File: constant_map.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (99 lines) | stat: -rw-r--r-- 3,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#pragma once

#include <onnx/shape_inference/implementation.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/serialization/export.h>
#include <mutex>
#include <unordered_map>

namespace torch {
namespace jit {

using ShapeDataMap =
    std::unordered_map<std::string, ::ONNX_NAMESPACE::TensorShapeProto>;

class ConstantValueMap {
 public:
  static ConstantValueMap& getInstance();
  static void SetRank(const std::string& tensorName, size_t rankValue);
  static bool HasRank(const std::string& tensorName);
  static c10::optional<size_t> GetRank(const std::string& tensorName);

  static void SetShape(
      const std::string& tensorName,
      const c10::SymbolicShape& shapeValue);
  static bool HasShape(const std::string& tensorName);
  static c10::optional<c10::SymbolicShape> GetShape(
      const std::string& tensorName);

  static void SetValue(const std::string& tensorName, const at::Tensor& value);
  static bool HasValue(const std::string& tensorName);
  static c10::optional<at::Tensor> GetValue(const std::string& tensorName);

  static std::vector<int64_t> GetCompleteShapeInto1DInt64Vector(
      const c10::SymbolicShape& shape);
  static c10::optional<std::vector<int64_t>> GetShapeInto1DInt64Vector(
      const std::string& value_name);
  static c10::optional<std::vector<int64_t>>
  GetShapeInto1DInt64VectorWithOneUnknown(const std::string& value_name);
  static std::vector<int64_t> GetValueInto1DInt64Vector(
      const std::string& value_name);

  static void SetTypeReliable(const std::string& tensorName, bool reliable);
  static bool HasTypeReliable(const std::string& tensorName);
  static c10::optional<bool> GetTypeReliable(const std::string& tensorName);

  static void SetUseInferredType(
      const std::string& tensorName,
      bool useInferredType);
  static bool HasUseInferredType(const std::string& tensorName);
  static c10::optional<bool> GetUseInferredType(const std::string& tensorName);

  static void SetShapeValue(
      const std::string& tensorName,
      const c10::SymbolicShape& shapeValue);
  static bool HasShapeValue(const std::string& tensorName);
  static c10::optional<c10::SymbolicShape> GetShapeValue(
      const std::string& tensorName);

  static ShapeDataMap& GetInferredShapeData();

  static SymbolDimMap& GetSymbolDimMap();

  static void UpdateValueName(
      const std::string& old_name,
      const std::string& new_name);

  static void PrintMaps();
  static void ClearMaps();
  ~ConstantValueMap() = default;

  ConstantValueMap& operator=(const ConstantValueMap&) = delete;

 private:
  ConstantValueMap() = default;

  std::unordered_map<std::string, size_t> rankMap;
  std::unordered_map<std::string, c10::SymbolicShape> shapeMap;
  std::unordered_map<std::string, at::Tensor> tensorValueMap;
  // This map indicates whether the current type is reliably estimated or not.
  std::unordered_map<std::string, bool> typeReliableMap;
  // This map indicates whether the current type is estimated through inference
  // or tracer.
  std::unordered_map<std::string, bool> useInferredTypeMap;
  // This map indicates a tensor value which represents a shape.
  // We assume that the rank of the tensor value <= 1, and we ensure this when
  // we write the processing logic for the operators. When the rank > 1, we
  // should be able to rewrite the model so that the rank <= 1. The difference
  // between shapeMap and shapeValueMap: shapeMap stores the shape of the tensor
  // from a node. shapeValueMap stores the value of the tensor from a node when
  // this tensor represents a shape.
  std::unordered_map<std::string, c10::SymbolicShape> shapeValueMap;
  // Stores earlier data propagation results so that they are accessible
  // during future node-level shape inference.
  ShapeDataMap inferredShapeData;
  SymbolDimMap symbolDimMap;
};

} // namespace jit
} // namespace torch