>(raw_output)};
} else {
outputs = py::cast<std::vector<Value*>>(raw_output);
}
} catch (const std::exception& ex) {
std::ostringstream ss;
ss << "Error casting results of symbolic for " << op_name
<< ": expected to return list of op nodes, instead received type ''"
<< py::str(raw_output.get_type()) << "': " << py::str(raw_output);
throw std::runtime_error(ss.str());
}
setOutputs(op_name, n, outputs);
};
auto callPySymbolicFunction = [&](Node* n) {
// The idea is delegate as much of the actual argument massaging to
// Python as possible
py::tuple py_inputs(n->inputs().size());
Py_ssize_t input_nr = 0;
for (auto* input : n->inputs()) {
py_inputs[input_nr++] = py::cast(envFn(input));
}
Graph* g = new_block->owningGraph();
std::unordered_set<Node*> nodes_before;
for (auto node : g->nodes()) {
nodes_before.emplace(node);
}
WithInsertPoint insert_point_guard(new_block);
WithCurrentScope scope_guard(*g, n->scope());
py::object raw_output = onnx.attr("_run_symbolic_function")(
g, new_block, n, py_inputs, env, operator_export_type);
// Find new nodes that have been created by _run_symbolic_function and
// propagate metadata
for (auto node : g->nodes()) {
if (nodes_before.find(node) == nodes_before.end()) {
node->copyMetadata(n);
}
}
// TODO: Assert it's an ATen identifier???
// (Sometimes it's not...)
processSymbolicOutput(n->kind().toUnqualString(), n, raw_output);
GRAPH_DUMP("after processSymbolicOutput: ", g);
};
auto callPySymbolicMethod = [&](ConcretePythonOp* op) {
// Test if there is a symbolic function; bail if there is not
auto pyobj = py::handle(op->pyobj.get());
auto func = op->autogradFunction();
if (func) {
pyobj = func->get();
}
py::object opset_version =
onnx_globals.attr("GLOBALS").attr("export_onnx_opset_version");
// NOTE(justinchuby): Call the internal registry to register the symbolic
// method defined in the module.
bool is_registered_op =
onnx_registration.attr("registry")
.attr("is_registered_op")("prim::PythonOp", opset_version)
.cast<bool>();
if (!py::hasattr(pyobj, "symbolic") && !is_registered_op) {
// Inline the subgraph within the prim::PythonOp unless
// either of these conditions are satisfied
// 1. The torch.autograd.Function class of this node object has `symbolic`
// method defined.
// 2. Custom export symbolic is registered for prim::PythonOp.
if (operator_export_type == ::torch::onnx::OperatorExportTypes::ONNX) {
try {
inlineAutograd(op);
} catch (const std::exception& ex) {
TORCH_WARN(
"Unable to inline PythonOp: ",
op->name(),
" due to the following exception\n",
ex.what(),
"prim::PythonOp will be exported as is and without being inlined\n",
"Try exporting with the following alternatives: \n",
"1) Set operator_export_type to ONNX_FALLTHROUGH mode\n",
"2) Register a symbolic method for the prim::PythonOp ",
op->name());
cloneNode(op);
}
} else {
cloneNode(op);
}
return;
}
// Prepare args for Python. First one is the graph, and is followed
// by regular args, with Variables replaced by corresponding nodes.
Py_ssize_t input_nr = 0;
py::tuple py_symbolic_args(op->cconv.size());
auto inputs = op->inputs();
auto node_it = inputs.begin();
auto scalar_it = op->scalar_args.begin();
for (auto arg_type : op->cconv) {
py::object obj;
if (arg_type == 'c') {
TORCH_CHECK(
scalar_it != op->scalar_args.end(),
"expected too many scalar args");
obj = py::reinterpret_borrow<py::object>(
py::handle((scalar_it++)->get()));
} else if (arg_type == 'd') {
TORCH_CHECK(node_it != inputs.end(), "expected too many inputs");
obj = py::cast(envFn(*node_it++));
} else {
throw std::runtime_error("unexpected calling convention");
}
py_symbolic_args[input_nr++] = obj;
}
WithInsertPoint insert_point_guard(new_block);
WithCurrentScope scope_guard(*new_block->owningGraph(), op->scope());
if (py::hasattr(pyobj, "symbolic")) {
// Call the symbolic function
// Use a little trampoline function so we can give good error messages
// upon argument mismatch
// Register as a custom operator
// TODO: Find a more elegant way to do this without having to touch
// internal Python modules.
// TODO(justinchuby): Define a namespace for these Python Ops.
onnx_registration.attr("registry")
.attr("register")(
"::" + op->name(),
opset_version,
pyobj.attr("symbolic"),
/* custom */ true);
py::object raw_output = onnx.attr("_run_symbolic_method")(
new_block->owningGraph(),
op->name(),
pyobj.attr("symbolic"),
py_symbolic_args);
processSymbolicOutput(op->name(), op, raw_output);
} else {
TORCH_INTERNAL_ASSERT(is_registered_op);
Node* n = static_cast<Node*>(op);
n->s_(attr::name, op->name());
// Call symbolic function
py::object raw_output = onnx.attr("_run_symbolic_function")(
new_block->owningGraph(),
new_block,
n,
py_symbolic_args,
env,
operator_export_type);
processSymbolicOutput(op->kind().toUnqualString(), n, raw_output);
}
};
auto k = old_node->kind();
if (k.is_caffe2()) {
// Pass on Caffe2 operator, since we already preprocess it
cloneNode(old_node);
} else if (k == prim::PythonOp) {
callPySymbolicMethod(static_cast<ConcretePythonOp*>(old_node));
} else {
callPySymbolicFunction(old_node);
}
}
} // namespace jit
} // namespace torch
|