File: peephole_non_tensor.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (287 lines) | stat: -rw-r--r-- 9,931 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#include <torch/csrc/jit/passes/peephole.h>

#include <ATen/core/jit_type.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>

namespace torch {
namespace jit {

namespace {

/**
 * Check whether the arithmetic node is binary between integers, and return a
 * constant int value if there exists one.
 *
 * @pre node is integer arithmetic.
 * @post if there's one constant in two oprands, then the second operand is
 *       constant.
 */
c10::optional<int64_t> checkArithNode(Node& node) {
  if (node.inputs().size() != 2 || node.input(0)->type() != IntType::get() ||
      node.input(1)->type() != IntType::get()) {
    return {};
  }

  if (node.kind() == aten::mul || node.kind() == aten::add) {
    if (auto i = constant_as<int64_t>(node.input(0))) {
      node.permuteInputs({1, 0});
      return i;
    }
  }

  return constant_as<int64_t>(node.input(1));
}

/**
 * Remove a mul/floordiv node if it is multiplication or division by 1.
 *
 * @pre node is either aten::mul, aten::floordiv or aten::div
 */
bool trySimplifyMulOrDiv(Node& node) {
  auto constant = checkArithNode(node);
  if (!constant || *constant != 1) {
    return false;
  }

  node.output()->replaceAllUsesWith(node.inputs()[0]);
  return true;
}

/**
 * Simplify an add/sub node with its input node, i.e. merge the constant parts
 * together.
 *
 * @pre node is either aten::add or aten::sub
 */
bool trySimplifyAddOrSub(Node& node) {
  auto constant = checkArithNode(node);
  if (!constant) {
    return false;
  }

  if (constant == 0) {
    node.output()->replaceAllUsesWith(node.input(0));
    return true;
  }

  auto& dep = *node.inputs()[0]->node();
  if (dep.kind() != aten::add && dep.kind() != aten::sub) {
    return false;
  }

  auto delta = checkArithNode(dep);
  if (!delta) {
    return false;
  }
  auto merged =
      dep.kind() == node.kind() ? *constant + *delta : *constant - *delta;

  if (merged == 0) {
    node.output()->replaceAllUsesWith(dep.inputs()[0]);
  } else {
    WithInsertPoint g(&node);
    node.replaceInput(0, dep.inputs()[0]);
    node.replaceInput(1, node.owningGraph()->insertConstant(merged));
  }
  return true;
}

} // namespace

struct PeepholeOptimizeNonTensorImpl {
  // NOLINTNEXTLINE(modernize-pass-by-value)
  PeepholeOptimizeNonTensorImpl(const std::shared_ptr<Graph>& graph)
      : graph_(graph) {}

  bool run() {
    return optimizeBlock(graph_->block());
  }

  bool optimizeBlock(Block* block) {
    bool changed = false;
    for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
      auto* node = *it;

      for (Block* sub_block : node->blocks()) {
        changed |= optimizeBlock(sub_block);
      }

      if (node->kind() != prim::Constant) {
        WithInsertPoint guard(node);
        // Any Value whose type is None should be replaced with a Constant
        // This can occur if a module has an optional attribute, and it is
        // initialized as None.
        for (Value* output : node->outputs()) {
          if (output->type()->cast<NoneType>()) {
            output->replaceAllUsesWith(graph_->insertConstant(IValue()));
            changed = true;
          }
        }
      }
      // XXX: remember that if you want to simplify an expression by combining
      // multiple nodes into a different one, then you need to check that they
      // all belong to the given block
      // TODO: this doesn't work with Scalar-Tensor ops! We should
      // canonicalize those
      if (node->kind() == prim::If) {
        IfView n(node);
        // this handles redundant short circuits like "x and True" or "x or
        // False"
        for (const auto i : c10::irange(n.outputs().size())) {
          if (n.outputs().at(i)->type() != BoolType::get()) {
            continue;
          }
          bool true_val =
              constant_as<bool>(n.thenOutputs().at(i)).value_or(false);
          bool false_val =
              constant_as<bool>(n.elseOutputs().at(i)).value_or(true);
          // if an if node's output equals its condition replace output with
          // condition
          if (true_val && !false_val) {
            GRAPH_UPDATE(
                "Replacing ",
                n.outputs().at(i)->debugName(),
                " (True or False) with ",
                n.cond()->debugName());
            n.outputs().at(i)->replaceAllUsesWith(n.cond());
            changed = true;
          }
        }

        // check for types that can be refined
        for (size_t i = 0; i < n.outputs().size(); ++i) {
          // common case of optional for now
          bool inputs_non_optional =
              !n.thenOutputs().at(i)->type()->cast<OptionalType>() &&
              !n.elseOutputs().at(i)->type()->cast<OptionalType>();
          auto output_optional =
              n.outputs().at(i)->type()->cast<OptionalType>();
          if (inputs_non_optional && output_optional) {
            if (auto unif = unifyTypes(
                    n.thenOutputs().at(i)->type(),
                    n.elseOutputs().at(i)->type())) {
              n.outputs().at(i)->setType(*unif);
              changed = true;
            }
          }
        }
      } else if (
          node->kind() == aten::__is__ || node->kind() == aten::__isnot__) {
        // if we are comparing a None value with a value that can't be None
        // replace the output with true if node is __isnot__ or false if node is
        // __is__
        AT_ASSERT(node->inputs().size() == 2);
        for (size_t check_none_index : {0, 1}) {
          bool input_must_be_none =
              node->inputs().at(check_none_index)->mustBeNone();
          bool other_must_not_be_none =
              node->inputs().at(1 - check_none_index)->mustNotBeNone();
          if (input_must_be_none && other_must_not_be_none) {
            WithInsertPoint guard(node);
            auto output = node->owningGraph()->insertConstant(
                node->kind() == aten::__isnot__);
            GRAPH_UPDATE(
                "Folding ", getHeader(node), " to ", output->debugName());
            node->output()->replaceAllUsesWith(output);
            changed = true;
          }
        }
      } else if (
          node->kind() == prim::unchecked_unwrap_optional ||
          node->kind() == aten::_unwrap_optional) {
        // we are unwrapping an input that can't be None, remove the unwrap
        auto input = node->input();
        if (input->mustNotBeNone()) {
          GRAPH_UPDATE(
              "Unwrapping ",
              getHeader(node),
              " as ",
              node->input(),
              " can't be optional");
          node->output()->replaceAllUsesWith(node->input());
          changed = true;
        }
      } else if (node->kind() == prim::unchecked_cast) {
        // unchecked_cast is not generated for tensor properties, so we are not
        // losing anything by calling unshapedType here
        auto input_type = unshapedType(node->input()->type());
        auto output_type = unshapedType(node->output()->type());
        if (input_type->isSubtypeOf(*output_type)) {
          GRAPH_UPDATE(
              "Removing ",
              getHeader(node),
              " as input type subtypes output type");
          node->output()->replaceAllUsesWith(node->input());
          changed = true;
        }
      } else if (
          (node->kind() == aten::Int || node->kind() == aten::ceil) &&
          node->inputs().size() == 1 &&
          node->input()->type()->cast<IntType>()) {
        GRAPH_UPDATE(
            "Removing ", getHeader(node), " as input is already an integer");
        node->output()->replaceAllUsesWith(node->input());
        changed = true;
      } else if (node->kind() == aten::ne || node->kind() == aten::eq) {
        if (node->inputs().size() != 2 ||
            node->inputs().at(0) != node->inputs().at(1)) {
          continue;
        }
        auto inp_type = node->inputs().at(0)->type();
        // only handling common immutable types here because other types like
        // Tensor or list of Tensor might throw on aten::eq
        auto immut_type = [&](const TypePtr& type) {
          auto kind = type->kind();
          static const std::vector<TypeKind> handled_immutable_types = {
              TypeKind::BoolType,
              TypeKind::IntType,
              TypeKind::FloatType,
              TypeKind::NoneType};
          return (
              std::find(
                  handled_immutable_types.begin(),
                  handled_immutable_types.end(),
                  kind) != handled_immutable_types.end());
        };
        bool non_throwing_type = false;
        if (auto li_type = inp_type->cast<ListType>()) {
          non_throwing_type = immut_type(li_type->getElementType());
        } else if (auto di_type = inp_type->cast<DictType>()) {
          non_throwing_type =
              (immut_type(di_type->getKeyType()) &&
               immut_type(di_type->getValueType()));
        } else {
          non_throwing_type = immut_type(inp_type);
        }
        if (non_throwing_type) {
          WithInsertPoint guard(node);
          node->output()->replaceAllUsesWith(
              graph_->insertConstant(node->kind() == aten::eq));
          changed = true;
        }
      } else if (
          node->kind() == aten::mul || node->kind() == aten::floordiv ||
          node->kind() == aten::div) {
        changed |= trySimplifyMulOrDiv(*node);
      } else if (node->kind() == aten::add || node->kind() == aten::sub) {
        changed |= trySimplifyAddOrSub(*node);
      }
    }
    return changed;
  }

 private:
  std::shared_ptr<Graph> graph_;
};

bool PeepholeOptimizeNonTensor(const std::shared_ptr<Graph>& graph) {
  PeepholeOptimizeNonTensorImpl peephole(graph);
  bool changed = peephole.run();
  GRAPH_DUMP("After PeepholeOptimize: ", graph);
  return changed;
}

} // namespace jit
} // namespace torch