File: peephole.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (451 lines) | stat: -rw-r--r-- 18,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#include <torch/csrc/jit/passes/peephole.h>

#include <ATen/core/jit_type.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/concat_opt.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/peephole_alias_sensitive.h>
#include <torch/csrc/jit/passes/peephole_dict_idioms.h>
#include <torch/csrc/jit/passes/peephole_list_idioms.h>
#include <torch/csrc/jit/passes/peephole_non_tensor.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/utils/memory.h>

namespace torch {
namespace jit {

// Conservatively compare two optionals. If both are undefined, assume
// they aren't equal
template <typename T>
static bool mustBeEqual(const c10::optional<T>& a, const c10::optional<T>& b) {
  return a == b && a.has_value();
}

struct PeepholeOptimizeImpl {
  PeepholeOptimizeImpl(
      // NOLINTNEXTLINE(modernize-pass-by-value)
      const std::shared_ptr<Graph>& graph,
      bool disable_shape_peepholes)
      : graph_(graph), shape_peepholes_(!disable_shape_peepholes) {}

  bool run() {
    bool changed = optimizeBlock(graph_->block());
    changed |= PeepholeOptimizeListIdioms(graph_);
    changed |= PeepholeOptimizeDictIdioms(graph_);
    changed |= PeepholeOptimizeAliasSensitive(graph_, shape_peepholes_);
    changed |= PeepholeOptimizeNonTensor(graph_);
    changed |= CombineConcats(graph_);
    return changed;
  }

  // The intent for this optimization pass is to catch all of the small, easy to
  // catch peephole optimizations you might be interested in doing.
  //
  // TODO: Decide what kind of fixed point strategy we will have
  bool optimizeBlock(Block* block) {
    bool changed = false;
    for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
      auto* node = *it;

      for (Block* sub_block : node->blocks()) {
        changed |= optimizeBlock(sub_block);
      }

      // XXX: remember that if you want to simplify an expression by combining
      // multiple nodes into a different one, then you need to check that they
      // all belong to the given block
      // TODO: this doesn't work with Scalar-Tensor ops! We should
      // canonicalize those
      if (node->matches(
              "aten::_grad_sum_to_size(Tensor(a) self, int[]? size) -> Tensor(a)")) {
        // Eliminate no-op _grad_sum_to_size.
        // TODO: this doesn't work with Scalar-Tensor ops! We should
        // canonicalize those
        if (node->input(1)->mustBeNone()) {
          GRAPH_UPDATE(
              getHeader(node),
              " (x._grad_sum_to_size(x, None) == x) is replaced with ",
              node->input(0)->debugName());
          node->output()->replaceAllUsesWith(node->input(0));
          changed = true;
        } else {
          auto uses = node->output()->uses();
          for (Use u : uses) {
            if (u.user->matches(
                    "aten::_grad_sum_to_size(Tensor(a) self, int[]? size) -> Tensor(a)") &&
                u.user->input(1)->type()->isSubtypeOf(*ListType::ofInts())) {
              GRAPH_UPDATE(
                  getHeader(node),
                  " (x._grad_sum_to_size(y)._grad_sum_to_size(z) == x._grad_sum_to_size(z)) is replaced with ",
                  node->inputs().at(0)->debugName());
              u.user->replaceInput(0, node->inputs().at(0));
              changed = true;
            }
          }
        }
      } else if (
          node->matches(
              "aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor",
              /*const_inputs=*/attr::size)) {
        // x.expand(x.size()) == x
        auto input_type =
            node->namedInput(attr::self)->type()->cast<TensorType>();
        if (input_type && shape_peepholes_) {
          auto expanded_sizes = node->get<c10::List<int64_t>>(attr::size);
          auto input_type_sizes = input_type->sizes().concrete_sizes();
          if (expanded_sizes.has_value() && input_type_sizes &&
              expanded_sizes->vec() == *input_type_sizes) {
            GRAPH_UPDATE(
                getHeader(node),
                " (x.expand(x.size()) == x) is replaced with ",
                node->namedInput(attr::self)->debugName());
            node->output()->replaceAllUsesWith(node->namedInput(attr::self));
            changed = true;
          }
        }
      } else if (node->matches("aten::t(Tensor self) -> Tensor")) {
        // x.t().t() == x
        Node* input_node = node->input()->node();
        if (input_node->matches("aten::t(Tensor self) -> Tensor")) {
          GRAPH_UPDATE(
              getHeader(node),
              " (x.t().t() == x) is replaced with ",
              input_node->input()->debugName());
          node->output()->replaceAllUsesWith(input_node->input());
          changed = true;
        }
      } else if (
          node->matches("aten::type_as(Tensor self, Tensor other) -> Tensor") &&
          shape_peepholes_) {
        // x.type_as(y) == x iff x.type() == y.type()
        auto self_type = node->input(0)->type()->expect<TensorType>();
        auto other_type = node->input(1)->type()->expect<TensorType>();
        if (mustBeEqual(self_type->scalarType(), other_type->scalarType()) &&
            mustBeEqual(self_type->device(), other_type->device())) {
          GRAPH_UPDATE(
              getHeader(node),
              " (x.type_as(y) == x) is replaced with ",
              node->input(0)->debugName());
          node->output()->replaceAllUsesWith(node->input(0));
          changed = true;
        }
      } else if (
          node->kind() == aten::Float || node->kind() == aten::Int ||
          node->kind() == aten::FloatImplicit ||
          node->kind() == aten::IntImplicit ||
          node->kind() == aten::ScalarImplicit) {
        Node* input_node = node->input()->node();
        if (input_node->kind() == prim::NumToTensor) {
          GRAPH_UPDATE(
              getHeader(node),
              " (x.NumToTensor() == x) is replaced with ",
              node->input()->debugName());
          node->output()->replaceAllUsesWith(input_node->input());
          changed = true;
        }
      } else if (
          node->matches("aten::size(Tensor self) -> int[]") &&
          shape_peepholes_) {
        if (auto ptt = node->input()->type()->cast<TensorType>()) {
          if (auto sizes = ptt->sizes().concrete_sizes()) {
            GRAPH_UPDATE(
                getHeader(node),
                " (x.size()) is replaced with ",
                node->input()->debugName());
            WithInsertPoint guard(node);
            IValue ival(sizes);
            auto const_sizes_val = node->owningGraph()->insertConstant(ival);
            node->output()->replaceAllUsesWith(const_sizes_val);
            changed = true;
          }
        }
      } else if (
          node->matches("aten::len.t(t[] a) -> int") &&
          node->input()->node()->matches("aten::size(Tensor self) -> int[]") &&
          shape_peepholes_) {
        auto ptt = node->input()->node()->input()->type()->expect<TensorType>();
        // only handle one use case for now to avoid modifying mutated lists
        // TODO: canonicalize as aten::dim ?
        if (ptt->sizes().size() && node->input()->uses().size() == 1) {
          WithInsertPoint guard(node);
          auto output = node->owningGraph()->insertConstant(
              static_cast<int64_t>(*ptt->sizes().size()));
          GRAPH_UPDATE(
              "Replacing ",
              getHeader(node),
              " with a \"dim\" constant ",
              output->debugName());
          node->output()->replaceAllUsesWith(output);
          changed = true;
        }
      } else if (
          node->matches("aten::size(Tensor self, int dim) -> int") &&
          shape_peepholes_) {
        if (auto ptt = node->inputs().at(0)->type()->cast<TensorType>()) {
          if (auto maybe_ndim = ptt->sizes().size()) {
            auto ndim = *maybe_ndim;
            auto maybe_index = toIValue(node->inputs().at(1));
            if (!maybe_index) {
              continue;
            }
            int64_t index = maybe_index->toInt();
            int64_t norm_index = index < 0 ? ndim + index : index;
            if (norm_index >= 0 && norm_index < static_cast<int64_t>(ndim) &&
                ptt->sizes()[norm_index]) {
              WithInsertPoint guard(node);
              IValue ival(*ptt->sizes()[norm_index]);
              auto const_sizes_val = node->owningGraph()->insertConstant(ival);
              node->output()->replaceAllUsesWith(const_sizes_val);
              GRAPH_UPDATE(
                  getHeader(node),
                  " (x.size(dim)) is replaced with constant ",
                  const_sizes_val->debugName());
              changed = true;
            }
          }
        }
      } else if (
          node->matches("aten::is_floating_point(Tensor self) -> bool") &&
          shape_peepholes_) {
        auto ptt = node->inputs().at(0)->type()->cast<TensorType>();
        if (auto maybe_dtype = ptt->scalarType()) {
          c10::ScalarType dtype = *maybe_dtype;
          WithInsertPoint guard(node);
          IValue ival(at::isFloatingType(dtype));
          auto new_constant = node->owningGraph()->insertConstant(ival);
          node->output()->replaceAllUsesWith(new_constant);
          GRAPH_UPDATE(
              getHeader(node),
              " (x.is_floating_point()) is replaced with ",
              new_constant->debugName());
          changed = true;
        }
      } else if (
          node->matches("aten::is_complex(Tensor self) -> bool") &&
          shape_peepholes_) {
        auto ptt = node->inputs().at(0)->type()->cast<TensorType>();
        if (auto maybe_dtype = ptt->scalarType()) {
          c10::ScalarType dtype = *maybe_dtype;
          WithInsertPoint guard(node);
          IValue ival(at::isComplexType(dtype));
          auto new_constant = node->owningGraph()->insertConstant(ival);
          node->output()->replaceAllUsesWith(new_constant);
          GRAPH_UPDATE(
              getHeader(node),
              " (x.is_complex()) is replaced with ",
              new_constant->debugName());
          changed = true;
        }
      } else if (
          node->matches("prim::dtype(Tensor a) -> int") && shape_peepholes_) {
        auto ptt = node->input()->type()->expect<TensorType>();
        if (ptt->scalarType()) {
          WithInsertPoint guard(node);
          auto output = node->owningGraph()->insertConstant(
              static_cast<int64_t>(*ptt->scalarType()));
          GRAPH_UPDATE(
              "Replacing ",
              getHeader(node),
              " with a type constant ",
              output->debugName());
          node->output()->replaceAllUsesWith(output);
          changed = true;
        }
      } else if (
          node->matches("prim::device(Tensor a) -> Device") &&
          shape_peepholes_) {
        auto ptt = node->input()->type()->expect<TensorType>();
        if (ptt->device()) {
          WithInsertPoint guard(node);
          auto output = node->owningGraph()->insertConstant(*ptt->device());
          GRAPH_UPDATE(
              "Replacing ",
              getHeader(node),
              " with a device constant ",
              output->debugName());
          node->output()->replaceAllUsesWith(output);
          changed = true;
        }
      } else if (
          node->matches("aten::dim(Tensor self) -> int") && shape_peepholes_) {
        auto ptt = node->input()->type()->expect<TensorType>();
        if (auto dim = ptt->sizes().size()) {
          WithInsertPoint guard(node);
          auto output =
              node->owningGraph()->insertConstant(static_cast<int64_t>(*dim));
          GRAPH_UPDATE(
              "Replacing ",
              getHeader(node),
              " with a \"dim\" constant ",
              output->debugName());
          node->output()->replaceAllUsesWith(output);
          changed = true;
        }
      } else if (
          node->matches("prim::is_cuda(Tensor a) -> bool") &&
          shape_peepholes_) {
        auto ptt = node->input()->type()->expect<TensorType>();
        if (ptt->device()) {
          WithInsertPoint guard(node);
          auto output =
              node->owningGraph()->insertConstant((*ptt->device()).is_cuda());
          GRAPH_UPDATE(
              "Replacing ",
              getHeader(node),
              " with a is_cuda constant ",
              output->debugName());
          node->output()->replaceAllUsesWith(output);
          changed = true;
        }
      }
    }
    return changed;
  }

 private:
  std::shared_ptr<Graph> graph_;
  bool shape_peepholes_;
};

bool FuseAddMM(Block* block) {
  bool changed = false;
  for (Node* node : block->nodes()) {
    // XXX: remember that if you want to simplify an expression by combining
    // multiple nodes into a different one, then you need to check that they
    // all belong to the given block
    if (node->matches(
            "aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
            /*const_inputs=*/attr::alpha)) {
      // z + x.mm(y) == z.addmm(x, y) == x.mm(y) + z
      if (node->get<at::Scalar>(attr::alpha).value().toDouble() == 1.) {
        // Look for mm from both sides of the add
        for (const auto mm_side : c10::irange(2)) {
          // Add will accept tensors of mismatched scalar types, as long as
          // one of them is a scalar, but addmm will throw in that case, so we
          // can only perform this fusion if we're sure that it is correct,
          // and for that we need the add_mat_type. An alternative would be to
          // insert a type_as conditional on the tensor shape being a scalar,
          // but that might add overhead, and make analysis harder.
          auto add_mat_type =
              node->input(1 - mm_side)->type()->expect<TensorType>();
          // if we don't have the rank, we can't tell if the bias is a scalar
          if (!add_mat_type->sizes().size()) {
            continue;
          }

          if (node->input(mm_side)->node()->matches(
                  "aten::mm(Tensor self, Tensor mat2) -> Tensor")) {
            WithInsertPoint guard(node);

            auto* graph = node->owningGraph();
            auto* mm_node = node->input(mm_side)->node();
            auto* add_mat = node->input(1 - mm_side);
            auto* mat1 = mm_node->input(0);
            auto* mat2 = mm_node->input(1);

            // Attempts to find a matrix with a defined scalar type to type as
            auto* type_as_mat = mat1;
            if (!type_as_mat->type()->expectRef<TensorType>().scalarType()) {
              type_as_mat = mat2;
            }
            auto mat_scalar_type =
                type_as_mat->type()->expectRef<TensorType>().scalarType();

            // we can't use type_as if we don't know the target type (mm), the
            // bias needs to be coerced to
            if (!mat_scalar_type) {
              continue;
            }

            // We insert the type_as if we're sure that the added element is a
            // scalar, and we either don't know the type of the scalar, or
            // know that it's mismatched.
            if (add_mat_type->sizes().size() &&
                *add_mat_type->sizes().size() == 0 &&
                !mustBeEqual(add_mat_type->scalarType(), mat_scalar_type)) {
              auto* type_as_node =
                  graph->insertNode(graph->create(aten::type_as, 1));
              type_as_node->addInput(add_mat);
              type_as_node->addInput(type_as_mat);
              add_mat = type_as_node->output();
              if (add_mat_type->isComplete()) {
                auto new_type =
                    add_mat_type->withScalarType(mat_scalar_type)->contiguous();
                add_mat->setType(new_type);
              }
            }

            auto* cOne = graph->insertConstant(1);
            auto* addmm_node = graph->insertNode(graph->create(aten::addmm, 1));
            addmm_node->addInput(add_mat);
            addmm_node->addInput(mat1);
            addmm_node->addInput(mat2);
            addmm_node->addInput(cOne);
            addmm_node->addInput(cOne);
            auto* addmm_value = addmm_node->output();

            // Copy shape information from output node
            addmm_value->copyMetadata(node->output());
            GRAPH_UPDATE(
                "Fusing ",
                mm_node->input(0)->debugName(),
                ", ",
                mm_node->input(1)->debugName(),
                " and ",
                node->input(1 - mm_side)->debugName(),
                " into ",
                addmm_value->debugName());
            node->output()->replaceAllUsesWith(addmm_value);
            changed = true;
            continue;
          }
        }
      }
    }
    for (Block* b : node->blocks()) {
      changed |= FuseAddMM(b);
    }
  }
  return changed;
}

// FuseAddMM is a separate pass from peephole optimize because it is currently
// used for exporting to ONNX.
// Today, fusing add + MM has no benefit within PyTorch running ATen
// ops. However, we rely on seeing the fused version of AddMM for ONNX export,
// since otherwise after ONNX translation we would see redundant Gemm ops with
// sub-optimal inputs.
// It won't be helpful for ATen until we're able to represent
//   torch.addmm(a, b, c, out=a).
// That's because addmm dispatches internally to gemm, which computes:
//   C = beta * C + alpha * A @ B
// but aten::addmm(a, b, c, 1, 1) is really:
//   D = beta * C + alpha * A @ B
// and because it works out of place on C, we're only trading off an
// explicit add for a copy inside the addmm function. Note that it
// doesn't even result in fewer reads, because mm won't even load C
// (because beta == 0 for it).
bool FuseAddMM(const std::shared_ptr<Graph>& graph) {
  bool changed = FuseAddMM(graph->block());
  GRAPH_DUMP("After FuseAddMM: ", graph);
  return changed;
}

bool PeepholeOptimize(
    const std::shared_ptr<Graph>& graph,
    bool addmm_fusion_enabled) {
  PeepholeOptimizeImpl peephole(graph, addmm_fusion_enabled);
  bool changed = peephole.run();
  GRAPH_DUMP("After PeepholeOptimize: ", graph);
  // Eliminate dead code created by any peephole passes we've just done
  if (changed) {
    EliminateDeadCode(graph->block());
  }
  return changed;
}

} // namespace jit
} // namespace torch