File: eval_peephole.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (157 lines) | stat: -rw-r--r-- 5,201 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/onnx/eval_peephole.h>
#include <torch/csrc/jit/passes/onnx/helper.h>
#include <torch/torch.h>

#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include <algorithm>

namespace torch {
namespace jit {

namespace onnx {
using namespace ::c10::onnx;
}

std::vector<at::Tensor> getValues(
    Node* node,
    const ValueToParamPairMap& valsToParamsMap) {
  size_t numInputs = node->inputs().size();
  std::vector<at::Tensor> inputTensorValues;
  inputTensorValues.reserve(numInputs);
  for (auto val : node->inputs()) {
    if (val->node()->kind() == prim::Param) {
      auto itr = valsToParamsMap.find(val);
      if (itr == valsToParamsMap.end()) {
        continue;
      }
      inputTensorValues.push_back(itr->second.second.toTensor());
    } else if (val->node()->kind() == onnx::Constant) {
      inputTensorValues.push_back(val->node()->t(attr::value));
    } else {
      continue;
    }
  }
  return inputTensorValues;
}

// This pass fuses Conv and BatchNorm into Conv node
// Conv and BatchNorm can be fused only if inputs for BatchNorm node:
// scale, bias, mean and var are all tensors of same shape (C) and
// if the size of the first dimension (dim 0) is the same between Conv
// input weight and BatchNorm input scale.
static void fuseConvBatchNorm(Block* b, ValueToParamPairMap& valsToParamsMap) {
  for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
    for (auto* child_block : it->blocks()) {
      fuseConvBatchNorm(child_block, valsToParamsMap);
    }
    if (it->kind() == onnx::Conv) {
      auto oldConv = *it;
      if (oldConv->outputs().at(0)->uses().size() != 1) {
        continue;
      }
      auto bnNode = oldConv->outputs().at(0)->uses()[0].user;
      if (bnNode->kind() != onnx::BatchNormalization) {
        continue;
      }

      if (oldConv->outputs().size() !=
          bnNode->outputs().size()) { // BN layer is not in eval mode
        continue;
      }

      auto epsilon = bnNode->f(attr::epsilon);
      auto convInputVals = getValues(oldConv, valsToParamsMap);
      if (convInputVals.size() < 1 ||
          (oldConv->inputs().size() == 3 && convInputVals.size() != 2)) {
        continue;
      }

      auto bnInputVals = getValues(bnNode, valsToParamsMap);
      if (bnInputVals.size() != 4) {
        continue;
      }

      // See
      // https://github.com/onnx/onnx/blob/master/docs/Operators.md#BatchNormalization
      auto bnScale = bnInputVals[0].clone();
      auto bnB = bnInputVals[1].clone();
      auto bnMean = bnInputVals[2].clone();
      auto bnVar = bnInputVals[3].clone();
      // See https://github.com/onnx/onnx/blob/master/docs/Operators.md#Conv
      auto convW = convInputVals[0].clone();
      at::Tensor convB;

      if (!bnScale.is_floating_point() || !bnB.is_floating_point() ||
          !bnMean.is_floating_point() || !bnVar.is_floating_point() ||
          !convW.is_floating_point() || bnScale.dim() != 1 || bnB.dim() != 1 ||
          bnMean.dim() != 1 || bnVar.dim() != 1 ||
          !(bnScale.size(0) == bnB.size(0)) ||
          !(bnB.size(0) == bnMean.size(0)) ||
          !(bnMean.size(0) == bnVar.size(0)) || !(convW.dim() > 2) ||
          !(convW.size(0) == bnScale.size(0))) {
        continue;
      }

      bnVar = bnVar.add(epsilon);
      bnVar = bnVar.sqrt();
      bnScale = bnScale.div(bnVar);

      // Calculate weight
      for (const auto i : c10::irange(convW.size(0))) {
        convW[i] = convW[i].mul(bnScale[i]);
      }

      // Calculate bias
      if (oldConv->inputs().size() == 3) {
        convB = convInputVals[1].clone();
        convB = convB.sub(bnMean);
        convB = convB.mul(bnScale);
        convB = convB.add(bnB);
      } else {
        bnMean = bnMean.mul(bnScale);
        bnB = bnB.sub(bnMean);
        convB = bnB;
      }

      Node* newConv = b->owningGraph()->create(onnx::Conv, 1);
      newConv->outputs().at(0)->copyMetadata(bnNode->outputs().at(0));

      newConv->copyAttributes(*oldConv);
      newConv->insertBefore(bnNode);
      newConv->addInput(oldConv->inputs().at(0));
      newConv->copyMetadata(oldConv);

      auto newConvW = b->owningGraph()->addInput();
      valsToParamsMap.insert(
          {newConvW, std::make_pair(newConvW->debugName(), convW)});
      newConvW->inferTypeFrom(convW);
      newConv->addInput(newConvW);

      auto newConvB = b->owningGraph()->addInput();
      valsToParamsMap.insert(
          {newConvB, std::make_pair(newConvB->debugName(), convB)});
      newConvB->inferTypeFrom(convB);
      newConv->addInput(newConvB);

      bnNode->outputs().at(0)->replaceAllUsesWith(newConv->outputs().at(0));
      bnNode->destroy();
      it.destroyCurrent();
    }
  }
}

void EvalPeepholeONNX(Block* b, ParamMap& paramsDict) {
  auto valsToParamsMap = buildValueToParamsMap(b, paramsDict);
  fuseConvBatchNorm(b, valsToParamsMap);
  buildParamsMapFromValueToParamsMap(valsToParamsMap, paramsDict);
}

void EvalPeepholeONNX(std::shared_ptr<Graph>& g, ParamMap& paramsDict) {
  EvalPeepholeONNX(g->block(), paramsDict);
  GRAPH_DUMP("After EvalPeepholeONNX:", g);
}

} // namespace jit
} // namespace torch