1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
|
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/onnx/function_extraction.h>
#include <torch/csrc/jit/passes/onnx/naming.h>
namespace torch {
namespace jit {
namespace onnx {
namespace {
using scope_list = std::vector<ScopePtr>;
// Annotated attributes retrieved from module by inspecting module annotations.
// These attributes are not used inside the subgraph of ONNX local function
// because they are not created by PyTorch JIT tracing, but they may be used by
// consumers to determine whether or not to replace the function with a
// particular fused kernel.
static std::unordered_map<ScopePtr, Node*> scope_attr_map_;
static std::shared_ptr<Graph> scope_attr_graph_ = std::make_shared<Graph>();
static bool HasSameAttribute(
const Node* a,
const Node* b,
const c10::Symbol& attr);
struct FunctionExtractor {
public:
FunctionExtractor(
std::shared_ptr<Graph>& graph,
const std::unordered_set<std::string>& module_names,
const std::vector<std::string>& param_names)
: graph_(graph),
module_names_(module_names.begin(), module_names.end()),
param_names_(param_names.begin(), param_names.end()) {}
NodeAttrNameMap run();
private:
struct ScopeContext {
std::unordered_set<ScopePtr> children_;
ScopePtr scope_;
node_list nlist_;
value_list inputs_;
value_list outputs_;
std::unordered_map<Value*, Value*> env_to_subgraph_;
void PopulateInputsOutputs(
const std::unordered_set<std::string>& param_names);
bool IsIdenticalFuncion(const ScopeContext& other_ctx) const;
};
using ScopeCtxPtr = ScopeContext*;
using scope_ctx_map = std::unordered_map<ScopePtr, ScopeCtxPtr>;
struct FunctionContext {
FunctionContext(
ScopePtr key,
const scope_list& scopes,
scope_ctx_map& scope_ctxs);
void DebugPrint() const;
void SetAttrName(Node* ref_n, Symbol attr, const std::string& name);
c10::optional<std::string> FindAttrName(Node* ref_n, Symbol attr);
c10::optional<std::string> FindAttrName(Node* ref_const_n);
ScopePtr scope_key_;
scope_ctx_map scope_ctxs_;
std::unordered_map<
Node*,
std::unordered_map<Symbol, std::unordered_set<Node*>>>
attribute_map_;
// Passed later to serialization.
NodeAttrNameMap node_attr_to_name_;
};
using FunctionCtxPtr = FunctionContext*;
using func_ctx_map = std::unordered_map<ScopePtr, FunctionCtxPtr>;
static bool IsValidScope(ScopePtr s);
static c10::optional<ScopePtr> InferScope(Node* n);
static bool IsAncestor(ScopePtr parent, ScopePtr child);
static c10::optional<ScopePtr> FindCommonAncestor(ScopePtr a, ScopePtr b);
static c10::optional<ScopePtr> FindCommonAncestor(const scope_list& scopes);
std::shared_ptr<Graph> ConstructFuncGraph(FunctionContext& ctx);
void ConvertScopeToFunction(
const ScopePtr& scope_key,
const scope_list& scope_list,
scope_ctx_map& scope_ctxs,
const std::shared_ptr<Graph>& graph);
static void HandleNoScopeNodes(scope_ctx_map&, node_list no_scope_nlist);
std::tuple<scope_ctx_map, node_list> PartitionNodesByScope(Block* b);
scope_ctx_map PartitionNodesByScope(const std::shared_ptr<Graph>& graph);
static std::unordered_map<ScopePtr, scope_list> PartitionIdenticalScopes(
scope_ctx_map& scope_ctxs);
static scope_list SortScopesByMaxDepth(
std::unordered_map<ScopePtr, scope_list>&);
Node* CreateFunctionDefNode(
FunctionContext& func_ctx,
const std::shared_ptr<Graph>& graph,
const std::string& domain_name,
const std::string& func_name);
Node* CreateFunctionNode(
FunctionContext& func_ctx,
ScopeContext& scope_ctx,
const std::shared_ptr<Graph>& graph,
const std::string& domain_name,
const std::string& func_name);
static void DebugPrintScopeContexts(const scope_ctx_map&);
static void DebugPrintGraphWithFunction(const std::shared_ptr<Graph>& g);
static void DebugPrintConstantDiff(const FunctionContext&);
std::shared_ptr<Graph> graph_;
std::unordered_set<std::string> module_names_;
std::unordered_set<std::string> param_names_;
// Track modules with same module name that are exported as different onnx
// local functions.
std::unordered_map<std::string, int> module_variant_count_;
func_ctx_map func_ctxs_;
};
FunctionExtractor::FunctionContext::FunctionContext(
ScopePtr key,
const scope_list& scopes,
scope_ctx_map& scope_ctxs)
: scope_key_(std::move(key)) {
GRAPH_UPDATE(
"Process function context for scope ",
scope_key_->name().toDisplayString());
TORCH_INTERNAL_ASSERT(scopes.size() > 0);
const auto& ref_ctx = scope_ctxs[scope_key_];
// NOTE: Function scopes must have same number and order of nodes.
GRAPH_DEBUG(
"Initialized function context for scope ",
scope_key_->name().toDisplayString());
for (const auto& scope : scopes) {
GRAPH_DEBUG(
"Process function context for scope ", scope->name().toDisplayString());
TORCH_INTERNAL_ASSERT(scope_ctxs.find(scope) != scope_ctxs.end());
scope_ctxs_[scope] = scope_ctxs[scope];
if (scope_key_ == scope) {
continue;
}
auto& scope_ctx = scope_ctxs[scope];
const auto& ns_a = ref_ctx->nlist_;
const auto& ns_b = scope_ctx->nlist_;
TORCH_INTERNAL_ASSERT(ns_a.size() == ns_b.size());
GRAPH_DEBUG("Process nodes of scope ", scope->name().toDisplayString());
for (const auto i : c10::irange(ns_a.size())) {
TORCH_INTERNAL_ASSERT(ns_a[i]->kind() == ns_b[i]->kind());
auto n_a = ns_a[i];
auto n_b = ns_b[i];
std::vector<c10::Symbol> diff_attrs;
std::vector<c10::Symbol> same_attrs;
auto n_a_attr_names = n_a->attributeNames();
auto n_b_attr_names = n_b->attributeNames();
std::sort(n_a_attr_names.begin(), n_a_attr_names.end());
std::sort(n_b_attr_names.begin(), n_b_attr_names.end());
std::set_difference(
n_a_attr_names.begin(),
n_a_attr_names.end(),
n_b_attr_names.begin(),
n_b_attr_names.end(),
std::inserter(diff_attrs, diff_attrs.begin()));
std::set_intersection(
n_a_attr_names.begin(),
n_a_attr_names.end(),
n_b_attr_names.begin(),
n_b_attr_names.end(),
std::inserter(same_attrs, same_attrs.begin()));
for (auto attr_name : diff_attrs) {
attribute_map_[n_a][attr_name].insert(n_b);
}
for (auto attr_name : same_attrs) {
if (!HasSameAttribute(n_a, n_b, attr_name)) {
attribute_map_[n_a][attr_name].insert(n_b);
}
}
}
GRAPH_DEBUG("Process scope complete. ", scope->name().toDisplayString());
}
GRAPH_DEBUG(
"Process function context complete. ",
scope_key_->name().toDisplayString());
DebugPrint();
}
void FunctionExtractor::FunctionContext::DebugPrint() const {
GRAPH_DEBUG("Scope name: ", scope_key_->name().toDisplayString());
for (const auto& it : attribute_map_) {
for (const auto& attr_it : it.second) {
GRAPH_DEBUG(
"Attribute value difference for attribute ",
attr_it.first.toDisplayString());
GRAPH_DEBUG(*it.first);
for (auto n : attr_it.second) {
GRAPH_DEBUG(*n);
}
}
}
}
void FunctionExtractor::FunctionContext::SetAttrName(
Node* ref_n,
Symbol attr,
const std::string& name) {
auto v_it =
scope_ctxs_[scope_key_]->env_to_subgraph_.find(ref_n->outputs().at(0));
TORCH_INTERNAL_ASSERT(
v_it != scope_ctxs_[scope_key_]->env_to_subgraph_.end());
auto* n_in_def = v_it->second->node();
auto n_attr_it = node_attr_to_name_[n_in_def][attr.toUnqualString()] = name;
}
c10::optional<std::string> FunctionExtractor::FunctionContext::FindAttrName(
Node* ref_n,
Symbol attr) {
auto v_it =
scope_ctxs_[scope_key_]->env_to_subgraph_.find(ref_n->outputs().at(0));
if (v_it == scope_ctxs_[scope_key_]->env_to_subgraph_.end()) {
return c10::nullopt;
}
auto* n_in_def = v_it->second->node();
auto n_attr_it = node_attr_to_name_.find(n_in_def);
if (n_attr_it == node_attr_to_name_.end()) {
return c10::nullopt;
}
auto name_it = n_attr_it->second.find(attr.toUnqualString());
if (name_it == n_attr_it->second.end()) {
return c10::nullopt;
}
return name_it->second;
}
void FunctionExtractor::DebugPrintScopeContexts(
const scope_ctx_map& scope_ctxs) {
for (auto& it : scope_ctxs) {
GRAPH_UPDATE(
"Scope name: ",
it.first->namesFromRoot(),
" ",
it.first->name().toDisplayString());
GRAPH_UPDATE("Children scopes: ", [&]() {
std::stringstream ss;
for (const auto& child_scope : it.second->children_) {
ss << child_scope->name().toDisplayString() << " ";
}
return ss.str();
}());
GRAPH_UPDATE("Node types: \n", [&]() {
std::stringstream ss;
for (auto n : it.second->nlist_) {
ss << " " << *n;
}
return ss.str();
}());
GRAPH_UPDATE("Node count: ", it.second->nlist_.size());
}
}
void FunctionExtractor::DebugPrintGraphWithFunction(
const std::shared_ptr<Graph>& g) {
GRAPH_UPDATE("Local function definitions:");
for (auto* n : g->nodes()) {
if (n->kind() == Symbol::onnx("LocalFunctionDef")) {
GRAPH_UPDATE(
n->s(attr::name),
" graph: ",
n->g(Symbol::attr("graph"))->toString());
}
}
GRAPH_UPDATE("Main graph: ", g->toString());
}
bool FunctionExtractor::IsValidScope(ScopePtr s) {
return !s->isRoot() && !s->isBlank();
}
bool FunctionExtractor::IsAncestor(ScopePtr parent, ScopePtr child) {
if (!IsValidScope(parent) || !IsValidScope(child) ||
parent->getDepth() >= child->getDepth()) {
return false;
}
do {
child = child->parent();
if (parent == child) {
return true;
}
} while (IsValidScope(child));
return false;
}
c10::optional<ScopePtr> FunctionExtractor::FindCommonAncestor(
ScopePtr a,
ScopePtr b) {
if (!IsValidScope(a) || !IsValidScope(b)) {
return c10::nullopt;
}
auto diff =
static_cast<int64_t>(a->getDepth()) - static_cast<int64_t>(b->getDepth());
if (diff != 0) {
auto deeper_scope = diff > 0 ? a : b;
auto other_scope = diff > 0 ? b : a;
while (diff > 0) {
deeper_scope = deeper_scope->parent();
diff--;
}
a = deeper_scope;
b = other_scope;
}
while (IsValidScope(a) && IsValidScope(b)) {
if (a == b) {
return a;
} else {
a = a->parent();
b = b->parent();
}
}
return c10::nullopt;
}
c10::optional<ScopePtr> FunctionExtractor::FindCommonAncestor(
const scope_list& scopes) {
if (scopes.size() == 0) {
return c10::nullopt;
}
c10::optional<ScopePtr> common_ancestor = scopes.at(0);
for (const auto& scope : scopes) {
common_ancestor = FindCommonAncestor(common_ancestor.value(), scope);
if (!common_ancestor.has_value()) {
return c10::nullopt;
}
}
return common_ancestor;
}
c10::optional<ScopePtr> FunctionExtractor::InferScope(Node* n) {
// The scope of node n is assigned based on the following rules.
// 1. If all uses of outputs of n belongs to the same scope,
// assign that scope, otherwise
// 2. If all nodes of inputs of n belongs to the same scope,
// assign that scope, otherwise
// 3. Find common ancestor of the scopes of uses of outputs of n,
// and the scopes of nodes of inputs of n.
scope_list input_scopes;
scope_list output_scopes;
for (auto input : n->inputs()) {
input_scopes.emplace_back(input->node()->scope());
}
for (auto output : n->outputs()) {
for (auto use : output->uses()) {
if (!IsValidScope(use.user->scope())) {
auto inferred_output_scope = InferScope(use.user);
if (inferred_output_scope.has_value() &&
IsValidScope(inferred_output_scope.value())) {
use.user->setScope(inferred_output_scope.value());
}
}
output_scopes.emplace_back(use.user->scope());
}
}
if (output_scopes.size() > 0 &&
std::all_of(
output_scopes.begin(),
output_scopes.end(),
[&output_scopes](ScopePtr scope) -> bool {
return IsValidScope(scope) && scope == output_scopes.at(0);
})) {
return output_scopes.at(0);
} else if (
input_scopes.size() > 0 &&
std::all_of(
input_scopes.begin(),
input_scopes.end(),
[&input_scopes](ScopePtr scope) -> bool {
return IsValidScope(scope) && scope == input_scopes.at(0);
})) {
return input_scopes.at(0);
} else {
scope_list scopes;
std::copy_if(
input_scopes.begin(),
input_scopes.end(),
std::back_inserter(scopes),
IsValidScope);
std::copy_if(
output_scopes.begin(),
output_scopes.end(),
std::back_inserter(scopes),
IsValidScope);
if (scopes.size() > 0) {
auto common_ancestor = FindCommonAncestor(scopes);
if (common_ancestor.has_value() &&
IsValidScope(common_ancestor.value())) {
return common_ancestor.value();
}
}
}
return c10::nullopt;
}
std::shared_ptr<Graph> FunctionExtractor::ConstructFuncGraph(
FunctionContext& func_ctx) {
auto& ctx = *func_ctx.scope_ctxs_[func_ctx.scope_key_];
const auto& nlist = ctx.nlist_;
const auto& scope = ctx.scope_;
auto& env = ctx.env_to_subgraph_;
auto g = std::make_shared<Graph>();
GRAPH_DEBUG("Constructing graph for ", scope->namesFromRoot());
// TODO: Update input names of function to match those in Module source code
// signature.
// This requires mapping between function node inputs and Module inputs.
// Due to the lack of such mapping, currently debugName is used as input
// names.
ctx.PopulateInputsOutputs(param_names_);
for (auto* v : ctx.inputs_) {
env[v] = g->addInput()->copyMetadata(v);
GRAPH_DEBUG(
"Add input value ",
env[v]->debugName(),
" for outer scope value ",
v->debugName(),
" from ",
*v->node());
}
for (auto* n : nlist) {
auto clone_n = g->createClone(n, [&](Value* v) {
TORCH_INTERNAL_ASSERT(env.find(v) != env.end());
return env[v];
});
for (const auto i : c10::irange(clone_n->outputs().size())) {
env[n->output(i)] = clone_n->output(i);
}
g->insertNode(clone_n);
}
// If values are used outside of this graph, set as graph output.
for (auto* v : ctx.outputs_) {
TORCH_INTERNAL_ASSERT(env.find(v) != env.end());
g->registerOutput(env[v]);
}
GRAPH_DEBUG(g->toString());
return g;
}
Node* FunctionExtractor::CreateFunctionDefNode(
FunctionContext& func_ctx,
const std::shared_ptr<Graph>& graph,
const std::string& domain_name,
const std::string& func_name) {
const auto func_def_nk = Symbol::onnx("LocalFunctionDef");
const auto func_g_attr = Symbol::attr("graph");
const auto func_name_attr = attr::name;
const auto func_domain_attr = Symbol::attr("domain");
auto func_graph = ConstructFuncGraph(func_ctx);
// create and insert local function definition node
auto func_def_n = graph->create(func_def_nk, 0);
func_def_n->g_(func_g_attr, func_graph);
func_def_n->s_(func_name_attr, func_name);
func_def_n->s_(func_domain_attr, domain_name);
graph->prependNode(func_def_n);
// set constants and attributes of different values as function attributes.
std::unordered_map<std::string, int> base_attr_name_count;
std::vector<std::string> final_attr_names;
auto adjust_attr_name = [&](std::string attr_name) {
if (base_attr_name_count.find(attr_name) != base_attr_name_count.end()) {
attr_name =
attr_name + "." + std::to_string(base_attr_name_count[attr_name]++);
} else {
base_attr_name_count[attr_name] = 1;
}
return attr_name;
};
for (const auto& n_it : func_ctx.attribute_map_) {
auto* n = n_it.first;
for (const auto& attr_it : n_it.second) {
const auto& attr = attr_it.first;
// Add prefix "inferred::" to name of inferred attribute.
// This is to differentiate from annotated attributes picked up
// from python module annotation.
auto attr_name = "inferred::" + std::string(n->kind().toUnqualString()) +
'_' + attr.toUnqualString();
auto final_attr_name = adjust_attr_name(attr_name);
final_attr_names.emplace_back(final_attr_name);
func_ctx.SetAttrName(n, attr, final_attr_name);
}
}
// Set annotated attributes
std::unordered_set<Symbol> annotated_attr_names;
bool first_iteration = true;
for (const auto& it : func_ctx.scope_ctxs_) {
auto scope = it.first;
auto annotated_attr_node = scope_attr_map_.find(scope);
if (annotated_attr_node != scope_attr_map_.end()) {
auto names = annotated_attr_node->second->attributeNames();
if (first_iteration) {
std::copy(
names.begin(),
names.end(),
std::inserter(annotated_attr_names, annotated_attr_names.end()));
first_iteration = false;
} else {
auto unseen_attr_name = std::find_if(
names.begin(),
names.end(),
[&annotated_attr_names](const Symbol& name) {
return annotated_attr_names.find(name) ==
annotated_attr_names.end();
});
TORCH_CHECK(
unseen_attr_name == names.end(),
"Found outstanding annotated attribute ",
*unseen_attr_name,
" from module ",
scope->name(),
". Please ensure module instances of the same class have the same set of annotated attributes.");
}
}
}
for (auto attr_name : annotated_attr_names) {
final_attr_names.emplace_back(attr_name.toUnqualString());
}
func_def_n->ss_(Symbol::attr("attributes"), final_attr_names);
return func_def_n;
}
Node* FunctionExtractor::CreateFunctionNode(
FunctionContext& func_ctx,
ScopeContext& scope_ctx,
const std::shared_ptr<Graph>& graph,
const std::string& domain_name,
const std::string& func_name) {
const auto& func_scope = func_ctx.scope_key_;
GRAPH_DEBUG(
"Create and insert local function for scope: ",
func_scope->namesFromRoot());
scope_ctx.PopulateInputsOutputs(param_names_);
auto last_n = *scope_ctx.nlist_.rbegin();
auto func_n = graph->create(
Symbol::fromQualString(domain_name + "::" + func_name),
scope_ctx.outputs_.size());
func_n->copyMetadata(last_n);
for (auto* v : scope_ctx.inputs_) {
func_n->addInput(v);
}
for (const auto i : c10::irange(scope_ctx.outputs_.size())) {
func_n->output(i)->setType(scope_ctx.outputs_[i]->type());
scope_ctx.outputs_[i]->replaceAllUsesWith(func_n->output(i));
}
// set attributes of different values as function attributes.
auto copy_attr =
[](Node* a, Node* b, Symbol attr, const std::string& new_name) {
#define COPY_ATTR(kind) \
case AttributeKind::kind: { \
b->kind##_(Symbol::attr(new_name), a->kind(attr)); \
break; \
}
switch (a->kindOf(attr)) {
COPY_ATTR(f)
COPY_ATTR(fs)
COPY_ATTR(i)
COPY_ATTR(is)
COPY_ATTR(s)
COPY_ATTR(ss)
COPY_ATTR(t)
COPY_ATTR(ts)
#undef COPY_ATTR
case AttributeKind::ival:
case AttributeKind::g:
case AttributeKind::gs:
case AttributeKind::ty:
case AttributeKind::tys:
case AttributeKind::c:
default:
TORCH_INTERNAL_ASSERT(
false,
"Unexpected attribute type ",
static_cast<int>(a->kindOf(attr)),
" from node ",
*a);
break;
}
};
for (const auto& it : func_ctx.attribute_map_) {
auto* ref_n = it.first;
for (const auto& attr_it : it.second) {
const auto& attr = attr_it.first;
auto attr_name = func_ctx.FindAttrName(ref_n, attr).value();
copy_attr(ref_n, func_n, attr, attr_name);
for (auto* n : scope_ctx.nlist_) {
if (attr_it.second.find(n) != attr_it.second.end()) {
copy_attr(n, func_n, attr, attr_name);
break;
}
}
}
}
// annotated attributes
auto scope = scope_ctx.scope_;
auto annotated_attr_node = scope_attr_map_.find(scope);
if (annotated_attr_node != scope_attr_map_.end()) {
auto node = annotated_attr_node->second;
for (auto attr : node->attributeNames()) {
copy_attr(node, func_n, attr, attr.toUnqualString());
}
}
func_n->insertAfter(last_n);
return func_n;
}
void FunctionExtractor::ConvertScopeToFunction(
const ScopePtr& scope_key,
const scope_list& scope_list,
scope_ctx_map& scope_ctxs,
const std::shared_ptr<Graph>& graph) {
// This function needs to be called always on inner most scopes.
// 1. Generate function context, this identifies different constants and
// attributes.
// 2. Create function definition node, and insert to main graph.
// 3. Create function node for each call, and replace subgraph nodes in parent
// functions.
func_ctxs_.insert(std::make_pair(
scope_key, new FunctionContext(scope_key, scope_list, scope_ctxs)));
auto& func_ctx = *func_ctxs_[scope_key];
const std::string module_class_name(
ONNXScopeName::className(func_ctx.scope_key_));
auto pos = module_class_name.rfind('.');
TORCH_INTERNAL_ASSERT(pos != std::string::npos);
auto construct_unique_module_name = [&](std::string module_name) {
auto module_name_variant = module_variant_count_.find(module_name);
if (module_name_variant != module_variant_count_.end()) {
module_variant_count_[module_name]++;
module_name += ("." + std::to_string(module_name_variant->second));
} else {
module_variant_count_[module_name] = 0;
}
return module_name;
};
const auto domain_name = module_class_name.substr(0, pos);
const auto func_name =
construct_unique_module_name(module_class_name.substr(pos + 1));
CreateFunctionDefNode(func_ctx, graph, domain_name, func_name);
// create and insert local function node to graph.
for (const auto& it : func_ctx.scope_ctxs_) {
auto scope = it.first;
auto& scope_ctx = *it.second;
auto func_n =
CreateFunctionNode(func_ctx, scope_ctx, graph, domain_name, func_name);
std::unordered_set<Node*> old_nodes(
scope_ctx.nlist_.begin(), scope_ctx.nlist_.end());
auto last_n = *scope_ctx.nlist_.rbegin();
// replace function body nodes in parent scopes with local function node.
for (auto& it : scope_ctxs) {
const auto& parent_scope = it.first;
auto& parent_ctx = *it.second;
if (!IsAncestor(parent_scope, scope)) {
continue;
}
auto& ctx_nlist = parent_ctx.nlist_;
GRAPH_DEBUG(
"Replace local function node in parent scope: ",
it.first->namesFromRoot(),
" nodes to remove: ",
old_nodes.size(),
" parent total nodes: ",
ctx_nlist.size());
// insert local function node
auto last_n_it = std::find(ctx_nlist.begin(), ctx_nlist.end(), last_n);
ctx_nlist.insert(last_n_it, func_n);
// remove replaced nodes from list
ctx_nlist.erase(
std::remove_if(
ctx_nlist.begin(),
ctx_nlist.end(),
[&old_nodes](Node* n) {
return old_nodes.find(n) != old_nodes.end();
}),
ctx_nlist.end());
GRAPH_DEBUG("Parent total nodes after remove: ", ctx_nlist.size());
// refresh inputs/outputs.
parent_ctx.PopulateInputsOutputs(param_names_);
}
}
for (const auto& it : func_ctx.scope_ctxs_) {
auto& scope_ctx = *it.second;
// delete replaced nodes in graph.
for (auto it = scope_ctx.nlist_.rbegin(); it != scope_ctx.nlist_.rend();) {
auto* n = *it;
it++;
GRAPH_DEBUG("Destroying node ", *n);
n->destroy();
}
}
}
bool FunctionExtractor::ScopeContext::IsIdenticalFuncion(
const ScopeContext& other_ctx) const {
// Differentiate same function under different inputs.
// When constants are passed in place of inputs, it leads to different
// input count and node count. Likewise, due to different uses, output
// count can be different as well.
// For now export them as different functions.
// Covered by `test_local_function_overloads` in
// `test/onnx/test_utility_funs.py`.
if (&other_ctx == this) {
return true;
}
if (ONNXScopeName::className(this->scope_) !=
ONNXScopeName::className(other_ctx.scope_)) {
return false;
}
if (this->inputs_.size() != other_ctx.inputs_.size() ||
this->outputs_.size() != other_ctx.outputs_.size()) {
return false;
}
const auto& ns_a = this->nlist_;
const auto& ns_b = other_ctx.nlist_;
if (ns_a.size() != ns_b.size()) {
return false;
}
for (const auto i : c10::irange(ns_a.size())) {
if (ns_a[i]->kind() != ns_b[i]->kind()) {
return false;
}
}
return true;
}
void FunctionExtractor::ScopeContext::PopulateInputsOutputs(
const std::unordered_set<std::string>& param_names) {
inputs_.clear();
outputs_.clear();
const auto& nlist = this->nlist_;
std::unordered_set<Value*> v_set;
std::unordered_set<Node*> n_set;
value_list input_list;
value_list initializer_list;
// Add initializers after inputs.
for (auto* n : nlist) {
for (auto* v : n->inputs()) {
if (v_set.find(v) == v_set.end()) {
if (param_names.find(v->debugName()) != param_names.end()) {
initializer_list.emplace_back(v);
} else {
input_list.emplace_back(v);
}
v_set.insert(v);
}
}
for (auto* v : n->outputs()) {
v_set.insert(v);
}
n_set.insert(n);
}
for (auto* v : input_list) {
inputs_.emplace_back(v);
}
for (auto* v : initializer_list) {
inputs_.emplace_back(v);
}
for (auto* n : nlist) {
for (auto* v : n->outputs()) {
bool used_outside = false;
for (auto use : v->uses()) {
used_outside |= (n_set.find(use.user) == n_set.end());
}
if (used_outside) {
outputs_.emplace_back(v);
}
}
}
}
void FunctionExtractor::HandleNoScopeNodes(
scope_ctx_map& scope_ctxs,
node_list no_scope_nlist) {
GRAPH_UPDATE("No scope node count: ", no_scope_nlist.size());
for (auto n : no_scope_nlist) {
TORCH_WARN(
"ONNX function extraction cannot determine the scope for node: ", *n);
}
TORCH_INTERNAL_ASSERT(
no_scope_nlist.size() == 0,
"ONNX function extraction cannot determine the scope for the above nodes.");
}
std::tuple<FunctionExtractor::scope_ctx_map, node_list> FunctionExtractor::
PartitionNodesByScope(Block* b) {
scope_ctx_map scope_ctxs = {};
node_list no_scope_nlist;
auto find_or_create_scope_ctx = [](scope_ctx_map& scope_ctxs,
const ScopePtr& scope) {
if (scope_ctxs.find(scope) == scope_ctxs.end()) {
scope_ctxs.insert(std::make_pair(scope, new ScopeContext()));
}
return scope_ctxs[scope];
};
auto record_node_scope = [&scope_ctxs, &find_or_create_scope_ctx](Node* n) {
const auto& scope = n->scope();
find_or_create_scope_ctx(scope_ctxs, scope)->scope_ = scope;
auto tmp_scope = scope;
while (IsValidScope(tmp_scope)) {
find_or_create_scope_ctx(scope_ctxs, tmp_scope)->nlist_.emplace_back(n);
if (IsValidScope(tmp_scope->parent())) {
find_or_create_scope_ctx(scope_ctxs, tmp_scope->parent())
->children_.insert(tmp_scope);
}
tmp_scope = tmp_scope->parent();
}
};
for (auto* n : b->nodes()) {
auto scope = n->scope();
if (scope && IsValidScope(scope)) {
record_node_scope(n);
} else {
auto inferred_scope = InferScope(n);
if (inferred_scope.has_value() && IsValidScope(inferred_scope.value())) {
n->setScope(inferred_scope.value());
record_node_scope(n);
} else {
GRAPH_UPDATE("Cannot infer proper scope for node: ", *n);
no_scope_nlist.emplace_back(n);
}
}
for (auto* sub_b : n->blocks()) {
scope_ctx_map subblock_scope_ctxs;
node_list subblock_no_scope_nlist;
std::tie(subblock_scope_ctxs, subblock_no_scope_nlist) =
PartitionNodesByScope(sub_b);
for (auto& it : subblock_scope_ctxs) {
if (scope_ctxs.find(it.first) == scope_ctxs.end()) {
scope_ctxs.insert(std::make_pair(it.first, it.second));
} else {
for (auto* s_n : it.second->nlist_) {
scope_ctxs[it.first]->nlist_.emplace_back(s_n);
}
for (const auto& s_child_scope : it.second->children_) {
scope_ctxs[it.first]->children_.insert(s_child_scope);
}
}
}
no_scope_nlist.insert(
no_scope_nlist.end(),
subblock_no_scope_nlist.begin(),
subblock_no_scope_nlist.end());
}
}
for (auto& it : scope_ctxs) {
it.second->scope_ = it.first;
it.second->PopulateInputsOutputs(param_names_);
}
return std::tie(scope_ctxs, no_scope_nlist);
}
FunctionExtractor::scope_ctx_map FunctionExtractor::PartitionNodesByScope(
const std::shared_ptr<Graph>& graph) {
scope_ctx_map scope_ctxs;
node_list no_scope_nlist;
std::tie(scope_ctxs, no_scope_nlist) = PartitionNodesByScope(graph->block());
HandleNoScopeNodes(scope_ctxs, no_scope_nlist);
return scope_ctxs;
}
std::unordered_map<ScopePtr, scope_list> FunctionExtractor::
PartitionIdenticalScopes(FunctionExtractor::scope_ctx_map& scope_ctxs) {
std::unordered_map<ScopePtr, scope_list> identical_scope_map;
for (auto& it : scope_ctxs) {
auto scope = it.first;
const auto& scope_ctx = it.second;
bool unique = true;
for (auto& kv_it : identical_scope_map) {
auto key_scope = kv_it.first;
const auto& key_scope_ctx = scope_ctxs[key_scope];
auto& key_scope_vec = kv_it.second;
if (key_scope_ctx->IsIdenticalFuncion(*scope_ctx)) {
key_scope_vec.emplace_back(scope);
unique = false;
break;
}
}
if (unique) {
identical_scope_map[scope].emplace_back(scope);
}
}
return identical_scope_map;
}
static bool HasSameAttribute(
const Node* a,
const Node* b,
const c10::Symbol& attr) {
if (!a->hasAttribute(attr) && !b->hasAttribute(attr)) {
return true;
}
if (!a->hasAttribute(attr) || !b->hasAttribute(attr)) {
return false;
}
auto a_kind = a->kindOf(attr);
auto b_kind = b->kindOf(attr);
if (a_kind != b_kind) {
return false;
}
#define COMP_ATTR(kind) \
case AttributeKind::kind: { \
const auto& a_v = a->kind(attr); \
const auto& b_v = b->kind(attr); \
return a_v == b_v; \
}
switch (a_kind) {
COMP_ATTR(f)
COMP_ATTR(fs)
COMP_ATTR(i)
COMP_ATTR(is)
COMP_ATTR(s)
COMP_ATTR(ss)
#undef COMP_ATTR
case AttributeKind::t: {
const auto& a_v = a->t(attr);
const auto& b_v = b->t(attr);
return a_v.equal(b_v);
}
case AttributeKind::ts: {
const auto& a_v = a->ts(attr);
const auto& b_v = b->ts(attr);
return std::equal(
a_v.begin(),
a_v.end(),
b_v.begin(),
b_v.end(),
[](const at::Tensor& a_t, const at::Tensor& b_t) {
return a_t.equal(b_t);
});
}
case AttributeKind::ival:
case AttributeKind::g:
case AttributeKind::gs:
case AttributeKind::ty:
case AttributeKind::tys:
case AttributeKind::c:
default:
TORCH_INTERNAL_ASSERT(
false,
"Unexpected attribute type ",
static_cast<int>(a_kind),
" from node ",
*a);
break;
}
return true;
}
scope_list FunctionExtractor::SortScopesByMaxDepth(
std::unordered_map<ScopePtr, scope_list>& identical_scope_map) {
std::unordered_map<ScopePtr, size_t> scope_max_depth;
for (const auto& it : identical_scope_map) {
const auto& scopes = it.second;
size_t max_depth = 0;
for (const auto& scope : scopes) {
if (scope->getDepth() > max_depth) {
max_depth = scope->getDepth();
}
}
scope_max_depth[it.first] = max_depth;
}
scope_list sorted_scopes;
sorted_scopes.reserve(scope_max_depth.size());
for (const auto& it : scope_max_depth) {
sorted_scopes.emplace_back(it.first);
}
std::sort(
sorted_scopes.begin(),
sorted_scopes.end(),
[&scope_max_depth](const ScopePtr& a, const ScopePtr& b) -> bool {
return scope_max_depth[a] >= scope_max_depth[b];
});
return sorted_scopes;
}
NodeAttrNameMap FunctionExtractor::run() {
auto scope_ctxs = PartitionNodesByScope(graph_);
DebugPrintScopeContexts(scope_ctxs);
auto identical_scope_map = PartitionIdenticalScopes(scope_ctxs);
// Deepest scope comes first, guaranteeing no other scope can be its child.
auto sorted_scope_keys = SortScopesByMaxDepth(identical_scope_map);
for (const auto& scope_key : sorted_scope_keys) {
if (module_names_.find(ONNXScopeName::className(scope_key)) !=
module_names_.end()) {
ConvertScopeToFunction(
scope_key, identical_scope_map[scope_key], scope_ctxs, graph_);
}
GRAPH_DEBUG("Main graph afterwards: ", graph_->toString());
}
DebugPrintGraphWithFunction(graph_);
// Construct return mappings
NodeAttrNameMap node_attr_to_name;
for (const auto& it : func_ctxs_) {
auto func_ref_map = it.second->node_attr_to_name_;
node_attr_to_name.insert(func_ref_map.begin(), func_ref_map.end());
}
// Clear
for (auto& it : scope_ctxs) {
delete it.second;
}
scope_ctxs.clear();
for (auto& it : func_ctxs_) {
delete it.second;
}
func_ctxs_.clear();
return node_attr_to_name;
}
// Retrieves the node representing the most recent
// ScopePtr. This function should only be invoked from module forward hook. At
// this point, module forward call is completed, and the most recent ScopePtr
// is popped from TracingState.
// This function inspects the node, and its subblock, to find
// the node associated with the most recent ScopePtr.
Node* NodeOfMostRecentScope(Node* forward_node) {
TORCH_INTERNAL_ASSERT(
forward_node->kind() == prim::TracedModuleForward,
"forward_node got kind: ",
forward_node->kind().toDisplayString());
auto* block = forward_node->blocks()[0];
for (auto* node : block->nodes().reverse()) {
if (node->kind() == prim::TracedModuleForward) {
Node* target_node = NodeOfMostRecentScope(node);
if (scope_attr_map_.find(node->scope()) == scope_attr_map_.end()) {
return target_node;
}
}
}
return forward_node;
}
} // namespace
// FunctionExtractor runs in the following steps. Updates are made inplace to
// the graph argument.
// 1. Partition nodes into groups based on their scope information.
// Each scope represents an individual nn.Module call. A ScopeContext object
// is created for each group.
// 2. Compare and find groups with the same subgraph pattern from step 1.
// 3. Scopes are nested. Starting from the deepest scope, extract the
// subgraph pattern, and define as local function node. Replace subgraph
// pattern with a single node of the new local function node type. A
// FunctionContext object is created for each function.
// 4. Construct NodeAttrNameMap tracking mapping from attribute name of
// IR Node inside function subgraph, to function attribute name.
NodeAttrNameMap ONNXFunctionExtraction(
std::shared_ptr<Graph>& graph,
const std::unordered_set<std::string>& module_names,
const std::vector<std::string>& param_names) {
GRAPH_UPDATE(
"Export these module forward calls as functions: ",
std::vector<std::string>{module_names.begin(), module_names.end()});
FunctionExtractor fe(graph, module_names, param_names);
return fe.run();
}
Node* ONNXGetPreviousScope(std::shared_ptr<Graph>& graph) {
auto* last_node = graph->nodes().back()->prev();
auto* scope_node = NodeOfMostRecentScope(last_node);
auto* attr_node = scope_attr_graph_->create(prim::TracedModuleForward);
attr_node->setScope(scope_node->scope());
TORCH_INTERNAL_ASSERT(
scope_attr_map_.find(scope_node->scope()) == scope_attr_map_.end(),
"Found duplicated scope. Scope ",
scope_node->scope()->namesFromRoot(),
" already processed.");
scope_attr_map_[scope_node->scope()] = attr_node;
return attr_node;
}
void ONNXClearScopeRecords() {
scope_attr_map_.clear();
scope_attr_graph_ = std::make_shared<Graph>();
}
void ONNXTrackScopeAttributes(
std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& attributes) {
// Skip the "real" last node which is `return_node`.
auto* last_node = graph->nodes().back()->prev();
auto* scope_node = NodeOfMostRecentScope(last_node);
auto* attr_node = scope_attr_graph_->create(prim::TracedModuleForward);
attr_node->setScope(scope_node->scope());
TORCH_INTERNAL_ASSERT(
scope_attr_map_.find(scope_node->scope()) == scope_attr_map_.end());
scope_attr_map_[scope_node->scope()] = attr_node;
for (const auto& it : attributes) {
auto k = Symbol::attr(it.first);
auto v = it.second;
if (v.isTensor()) {
attr_node->t_(k, v.toTensor());
} else if (v.isInt()) {
attr_node->i_(k, v.toInt());
} else if (v.isDouble()) {
attr_node->f_(k, v.toDouble());
} else if (v.isBool()) {
attr_node->i_(k, v.toBool());
} else if (v.isString()) {
attr_node->s_(k, v.toStringRef());
} else if (v.isIntList()) {
attr_node->is_(k, v.toIntList().vec());
} else if (v.isBoolList()) {
auto bool_list = v.toBoolList();
attr_node->is_(
k, std::vector<int64_t>(bool_list.begin(), bool_list.end()));
} else if (v.isDoubleList()) {
attr_node->fs_(k, v.toDoubleList().vec());
}
}
}
} // namespace onnx
} // namespace jit
} // namespace torch
|