1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
|
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <torch/csrc/jit/passes/onnx/helper.h>
#include <ATen/Functions.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include <algorithm>
namespace torch {
namespace jit {
namespace onnx {
using namespace ::c10::onnx;
}
namespace onnx_constant_fold {
enum OnnxType : int {
ONNX_FLOAT = 1,
ONNX_UINT8,
ONNX_INT8,
ONNX_UINT16,
ONNX_INT16,
ONNX_INT32,
ONNX_INT64,
ONNX_FLOAT16 = 10,
ONNX_DOUBLE,
ONNX_UINT32,
};
std::unordered_map<int, at::ScalarType> onnxTypeToScalarTypeMap = {
// Only conversion of ONNX numeric types is included here.
// Unsigned ONNX types are mapped to the next higher signed
// ScalarType type.
{ONNX_FLOAT, at::kFloat},
{ONNX_UINT8, at::kByte},
{ONNX_INT8, at::kChar},
{ONNX_UINT16, at::kInt},
{ONNX_INT16, at::kShort},
{ONNX_INT32, at::kInt},
{ONNX_INT64, at::kLong},
{ONNX_FLOAT16, at::kFloat},
{ONNX_DOUBLE, at::kDouble},
{ONNX_UINT32, at::kLong},
};
void handleNegativeStartEndIndex(
int64_t& start,
int64_t& end,
int64_t& axis,
c10::IntArrayRef tensorSizes) {
if (start < 0) {
start = tensorSizes[axis] + start;
}
if (end < 0) {
end = tensorSizes[axis] + end;
}
// index higher than dimension is treated as the end.
if (end > tensorSizes[axis]) {
end = tensorSizes[axis];
}
}
c10::optional<at::Tensor> runTorchSlice_opset9(
const Node* node,
std::vector<at::Tensor>& inputTensorValues) {
assert(inputTensorValues.size() == 1);
if (inputTensorValues.size() != 1) {
TORCH_WARN(
"Constant folding - Invalid number of inputs found for opset 9 "
"onnx::Slice op. Constant folding not applied.");
return c10::nullopt;
}
if (!(node->hasAttributeS("starts") && node->hasAttributeS("ends"))) {
return c10::nullopt;
}
auto startsAttr = node->is(attr::starts);
auto endsAttr = node->is(attr::ends);
if (startsAttr.size() != endsAttr.size()) {
return c10::nullopt;
}
std::vector<int64_t> axesAttr;
if (node->hasAttributeS("axes")) {
axesAttr = node->is(attr::axes);
} else {
axesAttr.resize(startsAttr.size());
std::iota(axesAttr.begin(), axesAttr.end(), 0);
}
auto updated_val = inputTensorValues[0];
for (const auto i : c10::irange(axesAttr.size())) {
// ONNX slice accepts negative starts and ends values.
int64_t axis = axesAttr[i], start = startsAttr[i], end = endsAttr[i];
// ONNX slice accepts negative axis, fix this for aten op
axis += axis < 0 ? inputTensorValues[0].sizes().size() : 0;
handleNegativeStartEndIndex(start, end, axis, updated_val.sizes());
int64_t length = end - start;
if (length < 0 || start > updated_val.sizes()[axis] - length)
return c10::nullopt;
updated_val = at::narrow(updated_val, axis, start, length);
}
return c10::optional<at::Tensor>(updated_val);
}
c10::optional<at::Tensor> runTorchSlice_opset10(
const Node* node,
std::vector<at::Tensor>& inputTensorValues) {
const int maxSliceInputCount = 5;
const int minSliceInputCount = 3;
if (inputTensorValues.size() < minSliceInputCount ||
inputTensorValues.size() > maxSliceInputCount) {
TORCH_WARN(
"Constant folding - Invalid number of inputs found for opset opset >= 10 onnx::Slice op. "
"Constant folding not applied.");
return c10::nullopt;
}
// Checking validity of 'starts' and 'ends' input
if (inputTensorValues[1].sizes().size() != 1 ||
inputTensorValues[2].sizes().size() != 1) {
TORCH_WARN(
"Constant folding - Invalid 'starts' or 'ends' inputs found for opset >= 10 onnx::Slice op. "
"Constant folding not applied.");
return c10::nullopt;
}
if (inputTensorValues[1].sizes()[0] != inputTensorValues[2].sizes()[0]) {
// Number of elements of 'starts' and 'ends' 1-D input tensors should be the
// same
return c10::nullopt;
}
// Checking 'axes' input, if available.
std::vector<int64_t> axes;
if (inputTensorValues.size() > 3) {
if (inputTensorValues[3].sizes().size() != 1) {
TORCH_WARN(
"Constant folding - Invalid 'axes' input found for opset >= 10 onnx::Slice op. "
"Constant folding not applied.");
return c10::nullopt;
}
if (inputTensorValues[3].sizes()[0] != inputTensorValues[1].sizes()[0]) {
// Number of elements of 'axes' and 'ends' 1-D input tensors should be the
// same
TORCH_WARN(
"Constant folding - Invalid 'axes' or 'ends' inputs found for opset >= 10 onnx::Slice op. "
"Constant folding not applied.");
return c10::nullopt;
}
auto axes_a = inputTensorValues[3].accessor<int64_t, 1>();
axes.resize(inputTensorValues[3].sizes()[0]);
// ONNX slice accepts negative axis, fix this for aten op
for (const auto i : c10::irange(inputTensorValues[3].sizes()[0])) {
axes[i] = axes_a[i] < 0 ? axes_a[i] + inputTensorValues[0].sizes().size()
: axes_a[i];
}
} else {
axes = std::vector<int64_t>(inputTensorValues[1].sizes()[0], 0);
}
// Checking 'steps' input, if available.
if (inputTensorValues.size() > 4) {
if (inputTensorValues[4].sizes().size() != 1) {
TORCH_WARN(
"Constant folding - Invalid 'steps' input found for opset >= 10 onnx::Slice op. "
"Constant folding not applied.");
return c10::nullopt;
}
if (inputTensorValues[4].sizes()[0] != inputTensorValues[1].sizes()[0]) {
// Number of elements of 'steps' and 'ends' 1-D input tensors should be
// the same
TORCH_WARN(
"Constant folding - Invalid 'steps' or 'ends' inputs found for opset >= 10 onnx::Slice op. "
"Constant folding not applied.");
return c10::nullopt;
}
auto steps_a = inputTensorValues[4].accessor<int64_t, 1>();
for (const auto i : c10::irange(inputTensorValues[4].sizes()[0])) {
// Only steps == 1 are supported for constant-folding.
if (steps_a[i] != 1) {
TORCH_WARN(
"Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. "
"Constant folding not applied.");
return c10::nullopt;
}
}
}
auto starts_a = inputTensorValues[1].accessor<int64_t, 1>();
auto ends_a = inputTensorValues[2].accessor<int64_t, 1>();
auto updated_val = inputTensorValues[0];
for (const auto i : c10::irange(inputTensorValues[1].sizes()[0])) {
// ONNX slice accepts negative starts and ends values.
int64_t start = starts_a[i], end = ends_a[i], axis = axes[i];
handleNegativeStartEndIndex(start, end, axis, updated_val.sizes());
int64_t length = end - start;
if (length < 0 || start > updated_val.sizes()[axis] - length)
return c10::nullopt;
updated_val = at::narrow(updated_val, axis, start, length);
}
return c10::optional<at::Tensor>(updated_val);
}
// Refer to AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_EXCEPT_COMPLEX_HALF
at::Tensor runTorchArange_opset11(
const Node* node,
const std::vector<at::Tensor>& inputTensorValues) {
TORCH_INTERNAL_ASSERT(inputTensorValues.size() == 3);
auto dtype = inputTensorValues[0].scalar_type();
at::Tensor updated_val;
switch (dtype) {
case at::ScalarType::Float: {
auto start = inputTensorValues[0].item<float>();
auto end = inputTensorValues[1].item<float>();
auto step = inputTensorValues[2].item<float>();
updated_val = at::arange(start, end, step);
break;
}
case at::ScalarType::Double: {
auto start = inputTensorValues[0].item<double>();
auto end = inputTensorValues[1].item<double>();
auto step = inputTensorValues[2].item<double>();
updated_val = at::arange(start, end, step);
break;
}
case at::ScalarType::Short: {
auto start = inputTensorValues[0].item<int16_t>();
auto end = inputTensorValues[1].item<int16_t>();
auto step = inputTensorValues[2].item<int16_t>();
updated_val = at::arange(start, end, step);
break;
}
case at::ScalarType::Int: {
auto start = inputTensorValues[0].item<int>();
auto end = inputTensorValues[1].item<int>();
auto step = inputTensorValues[2].item<int>();
updated_val = at::arange(start, end, step);
break;
}
case at::ScalarType::Long: {
auto start = inputTensorValues[0].item<int64_t>();
auto end = inputTensorValues[1].item<int64_t>();
auto step = inputTensorValues[2].item<int64_t>();
updated_val = at::arange(start, end, step);
break;
}
default: {
TORCH_WARN(
"Constant folding - ONNX Range type: ", dtype, " is not supported.");
}
}
return updated_val;
}
at::Tensor IntToTensor(int64_t value) {
auto options = c10::TensorOptions().dtype(at::kLong).device(at::kCPU);
std::vector<int64_t> size_data = {value};
auto f = at::from_blob(size_data.data(), {1}, at::kLong).to(at::kCPU);
// Need copy here
at::Tensor f_copy = at::empty({1}, options);
f_copy.copy_(f);
return at::squeeze(f_copy, 0);
}
c10::optional<at::Tensor> runTorchBackendForOnnx(
const Node* node,
std::vector<at::Tensor>& inputTensorValues,
int opset_version) {
at::Tensor updated_val;
if (node->kind() == onnx::Slice) {
if (opset_version == ONNX_OPSET_9) {
return runTorchSlice_opset9(node, inputTensorValues);
} else if (opset_version >= ONNX_OPSET_10) {
return runTorchSlice_opset10(node, inputTensorValues);
} else {
TORCH_WARN(
"Constant folding - unsupported opset version. Constant folding not applied.");
return c10::nullopt;
}
} else if (node->kind() == onnx::Concat) {
if (!node->hasAttributeS("axis")) {
return c10::nullopt;
}
updated_val =
at::cat(at::TensorList(inputTensorValues), node->i(attr::axis));
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Sqrt) {
updated_val = at::sqrt(inputTensorValues[0]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Div) {
// One example shows at::div(CPULongType, CPULongType) = CPUFloatType,
// So we add a cast below.
updated_val = at::div(inputTensorValues[0], inputTensorValues[1]);
if (inputTensorValues[0].scalar_type() ==
inputTensorValues[1].scalar_type()) {
updated_val = updated_val.to(inputTensorValues[0].scalar_type());
}
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Mul) {
updated_val = at::mul(inputTensorValues[0], inputTensorValues[1]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Sub) {
updated_val = at::sub(inputTensorValues[0], inputTensorValues[1]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Add) {
updated_val = at::add(inputTensorValues[0], inputTensorValues[1]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Unsqueeze) {
if (opset_version >= ONNX_OPSET_13) {
assert(inputTensorValues.size() == 2);
// Checking validity of 'axes' input
if (inputTensorValues[1].sizes().size() != 1) {
TORCH_WARN(
"Constant folding - Invalid 'axes' inputs found for opset 13 onnx::Unsqueeze op. "
"Constant folding not applied.");
return c10::nullopt;
}
auto axes_a = inputTensorValues[1].accessor<int64_t, 1>();
std::vector<int64_t> axes;
for (int64_t i = 0; i < inputTensorValues[1].sizes()[0]; ++i) {
// ONNX unsqueeze accepts negative axes
// From https://pytorch.org/docs/stable/generated/torch.unsqueeze.html
// Negative dim will correspond to unsqueeze() applied at dim = dim +
// input.dim() + 1.
axes_a[i] +=
axes_a[i] < 0 ? inputTensorValues[0].sizes().size() + 1 : 0;
axes.push_back(axes_a[i]);
}
std::sort(axes.begin(), axes.end());
updated_val = inputTensorValues[0];
for (int64_t i = 0; i < inputTensorValues[1].sizes()[0]; ++i) {
updated_val = at::unsqueeze(updated_val, axes[i]);
}
return c10::optional<at::Tensor>(updated_val);
} else if (opset_version >= ONNX_OPSET_9) {
assert(inputTensorValues.size() == 1);
if (!node->hasAttributeS("axes")) {
return c10::nullopt;
}
updated_val = inputTensorValues[0];
std::vector<int64_t> axesAttr = node->is(attr::axes);
std::sort(axesAttr.begin(), axesAttr.end());
for (auto axis : axesAttr) {
updated_val = at::unsqueeze(updated_val, axis);
}
return c10::optional<at::Tensor>(updated_val);
} else {
TORCH_WARN(
"Constant folding - unsupported opset version. "
"Constant folding not applied.");
return c10::nullopt;
}
} else if (node->kind() == onnx::Squeeze) {
assert(inputTensorValues.size() == 2 || inputTensorValues.size() == 1);
if (opset_version >= ONNX_OPSET_13) {
// Squeeze version 13 input axes is optional, inputTensorValues.size() ==
// 1 means axes equal to None
updated_val = inputTensorValues[0];
if (inputTensorValues.size() == 2) {
// Checking validity of 'axes' input
if (inputTensorValues[1].sizes().size() != 1) {
TORCH_WARN(
"Constant folding - Invalid 'axes' inputs found for opset 13 onnx::Squeeze op. "
"Constant folding not applied.");
return c10::nullopt;
}
auto axes_a = inputTensorValues[1].accessor<int64_t, 1>();
std::vector<int64_t> axes;
for (int64_t i = 0; i < inputTensorValues[1].sizes()[0]; ++i) {
// ONNX Squeeze accepts negative axes
axes_a[i] += axes_a[i] < 0 ? inputTensorValues[0].sizes().size() : 0;
axes.push_back(axes_a[i]);
}
std::sort(axes.begin(), axes.end());
for (int64_t i = 0; i < inputTensorValues[1].sizes()[0]; ++i) {
updated_val = at::squeeze(updated_val, axes[i]);
}
}
return c10::optional<at::Tensor>(updated_val);
} else if (opset_version >= ONNX_OPSET_9) {
assert(inputTensorValues.size() == 1);
updated_val = inputTensorValues[0];
if (node->hasAttributeS("axes")) {
std::vector<int64_t> axesAttr = node->is(attr::axes);
std::sort(axesAttr.begin(), axesAttr.end());
for (auto axis : axesAttr) {
updated_val = at::squeeze(updated_val, axis);
}
}
return c10::optional<at::Tensor>(updated_val);
} else {
TORCH_WARN(
"Constant folding - unsupported opset version. "
"Constant folding not applied.");
return c10::nullopt;
}
} else if (node->kind() == onnx::Transpose) {
assert(inputTensorValues.size() == 1);
if (!node->hasAttributeS("perm")) {
return c10::nullopt;
}
updated_val = inputTensorValues[0].permute(node->is(attr::perm));
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Cast) {
assert(inputTensorValues.size() == 1);
if (node->hasAttributeS("to") && ONNXTypeToATenType(node->i(attr::to))) {
updated_val = inputTensorValues[0].to(
ONNXTypeToATenType(node->i(attr::to)).value());
return c10::optional<at::Tensor>(updated_val);
}
return c10::nullopt;
} else if (node->kind() == onnx::Reshape) {
assert(inputTensorValues.size() == 2);
updated_val = inputTensorValues[0];
std::vector<int64_t> shape(inputTensorValues[1].sizes()[0], 0);
auto shape_a = inputTensorValues[1].accessor<int64_t, 1>();
assert(inputTensorValues[1].sizes()[0] >= 0);
// Set value of allowzero
int64_t allowzero = 0;
if (node->hasAttributeS("allowzero")) {
allowzero = node->i(attr::allowzero);
}
for (size_t i = 0; i < (size_t)(inputTensorValues[1].sizes()[0]); ++i) {
// All shape dim values should be >= -1
// onnx::Reshape supports a shape dim value to be zero, in
// which case the actual dim value remains unchanged. However,
// at::reshape does not support shape dim value to be zero
assert(shape_a[i] >= -1);
if (shape_a[i] == 0 && !allowzero) {
if (i >= inputTensorValues[0].sizes().size()) {
throw std::runtime_error(
"Dimension with value 0 exceeds the input size dimensions.");
}
shape[i] = inputTensorValues[0].sizes()[i];
} else {
shape[i] = shape_a[i];
}
}
return c10::optional<at::Tensor>(at::reshape(updated_val, shape));
} else if (node->kind() == onnx::Shape) {
TORCH_INTERNAL_ASSERT(inputTensorValues.size() == 1);
updated_val = at::_shape_as_tensor(inputTensorValues[0]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::ReduceL1 || node->kind() == onnx::ReduceL2) {
assert(inputTensorValues.size() == 1);
if (!node->hasAttributeS("axes")) {
return c10::nullopt;
}
if (!node->hasAttributeS("keepdims")) {
return c10::nullopt;
}
int p = node->kind() == onnx::ReduceL1 ? 1 : 2;
updated_val = at::norm(
inputTensorValues[0], p, node->is(attr::axes), node->i(attr::keepdims));
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::ReduceProd) {
int64_t rank = inputTensorValues[0].sizes().size();
std::vector<int64_t> axes;
if (!node->hasAttributeS("axes")) {
axes = std::vector<int64_t>(rank);
std::iota(axes.rbegin(), axes.rend(), 0);
} else {
for (const auto& axis : node->is(attr::axes)) {
axes.emplace_back(axis < 0 ? axis + rank : axis);
}
std::sort(axes.begin(), axes.end(), std::greater<>());
}
bool keepdims =
node->hasAttributeS("keepdims") ? node->i(attr::keepdims) : true;
updated_val = inputTensorValues[0];
for (const auto& axis : axes) {
updated_val = at::prod(updated_val, axis, keepdims);
}
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Gather) {
assert(inputTensorValues.size() == 2);
// default axis = 0
int64_t axis = 0;
if (node->hasAttributeS("axis")) {
axis = node->i(attr::axis);
}
// If axis attribute for onnx::Gather has a value less than 0,
// It needs to be adjusted (+= dim sizes) for aten op
axis += axis < 0 ? inputTensorValues[0].sizes().size() : 0;
at::Tensor indices = inputTensorValues[1];
auto q = indices.dim();
// at::index_select only supports indices with rank <= 1.
// See https://pytorch.org/docs/master/generated/torch.index_select.html
if (q > 1) {
return c10::nullopt;
}
// If indices input for onnx::Gather has a value less than 0,
// It needs to be adjusted (+= dim value) for aten op
auto less_mask = at::lt(indices, 0);
auto indices_corr = at::add(indices, inputTensorValues[0].sizes()[axis]);
auto indices_masked = at::where(less_mask, indices_corr, indices);
updated_val = at::index_select(inputTensorValues[0], axis, indices_masked);
// If rank of indices is 0, rank of output tensor should be
// rank_of_input - 1.
if (q < 1) {
updated_val = updated_val.squeeze(axis);
}
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Range) {
updated_val = runTorchArange_opset11(node, inputTensorValues);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Where) {
updated_val = at::where(
inputTensorValues[0], inputTensorValues[1], inputTensorValues[2]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Equal) {
updated_val = at::eq(inputTensorValues[0], inputTensorValues[1]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Greater) {
updated_val = at::greater(inputTensorValues[0], inputTensorValues[1]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Less) {
updated_val = at::less(inputTensorValues[0], inputTensorValues[1]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Neg) {
updated_val = at::neg(inputTensorValues[0]);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Not) {
auto ones =
at::ones(inputTensorValues[0].sizes(), inputTensorValues[0].dtype());
updated_val = at::ne(inputTensorValues[0], ones);
return c10::optional<at::Tensor>(updated_val);
} else if (node->kind() == onnx::Size) {
int64_t total_size = 1;
for (auto size : inputTensorValues[0].sizes()) {
total_size *= size;
}
return c10::optional<at::Tensor>(IntToTensor(total_size));
} else {
return c10::nullopt;
}
}
bool isConstant(Value* val, const ValueToParamPairMap& valsToParamsMap) {
auto parentNode = val->node();
return (parentNode->kind() == prim::Param &&
valsToParamsMap.find(val) !=
valsToParamsMap
.end()) || // Checks val is a parameter and not a real input
(parentNode->kind() == onnx::Constant && !parentNode->mustBeNone() &&
parentNode->kindOf(attr::value) ==
AttributeKind::t); // Check other types?
}
bool hasParamInput(Node* n, const ValueToParamPairMap& valsToParamsMap) {
for (auto input : n->inputs()) {
if (valsToParamsMap.find(input) != valsToParamsMap.end()) {
return true;
}
}
return false;
}
std::vector<at::Tensor> getValues(
Node* node,
const ValueToParamPairMap& valsToParamsMap) {
size_t numInputs = node->inputs().size();
std::vector<at::Tensor> inputTensorValues;
inputTensorValues.reserve(numInputs);
for (auto val : node->inputs()) {
if (val->node()->kind() == prim::Param) {
auto itr = valsToParamsMap.find(val);
if (itr == valsToParamsMap.end()) {
throw std::runtime_error(
"getValues: Input value not found amongst constant parameters.");
}
inputTensorValues.push_back(itr->second.second.toTensor());
} else if (val->node()->kind() == onnx::Constant) {
inputTensorValues.push_back(val->node()->t(attr::value));
} else {
throw std::runtime_error(
"getValues: Unsupported kind of constant node found.");
}
}
TORCH_INTERNAL_ASSERT(inputTensorValues.size() == numInputs);
return inputTensorValues;
}
bool areNodeInputsConstant(
Node* node,
const ValueToParamPairMap& valsToParamsMap) {
return std::all_of(
node->inputs().begin(),
node->inputs().end(),
[&valsToParamsMap](Value* v) { return isConstant(v, valsToParamsMap); });
}
std::vector<Node*> getOnnxConstParentsToRemove(Node* node) {
std::vector<Node*> parentNodes;
for (auto val : node->inputs()) {
// If the parent of 'node' is an onnx::Constant node,
// and 'node' is the only downstream node it serves (this
// is important), then push it in the list to remove.
if (val->node()->kind() == onnx::Constant && val->uses().size() == 1) {
parentNodes.push_back(val->node());
}
}
return parentNodes;
}
} // namespace onnx_constant_fold
// This method updates the block in-place to fold all the one-time
// constant-based computations/ops into an initializer node.
//
// NB: This is not constant folding in the traditional sense, as we
// don't try particularly hard to evaluate operations on constant nodes.
// This is more of a partial evaluation analysis, where operations on constant
// nodes can be lifted so we run them earlier, before the usual parameters are
// known.
void ConstantFoldONNX(Block* b, ParamMap& paramsDict, int opset_version) {
if (opset_version < ONNX_OPSET_9) {
TORCH_WARN(
"Constant folding supported for only opsets >= 9. "
"Constant folding not applied.");
return;
}
TORCH_INTERNAL_ASSERT(b->param_node());
auto valsToParamsMap = buildValueToParamsMap(b, paramsDict);
// Only the root block is constant-folded. Folding nested blocks is
// not supported for now.
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
auto node = *it;
if (node->outputs().size() > 1) {
// Constant folding for multiple-output nodes not supported. Skip it.
continue;
}
if (!onnx_constant_fold::areNodeInputsConstant(node, valsToParamsMap)) {
// If all the inputs to this node are not either parameter or
// onnx::Constant, then skip this node.
continue;
}
auto inputTensorValues =
onnx_constant_fold::getValues(node, valsToParamsMap);
if (inputTensorValues.empty()) {
// This is a terminal node with no inputs, such as onnx::Constant. Skip
// it.
continue;
}
auto updatedValWrapped = onnx_constant_fold::runTorchBackendForOnnx(
node, inputTensorValues, opset_version);
if (updatedValWrapped == c10::nullopt) {
// Constant folding is not supported for this op. Skip it.
continue;
}
at::Tensor updatedVal = *updatedValWrapped;
auto newSourceNodeOutput = [&]() -> Value* {
if (onnx_constant_fold::hasParamInput(node, valsToParamsMap)) {
// Create a new input to the block (prim::Param node output). Add a
// corresponding entry in valToParamMap. Replace the downstream inputs
// with this value, and disconnect all the input values of the folded
// node.
auto newSourceNodeOutput = b->addInput();
valsToParamsMap.insert(
{newSourceNodeOutput,
std::make_pair(newSourceNodeOutput->debugName(), updatedVal)});
return newSourceNodeOutput;
} else {
auto newSourceNode =
createONNXConstant(node->owningGraph(), node, updatedVal);
newSourceNode->copyMetadata(node);
return newSourceNode->output();
}
}();
newSourceNodeOutput->inferTypeFrom(updatedVal);
node->outputs().at(0)->replaceAllUsesWith(newSourceNodeOutput);
// Next we remove the current node that has been replaced by
// an initializer. But before we start de-wiring this node,
// we check if any parents of this nodes were onnx::Constant
// and remove them first, and then remove the current node.
// If the parent was an initializer (not onnx::Constant) then
// they are all removed by the eraseUnusedBlockInputs() call
// (below) outside the loop.
auto onnxConstParents =
onnx_constant_fold::getOnnxConstParentsToRemove(node);
node->removeAllInputs();
for (auto* n : onnxConstParents) {
n->destroy();
}
it.destroyCurrent();
}
eraseUnusedValuesFromMap(valsToParamsMap);
eraseUnusedBlockInputs(b);
buildParamsMapFromValueToParamsMap(valsToParamsMap, paramsDict);
return;
}
void ConstantFoldONNX(
std::shared_ptr<Graph>& g,
ParamMap& paramsDict,
int opset_version) {
ConstantFoldONNX(g->block(), paramsDict, opset_version);
GRAPH_DUMP("After ConstantFoldONNX:", g);
}
} // namespace jit
} // namespace torch
|