File: insert_observers.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1721 lines) | stat: -rw-r--r-- 65,906 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
#include <c10/util/irange.h>
#include <torch/csrc/jit/passes/quantization/insert_observers.h>

#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <torch/csrc/jit/passes/remove_mutation.h>

#include <memory>
#include <regex>
#include <stack>
#include <string>

namespace torch {
namespace jit {

using ModuleQConfigMap = std::unordered_map<ModulePtr, c10::optional<QConfig>>;

namespace {

struct OptionalQConfigHash {
  inline size_t operator()(const c10::optional<QConfig>& qconfig_opt) const {
    if (qconfig_opt.has_value()) {
      const auto& m1 = std::get<0>(*qconfig_opt);
      const auto& m2 = std::get<1>(*qconfig_opt);
      constexpr int CONST = 7;
      return std::hash<Module>()(m1) + CONST * std::hash<Module>()(m2);
    }
    return 0;
  }
};
using QConfigTypePtrMap =
    std::unordered_map<c10::optional<QConfig>, TypePtr, OptionalQConfigHash>;
using NameModuleVector = std::vector<std::pair<std::string, Module>>;
using OptionalModuleVector = std::vector<c10::optional<Module>>;
using ModuleMethodVector = std::vector<std::pair<Module, std::string>>;
using graph_rewrite_helper::PatternInfo;
using graph_rewrite_helper::replaceConvolutionWithAtenConv;

// helper functions
void fillQConfigMap(
    const Module& module,
    const QConfigDict& qconfig_dict,
    ModuleQConfigMap& map,
    const std::string& key = "",
    const c10::optional<QConfig>& parent_qconfig = c10::nullopt) {
  c10::optional<QConfig> qconfig;
  if (qconfig_dict.find(key) != qconfig_dict.end()) {
    GRAPH_DEBUG("Got module config for key:", key);
    qconfig = qconfig_dict.at(key);
  } else {
    GRAPH_DEBUG("Inheriting qconfig from parent module:", key);
    qconfig = parent_qconfig;
  }
  map[module._ivalue()] = qconfig;

  for (const NameModule& s : module.named_children()) {
    std::string child_key;
    if (key == "") {
      child_key = s.name;
    } else {
      child_key = key + "." + s.name;
    }
    fillQConfigMap(s.value._ivalue(), qconfig_dict, map, child_key, qconfig);
  }
}

Module getObserverModuleFor(Value* v, const QConfig& qconfig) {
  return isWeight(v) ? std::get<1>(qconfig) : std::get<0>(qconfig);
}

// helper classes
class ModuleCloneHelper {
 public:
  /** Clone according to module qconfig map, this is for handling the case
   *  where we have two module instances sharing the same ClassType
   *  but configured with different QConfig
   *  code is copied and modified from
   * https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/api/module.cpp
   * inplace option means if the copy of the Tensor is deepcopy or not
   * if inplace is true, the cloned module will share the tensors with
   * original model instead of deepcopy them
   */
  Module clone(
      const Module& module,
      const ModuleQConfigMap& module_qconfig_map,
      bool inplace = false) {
    std::unordered_map<TypePtr, QConfigTypePtrMap> type_remap;
    IValue::HashAliasedIValueMap memo;
    return clone_impl(module, module_qconfig_map, type_remap, inplace, memo);
  }

 private:
  Module clone_impl(
      const Module& module,
      const ModuleQConfigMap& module_qconfig_map,
      std::unordered_map<TypePtr, QConfigTypePtrMap>& type_remap,
      bool inplace,
      IValue::HashAliasedIValueMap memo) {
    auto qconfig = module_qconfig_map.at(module._ivalue());
    auto type = module.type();
    // Create a new _ivalue in the same compilation unit.
    // Since now we have shared ClassType, we need to preserve the shared
    // ClassType during cloning, so we first use type and qconfig to check if
    // the type is already cloned, if so, we'll create a new module with the
    // cloned ClassType, if not, we'll create a new module and a new ClassType.
    bool type_already_cloned = type_remap.find(type) != type_remap.end() &&
        type_remap.at(type).find(qconfig) != type_remap.at(type).end();
    Module r;
    if (type_already_cloned) {
      // if we cloned the class type before, we'll reuse it
      Module new_module(
          module._ivalue()->compilation_unit(),
          type_remap.at(type).at(qconfig)->cast<ClassType>());
      r = new_module;
    } else {
      Module new_module(
          *type->name(), module._ivalue()->compilation_unit(), true);
      r = new_module;
      type_remap[type][module_qconfig_map.at(module._ivalue())] = r.type();
    }
    // Copy slots. If a slot is a module - recursively clone it.
    size_t N = type->numAttributes();
    for (const auto i : c10::irange(N)) {
      IValue s = module._ivalue()->getSlot(i);
      std::string attr_name = type->getAttributeName(i);
      TypePtr attr_type = type->getAttribute(i);
      if (attr_type->is_module()) {
        const Module& orig = Module(s.toObject());
        Module cloned =
            clone_impl(orig, module_qconfig_map, type_remap, inplace, memo);

        // NOTE: why do we need to manually setattr on object instead of using
        // register_module here? because the attr can be a module interface
        // type and hold a Module object still. register_module will not let us
        // correctly set up the type for this attr, so we had to do this
        // manually. In the case it's an interface type, the type will be shared
        // by the new cloned instance in the same compilation unit bc it only
        // contains a list of functionSchema
        r.type()->addOrCheckAttribute(
            attr_name,
            attr_type->cast<ClassType>() ? cloned.type() : attr_type);
        r._ivalue()->setAttr(attr_name, cloned._ivalue());
      } else {
        // we'll deepcopy the IValue in non inplace option
        r.register_attribute(
            type->getAttributeName(i),
            type->getAttribute(i),
            inplace ? s : s.deepcopy(memo),
            type->is_parameter(i),
            type->is_buffer(i));
      }
    }

    // only clone the methods and constants if the ClassType is not cloned
    // before
    if (!type_already_cloned) {
      for (size_t i = 0; i < type->numConstants(); ++i) {
        r.type()->addConstant(type->getConstantName(i), type->getConstant(i));
      }
      // Clone methods remapping the types to the cloned ones.
      for (auto& fn : type->methods()) {
        clone_method(module, r, *fn, module_qconfig_map, type_remap);
      }
      // Execute __setstate__(__getstate__()) to initialize custom class
      // members.
      if (auto setstate_method = r.find_method("__setstate__")) {
        auto getstate_method = r.find_method("__getstate__");
        TORCH_INTERNAL_ASSERT(getstate_method, "expect __getstate__");
        auto state = (*getstate_method)(Stack{});
        (*setstate_method)(Stack{state});
      }
    }
    return r;
  }

  void remapTypes(
      Block* block,
      Value* self,
      const Module& source,
      Module& target,
      const ModuleQConfigMap& module_qconfig_map,
      const std::function<TypePtr(TypePtr, c10::optional<QConfig>)>&
          type_remap_fn) {
    // remap of %self will be done outside of the function
    // and we don't support the case when people pass in
    // module as argument of the method because in that case
    // we need to do more comprehensive analysis to decide the
    // QConfig for the module
    for (size_t i = 1; i < block->inputs().size(); ++i) {
      TORCH_CHECK(
          !block->inputs()[i]->type()->cast<ClassType>(),
          "We don't support quantizing methods that has Object as arguments");
    }
    for (Node* node : block->nodes()) {
      // remapping type for module instance
      if (node->kind() == prim::CallMethod || node->kind() == prim::GetAttr) {
        Value* instance = node->inputs()[0];
        auto child_opt = getInvokedModuleOpt(source, node, self);
        if (child_opt.has_value()) {
          auto qconfig = module_qconfig_map.at(child_opt->_ivalue());
          instance->setType(type_remap_fn(instance->type(), qconfig));
        }
      }
      // We don't remap output and the remapping of module type
      // will be done in CallMethod, we don't support type remapping
      // for modules returned from methods or functions
      for (Block* sub_block : node->blocks()) {
        remapTypes(
            sub_block, self, source, target, module_qconfig_map, type_remap_fn);
      }
      for (Symbol name : node->attributeNames()) {
        if (node->kindOf(name) == AttributeKind::g) {
          remapTypes(
              node->g(name).get(),
              source,
              target,
              module_qconfig_map,
              type_remap_fn);
        } else if (node->kindOf(name) == AttributeKind::gs) {
          for (const auto& g : node->gs(name)) {
            remapTypes(
                g.get(), source, target, module_qconfig_map, type_remap_fn);
          }
        }
      }
    }
  }

  void remapTypes(
      Graph* graph,
      const Module& source,
      Module& target,
      const ModuleQConfigMap& module_qconfig_map,
      const std::function<TypePtr(TypePtr, c10::optional<QConfig>)>&
          type_remap_fn) {
    remapTypes(
        graph->block(),
        graph->inputs()[0],
        source,
        target,
        module_qconfig_map,
        type_remap_fn);
  }

  void clone_method(
      const Module& source,
      Module& target,
      const Function& method,
      const ModuleQConfigMap& module_qconfig_map,
      const std::unordered_map<TypePtr, QConfigTypePtrMap>& type_remap) {
    auto type_remap_fn = [&](TypePtr type_ptr,
                             const c10::optional<QConfig>& qconfig) {
      if (type_remap.find(type_ptr) != type_remap.end()) {
        const auto& qconfig_map = type_remap.at(type_ptr);
        if (qconfig_map.find(qconfig) != qconfig_map.end()) {
          return qconfig_map.at(qconfig);
        }
      }
      return type_ptr;
    };
    auto graph = toGraphFunction(method).graph()->copy();
    remapTypes(graph.get(), source, target, module_qconfig_map, type_remap_fn);
    // remap self
    graph->inputs()[0]->setType(target.type());
    // we only support %self being Module in the arguments of function
    auto schema_type_remap_fn = [&](TypePtr type_ptr) {
      return type_remap_fn(type_ptr, module_qconfig_map.at(source._ivalue()));
    };
    auto schema =
        method.getSchema().cloneWithRemappedTypes(schema_type_remap_fn);
    const auto this_method_name =
        c10::QualifiedName(*target.type()->name(), method.name());
    auto copied = target._ivalue()->compilation_unit()->create_function(
        this_method_name, graph);
    target.type()->addMethod(copied);
    copied->setSchema(std::move(schema));
  }
};

class InsertObserversHelper {
 public:
  explicit InsertObserversHelper(
      const ModuleQConfigMap& map,
      QuantType quant_type)
      : module_qconfig_map_(map), quant_type_(quant_type) {}

  // TODO: replace (module, method_name) with graph?
  // preprocess to clean up the graph from tracing
  void preprocess(Module& module, const std::string& method_name);

  // Fill the map between the caller input/output to input/output
  // of called graph, this is used to navigate through the graph
  // to find the observer for a given value
  void fillBoundaryValueMap(Module& module, const std::string& method_name);

  // analyze the graph and record necessary information that can
  // be used in insert observers
  void analyze(Module& module, const std::string& method_name);

  void removeActivationObservers();

  /**
   * Recursively insert observers for the method, also we'll process
   * the nodes in the graph in the order of execution of these nodes
   * since we need the context information to decide whether we want to
   * observe/quantize a value a not, we don't want to observe a value multiple
   * times.
   *
   * arguemnt: is_entry_point means whether the current method is the forward
   * method of the top level module.
   *
   * Since we want to insert observers in the call site instead of in the called
   * graph, we'll postpone inserting observer to caller as much as possible, if
   * we know the current method is the outer most method, then
   * we will insert all observers in the graph instead of postpone this to the
   * parent, note that this assumes we don't have recursive method
   * calls
   *
   * returns a tuple of vectors of observer modules for input and output, these
   * are used for inserting observers for the input/output values
   * since we need to insert these values at call site.
   * And a vector of indexes of outputs that indicates whether the output value
   * is already observed or not, this is used for propagating the observed
   * property of a value through CallMethods, because we should skip inserting
   * observers for ops that don't require observation
   */
  std::tuple<OptionalModuleVector, OptionalModuleVector, std::vector<size_t>>
  insertObservers(
      Module& module,
      const std::string& method_name,
      bool is_entry_point = false,
      std::unordered_set<Value*> graph_observed_values =
          std::unordered_set<Value*>());

  void setInsertResetObserverMethod(
      bool insert_reset_observer_method,
      const std::string& method_name) {
    insert_reset_observer_method_ = insert_reset_observer_method;
    reset_observer_method_name_ = "reset_observers_" + method_name;
  }

 private:
  std::tuple<OptionalModuleVector, OptionalModuleVector, std::vector<size_t>>
  insertObserversFor(
      Block* block,
      script::Module& module,
      // this is a reference because when we insert observer for a value
      // in one block it is also observed in another block, we don't want to
      // insert multiple observers for the same value
      std::unordered_set<Value*>& block_observed_values,
      bool is_entry_point = false,
      bool is_user_defined_function = false);

  // Record v as "ready for observation" by storing it in values_to_observe.
  // If v is a part of a delayed observation pattern, record v's descendant
  // (per delay rules) instead. The observers are inserted at a later stage
  // by reading the state created by this function.
  void recordObserved(
      Value* v,
      const Module& observer_module,
      std::unordered_map<Value*, Module>& values_to_observe,
      std::unordered_set<Value*>& block_observed_values);

  ModuleMethodVector getInvokedMethods(
      Module& module,
      const std::string& method_name);

  bool valueNeedsToBeQuantized(Value* v, const QConfig& qconfig);

  bool isObserved(
      Value* v,
      const std::unordered_set<Value*>& block_observed_values) {
    return block_observed_values.count(v) || observed_values_.count(v);
  }

  // Fill the map from value to the corresponding observer module
  // this map is used in insertObservers to actually insert
  // observers to the module
  void fillValueObserverMap(Module& module, const std::string& method_name);

  // Clone observer module and add it to the original module,
  // and insert a call to observer forward function
  void insertObserverFor(
      Value* v,
      Module& module,
      const Module& observer_module,
      NameModuleVector& observer_name_and_modules);

  void insertObserverResetMinMax(
      Module& module,
      const NameModuleVector& observer_name_and_modules);

  // Uses the state created by fillBoundaryValueMap and fillValueObserverMap
  // to return an observer configured for a value, if it is needed.
  c10::optional<Module> getObserverFor(Value* v);

  // Uses the state created by fillPassThroughValueMap to propage observed
  // property which should pass through from inputs to outputs.
  void propagateObservedProperty(
      Value* output,
      std::unordered_set<Value*>& block_observed_values);

  // for cat/add/mul we will only observe their output if their input
  // are observed
  bool shouldObserve(
      Node* n,
      const std::unordered_set<Value*>& block_observed_values,
      QuantType quant_type) {
    // Check whether node output uses can be quantized, eg cat followed by
    // linear op
    for (Value* v : n->outputs()) {
      for (const auto& use : v->uses()) {
        if (useQuantizable(use, quant_type)) {
          return true;
        }
      }
    }
    if (isPropagateQuantSingleInputOp(n)) {
      return isObserved(n->input(0), block_observed_values);
    } else if (isPropagateQuantBinaryOp(n)) {
      // This checks both of the input should be tensor and observed.
      // There is one check that we didn't do here, which is
      // !isScalar(isObserved(n->input(1), block_observed_values)
      // to make sure input 1 is not a scalar, because scalar tensor input
      // for add/mul won't be observed with current rule, we can omit
      // this check here
      return isObserved(n->input(0), block_observed_values) &&
          isObserved(n->input(1), block_observed_values);
    }
    return true;
  }

  void delayObservingValuesInPattern(Graph& graph, const PatternInfo& pattern);

  // Find and mark known patterns such as conv-relu (and others) where
  // we should not insert observers in the middle of the pattern.
  void addValuesToDelayObservation(
      const Module& module,
      const std::string& method_name);

  // Fill the map from values to the list of values that can pass the observed
  // property to it
  void fillPassThroughValueMap(const std::shared_ptr<Graph>& graph);

  bool insertResetObserverMethod() {
    return insert_reset_observer_method_;
  }

  const ModuleQConfigMap& module_qconfig_map_;

  // Values we want to delay observation, used to delay the observation for
  // values in the middle of the ops that are supposed to be fused, e.g.
  // the output value of conv in the conv - relu pattern
  // the key is the intermediate output, e.g. output of conv
  // the value is the value we want to observe, e.g. output of relu
  //
  // example, assuming we want to delay conv-relu:
  //   %x1 = conv(%x0)
  //   %x2 = relu(%x1)
  //
  // delay_observation_map_ = {
  //   %x1: %x2,
  // }
  std::unordered_map<Value*, Value*> delay_observation_map_;

  std::unordered_set<Graph*> visited_graph_of_observer_map_;

  // Map of value to observer module configured for that value.
  std::unordered_map<Value*, Module> observer_for_value_;

  // Map from values from callsite into the values in the CallMethod graph
  // key of the map is the value from caller graph, and the value of the map
  // is the list of values in the callee graph (the graph
  // corresponding to the called method),
  // the reason it is a set is that a value in the caller graph
  // can both correspond to the output of one callee graph and input of another
  // callee graph.
  //
  // example:
  //   // top level module
  //   %x1 = conv(%x0)
  //   %x2 = prim::CallFunction(%foo, %x1)
  //
  //   // graph of %foo
  //   %y2 = conv(%y1)
  //   return %y2
  //
  // boundary_value_map = {
  //   // current module's output values to corresponding return values from
  //   subgraph %x2: %y2,
  //   // current module's input values to corresponding input value to subgraph
  //   %x1: %y1,
  // }
  std::unordered_map<Value*, std::unordered_set<Value*>> boundary_value_map_;

  std::unordered_set<Value*> observed_values_;

  // This is used for the observed values to pass through the ops like flatten,
  // so that output value of flatten does not need to be observed
  // key is the output of the op, value is a vector of values that need
  // to be observed in order to pass the observed property to the output
  //
  // example:
  //   %x1 = flatten(%x0) // pass_through
  //   %x2 = conv(%x1) // not pass_through
  //
  // pass_through_value_map_ = {
  //   %x1: [%x0],
  // }
  std::unordered_map<Value*, std::vector<Value*>> pass_through_value_map_;

  // Unique id generator for observer module, used for generating
  // unique observer names when we insert observer module, we
  // record the current unique id used to avoid incrementing from 0
  // every time to find a unique id.
  int uid_ = 0;
  // Set of observer forward call nodes
  std::unordered_set<Node*> observer_nodes_;
  // Map from block to a vector of observer name and observer modules we
  // want to add to the module instance that has the block
  std::unordered_map<Block*, NameModuleVector> block_observer_map_;

  // Type of quantization for this pass.
  QuantType quant_type_ = QuantType::STATIC;
  // These are the IR patterns we match to skip inserting observers.
  // They are compiled once on construction and used repeatedly within
  // the pass.

  // nn.Linear + nn.ReLU
  const PatternInfo nn_linear_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%input, %linear, %relu):
    %first_output = prim::CallMethod[name="forward"](%linear, %input)
    %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
    return (%second_output) )",
      {is_linear_module, is_relu_module});

  // nn.Linear + F.relu
  const PatternInfo nn_linear_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%input, %linear, %relu, %inplace):
    %first_output = prim::CallMethod[name="forward"](%linear, %input)
    %second_output = prim::CallFunction(%relu, %first_output, %inplace)
    return (%second_output) )",
      {is_linear_module, is_functional_relu});

  // nn.Linear + aten::relu
  const PatternInfo nn_linear_aten_relu = PatternInfo::parse_from_str(
      R"(
graph(%input, %linear, %relu):
    %first_output = prim::CallMethod[name="forward"](%linear, %input)
    %second_output = aten::relu(%first_output)
    return (%second_output) )",
      {is_linear_module});

  // nn.Linear + aten::relu_
  const PatternInfo nn_linear_aten_relu_ = PatternInfo::parse_from_str(
      R"(
graph(%input, %linear, %relu):
    %first_output = prim::CallMethod[name="forward"](%linear, %input)
    %second_output = aten::relu_(%first_output)
    return (%second_output) )",
      {is_linear_module});

  // aten::linear + nn.ReLU
  const PatternInfo aten_linear_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%input, %weight, %bias, %relu):
    %first_output = aten::linear(%input, %weight, %bias)
    %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
    return (%second_output) )",
      {is_relu_module});

  // aten::linear + F.relu
  const PatternInfo aten_linear_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%input, %weight, %bias, %relu, %inplace):
    %first_output = aten::linear(%input, %weight, %bias)
    %second_output = prim::CallFunction(%relu, %first_output, %inplace)
    return (%second_output) )",
      {is_functional_relu});

  // aten::linear + aten::relu
  const PatternInfo aten_linear_aten_relu = PatternInfo::parse_from_str(
      R"(
graph(%input, %weight, %bias):
    %first_output = aten::linear(%input, %weight, %bias)
    %second_output = aten::relu(%first_output)
    return (%second_output) )");

  // aten::linear + aten::relu_
  const PatternInfo aten_linear_aten_relu_ = PatternInfo::parse_from_str(
      R"(
graph(%input, %weight, %bias):
    %first_output = aten::linear(%input, %weight, %bias)
    %second_output = aten::relu_(%first_output)
    return (%second_output) )");

  const PatternInfo nn_conv1d_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv, %relu, %inplace):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = prim::CallFunction(%relu, %first_output, %inplace)
    return (%second_output) )",
      {is_conv1d_module, is_functional_relu});

  const PatternInfo nn_conv1d_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv, %relu):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
    return (%second_output) )",
      {is_conv1d_module, is_relu_module});

  const PatternInfo nn_conv1d_aten_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = aten::relu(%first_output)
    return (%second_output) )",
      {is_conv1d_module});

  const PatternInfo nn_conv1d_aten_relu_ = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = aten::relu_(%first_output)
    return (%second_output) )",
      {is_conv1d_module});

  const PatternInfo nn_conv2d_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv, %relu, %inplace):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = prim::CallFunction(%relu, %first_output, %inplace)
    return (%second_output) )",
      {is_conv2d_module, is_functional_relu});

  const PatternInfo nn_conv2d_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv, %relu):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
    return (%second_output) )",
      {is_conv2d_module, is_relu_module});

  const PatternInfo nn_conv2d_aten_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = aten::relu(%first_output)
    return (%second_output) )",
      {is_conv2d_module});

  const PatternInfo nn_conv2d_aten_relu_ = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = aten::relu_(%first_output)
    return (%second_output) )",
      {is_conv2d_module});

  const PatternInfo nn_conv3d_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv, %relu, %inplace):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = prim::CallFunction(%relu, %first_output, %inplace)
    return (%second_output) )",
      {is_conv3d_module, is_functional_relu});

  const PatternInfo nn_conv3d_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv, %relu):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
    return (%second_output) )",
      {is_conv3d_module, is_relu_module});

  const PatternInfo nn_conv3d_aten_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %conv, %input):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = aten::relu(%first_output)
    return (%second_output) )",
      {is_conv3d_module});

  const PatternInfo nn_conv3d_aten_relu_ = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %conv):
    %first_output = prim::CallMethod[name="forward"](%conv, %input)
    %second_output = aten::relu_(%first_output)
    return (%second_output) )",
      {is_conv3d_module});

  const PatternInfo add_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %alpha, %relu):
     %first_output = aten::add(%a, %b, %alpha)
     %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
     return (%second_output) )",
      {aten_add_alpha_is_one, is_relu_module});

  const PatternInfo add_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %alpha, %relu, %inplace):
     %first_output = aten::add(%a, %b, %alpha)
     %second_output = prim::CallFunction(%relu, %first_output, %inplace)
     return (%second_output) )",
      {aten_add_alpha_is_one, is_functional_relu});

  const PatternInfo inplace_add_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %alpha, %relu):
     %first_output = aten::add_(%a, %b, %alpha)
     %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
     return (%second_output) )",
      {aten_add_alpha_is_one, is_relu_module});

  const PatternInfo inplace_add_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %alpha, %relu, %inplace):
     %first_output = aten::add_(%a, %b, %alpha)
     %second_output = prim::CallFunction(%relu, %first_output, %inplace)
     return (%second_output) )",
      {aten_add_alpha_is_one, is_functional_relu});

  const PatternInfo add_aten_relu = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b, %alpha):
     %first_output = aten::add(%a, %b, %alpha)
     %second_output = aten::relu(%first_output)
     return (%second_output) )");

  const PatternInfo add_aten_relu_ = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b, %alpha):
     %first_output = aten::add(%a, %b, %alpha)
     %second_output = aten::relu_(%first_output)
     return (%second_output) )");

  const PatternInfo inplace_add_aten_relu = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b, %alpha):
     %first_output = aten::add_(%a, %b, %alpha)
     %second_output = aten::relu(%first_output)
     return (%second_output) )");

  const PatternInfo inplace_add_aten_relu_ = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b, %alpha):
     %first_output = aten::add_(%a, %b, %alpha)
     %second_output = aten::relu_(%first_output)
     return (%second_output) )");

  const PatternInfo nn_bn2d_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm, %relu):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
    return (%second_output) )",
      {is_batchnorm2d_module, is_relu_module});

  const PatternInfo nn_bn2d_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm, %relu, %inplace):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = prim::CallFunction(%relu, %first_output, %inplace)
    return (%second_output) )",
      {is_batchnorm2d_module, is_functional_relu});

  const PatternInfo nn_bn2d_aten_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = aten::relu(%first_output)
    return (%second_output) )",
      {is_batchnorm2d_module});

  const PatternInfo nn_bn2d_aten_relu_ = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = aten::relu_(%first_output)
    return (%second_output) )",
      {is_batchnorm2d_module});

  const PatternInfo nn_bn3d_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm, %relu):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = prim::CallMethod[name="forward\\d*"](%relu, %first_output)
    return (%second_output) )",
      {is_batchnorm3d_module, is_relu_module});

  const PatternInfo nn_bn3d_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm, %relu, %inplace):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = prim::CallFunction(%relu, %first_output, %inplace)
    return (%second_output) )",
      {is_batchnorm3d_module, is_functional_relu});

  const PatternInfo nn_bn3d_aten_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = aten::relu(%first_output)
    return (%second_output) )",
      {is_batchnorm3d_module});

  const PatternInfo nn_bn3d_aten_relu_ = PatternInfo::parse_from_str(
      R"(
graph(%self, %input, %batchnorm):
    %first_output = prim::CallMethod[name="forward"](%batchnorm, %input)
    %second_output = aten::relu_(%first_output)
    return (%second_output) )",
      {is_batchnorm3d_module});

  const PatternInfo mul_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %relu):
     %first_output = aten::mul(%a, %b)
     %second_output = prim::CallMethod[name="forward"](%relu, %first_output)
     return (%second_output) )",
      {is_relu_module});

  const PatternInfo mul_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %relu, %inplace):
     %first_output = aten::mul(%a, %b)
     %second_output = prim::CallFunction(%relu, %first_output, %inplace)
     return (%second_output) )",
      {is_functional_relu});

  const PatternInfo inplace_mul_nn_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %relu):
     %first_output = aten::mul_(%a, %b)
     %second_output = prim::CallMethod[name="forward"](%relu, %first_output)
     return (%second_output) )",
      {is_relu_module});

  const PatternInfo inplace_mul_f_relu = PatternInfo::parse_from_str(
      R"(
graph(%self, %a, %b, %relu, %inplace):
     %first_output = aten::mul_(%a, %b)
     %second_output = prim::CallFunction(%relu, %first_output, %inplace)
     return (%second_output) )",
      {is_functional_relu});

  const PatternInfo mul_aten_relu = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b):
     %first_output = aten::mul(%a, %b)
     %second_output = aten::relu(%first_output)
     return (%second_output) )");

  const PatternInfo mul_aten_relu_ = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b):
     %first_output = aten::mul(%a, %b)
     %second_output = aten::relu_(%first_output)
     return (%second_output) )");

  const PatternInfo inplace_mul_aten_relu = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b):
     %first_output = aten::mul_(%a, %b)
     %second_output = aten::relu(%first_output)
     return (%second_output) )");

  const PatternInfo inplace_mul_aten_relu_ = PatternInfo::parse_from_str(R"(
graph(%self, %a, %b):
     %first_output = aten::mul_(%a, %b)
     %second_output = aten::relu_(%first_output)
     return (%second_output) )");

  const std::vector<std::reference_wrapper<const PatternInfo>> delay_patterns =
      {
          nn_linear_f_relu,      nn_linear_nn_relu,
          nn_linear_aten_relu,   nn_linear_aten_relu_,
          aten_linear_f_relu,    aten_linear_nn_relu,
          aten_linear_aten_relu, aten_linear_aten_relu_,

          nn_conv1d_f_relu,      nn_conv1d_nn_relu,
          nn_conv1d_aten_relu,   nn_conv1d_aten_relu_,
          nn_conv2d_f_relu,      nn_conv2d_nn_relu,
          nn_conv2d_aten_relu,   nn_conv2d_aten_relu_,
          nn_conv3d_f_relu,      nn_conv3d_nn_relu,
          nn_conv3d_aten_relu,   nn_conv3d_aten_relu_,

          add_nn_relu,           add_f_relu,
          inplace_add_nn_relu,   inplace_add_f_relu,
          add_aten_relu,         add_aten_relu_,
          inplace_add_aten_relu, inplace_add_aten_relu_,

          nn_bn2d_nn_relu,       nn_bn2d_f_relu,
          nn_bn2d_aten_relu,     nn_bn2d_aten_relu_,
          nn_bn3d_nn_relu,       nn_bn3d_f_relu,
          nn_bn3d_aten_relu,     nn_bn3d_aten_relu_,

          mul_nn_relu,           mul_f_relu,
          inplace_mul_nn_relu,   inplace_mul_f_relu,
          mul_aten_relu,         mul_aten_relu_,
          inplace_mul_aten_relu, inplace_mul_aten_relu_,
  };

  bool insert_reset_observer_method_{false};
  std::string reset_observer_method_name_;
};

ModuleMethodVector InsertObserversHelper::getInvokedMethods(
    Module& module,
    const std::string& method_name) {
  ModuleMethodVector invoked_methods;
  Method method = module.get_method(method_name);
  auto graph = method.graph();

  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      // Skip observer nodes
      if (observer_nodes_.count(n)) {
        continue;
      }
      if (n->kind() == prim::CallMethod) {
        auto m_opt = getInvokedModuleOpt(module, n, graph->inputs()[0]);
        if (m_opt.has_value()) {
          invoked_methods.push_back(std::make_pair(*m_opt, n->s(attr::name)));
        }
      }

      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
  return invoked_methods;
}

void InsertObserversHelper::insertObserverFor(
    Value* v,
    Module& module,
    const Module& observer_module,
    NameModuleVector& observer_name_and_modules) {
  if (observed_values_.count(v)) {
    return;
  }
  GRAPH_DEBUG("Inserting observer for:", v->debugName());
  Module observer = observer_module.deepcopy();
  std::string observer_name = "_observer_" + c10::to_string(uid_++);
  while (module.hasattr(observer_name)) {
    observer_name = "_observer_" + c10::to_string(uid_++);
  }
  module.register_module(observer_name, observer);
  observer_name_and_modules.push_back(std::make_pair(observer_name, observer));

  auto* g = v->owningGraph();
  // Get handle of observer module
  Node* observer_instance =
      g->createGetAttr(g->inputs()[0], observer_name)->insertAfter(v->node());
  observer_instance->output()->setDebugName(observer_name);

  {
    WithInsertPoint guard(observer_instance->next());
    // Match arguments to types of observer's arguments
    MatchedSchema forward_matched_schema = matchSchema(
        observer.get_method("forward").function().getSchema(),
        v->node()->sourceRange(),
        *g,
        {observer_instance->output(), v},
        {});
    // Insert call to observer's forward
    Node* call = g->insertMethodCall("forward", forward_matched_schema)->node();
    call->output()->copyMetadata(v);

    // Replace v with the output of observer
    v->replaceAllUsesWith(call->output());
    // The above also replaced the input to `call`, so switch it back to
    // the correct value
    call->replaceInput(1, v);
    observer_nodes_.emplace(call);
    observed_values_.insert(call->output());
  }
}

void InsertObserversHelper::insertObserverResetMinMax(
    Module& module,
    const NameModuleVector& observer_name_and_modules) {
  if (observer_name_and_modules.empty()) {
    return;
  }
  auto reset_min_max_opt = module.find_method(reset_observer_method_name_);
  if (!reset_min_max_opt.has_value()) {
    std::shared_ptr<Graph> reset_observer_graph = std::make_shared<Graph>();
    Value* module_value = reset_observer_graph->addInput("self");
    Node* output_node = reset_observer_graph->createNone();
    reset_observer_graph->insertNode(output_node);
    reset_observer_graph->registerOutput(output_node->output());
    module_value->setType(module._ivalue()->type());
    const auto method_name = c10::QualifiedName(
        *(module.type()->name()), reset_observer_method_name_);
    auto reset_observer_fn =
        module._ivalue()->compilation_unit()->create_function(
            method_name, reset_observer_graph);
    auto self_arg = c10::Argument("self", module.type());
    auto output_arg = c10::Argument("none", output_node->output()->type());
    auto schema = c10::FunctionSchema(
        reset_observer_method_name_, "", {self_arg}, {output_arg});
    reset_observer_fn->setSchema(std::move(schema));
    module.type()->addMethod(reset_observer_fn);
  }
  auto reset_min_max_graph =
      module.get_method(reset_observer_method_name_).graph();
  Value* self = reset_min_max_graph->inputs()[0];

  for (const auto& pair : observer_name_and_modules) {
    const auto& observer_name = pair.first;
    const auto& observer = pair.second;
    Value* observer_value =
        reset_min_max_graph->insertGetAttr(self, observer_name);
    MatchedSchema reset_minmax_schema = matchSchema(
        observer.get_method("reset_min_max_vals").function().getSchema(),
        observer_value->node()->sourceRange(),
        *reset_min_max_graph,
        {observer_value},
        {});
    reset_min_max_graph->insertMethodCall(
        "reset_min_max_vals", reset_minmax_schema);
  }
}

void InsertObserversHelper::delayObservingValuesInPattern(
    Graph& graph,
    const PatternInfo& pattern) {
  const Graph& pattern_graph = *pattern.pattern_graph;
  const std::unordered_map<std::string, Value*>& vmap = pattern.vmap;

  const auto& matches = findPatternMatches(pattern_graph, graph);
  for (const auto& match : matches) {
    if (!std::all_of(
            pattern.filters.begin(),
            pattern.filters.end(),
            [&](const MatchFilter& f) { return f(match, vmap); })) {
      continue;
    }
    auto first_output = match.values_map.at(vmap.at("first_output"));
    auto second_output = match.values_map.at(vmap.at("second_output"));
    GRAPH_DEBUG(
        "Delay observation for value in function pattern:",
        first_output->debugName(),
        " to ",
        second_output->debugName());
    delay_observation_map_[first_output] = second_output;
  }
}

void InsertObserversHelper::addValuesToDelayObservation(
    const Module& module,
    const std::string& method_name) {
  Method method = module.get_method(method_name);
  auto graph = method.graph();

  for (const auto& pattern : delay_patterns) {
    delayObservingValuesInPattern(*graph, pattern);
  }
}

void InsertObserversHelper::fillPassThroughValueMap(
    const std::shared_ptr<Graph>& graph) {
  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      if (userDefinedCallFunction(n)) {
        auto g = getCallFunctionGraph(n);
        blocks_to_visit.push(g->block());
      }
      for (auto* output : n->outputs()) {
        for (auto* input : getPassThroughInputs(output)) {
          pass_through_value_map_[output].push_back(input);
        }
      }
      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
}

void InsertObserversHelper::fillBoundaryValueMap(
    Module& module,
    const std::string& method_name) {
  for (auto& invoked_method : getInvokedMethods(module, method_name)) {
    auto& invoked_module = std::get<0>(invoked_method);
    const auto& invoked_method_name = std::get<1>(invoked_method);
    fillBoundaryValueMap(invoked_module, invoked_method_name);
  }

  auto graph = module.get_method(method_name).graph();
  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(graph->block());
  auto* self = graph->inputs()[0];
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      if (n->kind() == prim::CallMethod || userDefinedCallFunction(n)) {
        std::shared_ptr<Graph> g;
        // offset of input for the caller node, since the first
        // input of CallFunction is the function node and the graph
        // for CallFunction start with actual input
        // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
        size_t input_offset;
        if (n->kind() == prim::CallMethod) {
          auto m_opt = getInvokedModuleOpt(module, n, self);
          if (!m_opt.has_value()) {
            continue;
          }
          auto m = *m_opt;
          g = m.get_method(n->s(attr::name)).graph();
          input_offset = 0;
        } else {
          g = getCallFunctionGraph(n);
          input_offset = 1;
        }
        // add mapping from callsite value to value in called graph
        for (auto i = 0U; i < g->outputs().size(); ++i) {
          auto* return_val = g->outputs()[i];
          GRAPH_DEBUG(
              "Boundary Map[return]:",
              n->output(i)->debugName(),
              " -> ",
              return_val->debugName());
          boundary_value_map_[n->output(i)].insert(return_val);
        }
        for (auto i = 0U; i < g->inputs().size(); ++i) {
          auto caller_input_index = i + input_offset;
          auto* caller_input = n->input(caller_input_index);
          auto* input_val = g->inputs()[i];
          GRAPH_DEBUG(
              "Boundary Map[input]:",
              caller_input->debugName(),
              " -> ",
              input_val->debugName());
          boundary_value_map_[caller_input].insert(input_val);
        }
      } else if (n->kind() == prim::If) {
        for (Block* subblock : n->blocks()) {
          blocks_to_visit.push(subblock);
          for (Value* v : n->outputs()) {
            Value* subblock_output = subblock->outputs()[v->offset()];
            GRAPH_DEBUG(
                "Boundary Map[if_output]:",
                v->debugName(),
                " -> ",
                subblock_output->debugName());
            boundary_value_map_[v].insert(subblock_output);
          }
        }
      } else {
        for (Block* subblock : n->blocks()) {
          blocks_to_visit.push(subblock);
        }
      }
    }
  }
}

void InsertObserversHelper::preprocess(
    Module& module,
    const std::string& method_name) {
  // run preprocess for child module before parent, since preprocess
  // mutates the graph and it might affect passes like fillBoundaryValueMap
  for (auto& invoked_method : getInvokedMethods(module, method_name)) {
    auto& invoked_module = std::get<0>(invoked_method);
    const auto& invoked_method_name = std::get<1>(invoked_method);
    preprocess(invoked_module, invoked_method_name);
  }

  Method method = module.get_method(method_name);
  auto graph = method.graph();
  // Inline fork-wait calls
  InlineForkWait(graph);
  // fuse decomposed linear into aten::linear
  FuseLinear(graph);
  replaceConvolutionWithAtenConv(graph);
  RemoveListMutation(graph);
}

void InsertObserversHelper::analyze(
    Module& module,
    const std::string& method_name) {
  for (auto& invoked_method : getInvokedMethods(module, method_name)) {
    auto& invoked_module = std::get<0>(invoked_method);
    const auto& invoked_method_name = std::get<1>(invoked_method);
    analyze(invoked_module, invoked_method_name);
  }

  // fill out various internal state which will be later used in
  // insertObservers to insert the correct observer
  addValuesToDelayObservation(module, method_name);
  fillValueObserverMap(module, method_name);
  Method method = module.get_method(method_name);
  auto graph = method.graph();
  fillPassThroughValueMap(graph);
}

bool InsertObserversHelper::valueNeedsToBeQuantized(
    Value* v,
    const QConfig& qconfig) {
  if (isBiasOfConvOrLinear(v) ||
      !(v->type()->isSubtypeOf(*TensorType::get()) ||
        v->type()->isSubtypeOf(*ListType::ofTensors())) ||
      isEmbeddingBagNonInput(v)) {
    return false;
  }
  // For dynamic quantization we only insert observers at the input
  // of the quantizable function.
  if (quant_type_ == QuantType::STATIC) {
    // Check whether producer is quantizable
    if (!isWeightOnlyStaticQuantOp(v->node()) &&
        (nodeQuantizable(v->node()) || isPropagateQuantOp(v->node()))) {
      return true;
    }
  }
  if (quant_type_ == QuantType::DYNAMIC) {
    // Check the dtype of the observer module.
    Module observer_module = getObserverModuleFor(v, qconfig);
    auto scalar_type = observer_module.attr("dtype");
    // For inputs with Fp16 type that are not-weights we don't observer them for
    // dynamic quantization.
    if (scalar_type == at::ScalarType::Half && !isWeight(v)) {
      return false;
    }
  }
  // Check whether node input value is quantizable
  for (const auto& use : v->uses()) {
    if (useQuantizable(use, quant_type_)) {
      return true;
    }
  }
  return false;
}

void InsertObserversHelper::removeActivationObservers() {
  std::vector<std::unordered_map<Value*, Module>::iterator>
      values_to_be_removed;
  for (auto it = observer_for_value_.begin(); it != observer_for_value_.end();
       it++) {
    if (!isWeight(it->first)) {
      values_to_be_removed.push_back(it);
    }
  }
  for (auto it : values_to_be_removed) {
    observer_for_value_.erase(it);
  }
}

void InsertObserversHelper::fillValueObserverMap(
    Module& module,
    const std::string& method_name) {
  Method method = module.get_method(method_name);
  auto graph = method.graph();

  if (visited_graph_of_observer_map_.count(graph.get())) {
    return;
  }
  visited_graph_of_observer_map_.insert(graph.get());

  std::stack<Block*> blocks_to_visit;
  auto qconfig_opt = module_qconfig_map_.at(module._ivalue());
  if (!qconfig_opt) {
    return;
  }
  auto qconfig = *qconfig_opt;
  for (auto* v : graph->inputs()) {
    if (valueNeedsToBeQuantized(v, qconfig)) {
      GRAPH_DEBUG("Recording observer for ", v->debugName());
      GRAPH_DUMP("In graph:", v->owningGraph());
      observer_for_value_[v] = getObserverModuleFor(v, qconfig);
    }
  }

  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      for (Value* v : n->outputs()) {
        if (valueNeedsToBeQuantized(v, qconfig)) {
          GRAPH_DEBUG("Recording observer for ", v->debugName());
          GRAPH_DUMP("In graph:", v->owningGraph());
          observer_for_value_[v] = getObserverModuleFor(v, qconfig);
        }
      }

      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
}

c10::optional<Module> InsertObserversHelper::getObserverFor(Value* v) {
  if (observer_for_value_.count(v)) {
    auto observer = observer_for_value_.at(v);
    GRAPH_DEBUG("Got observer module config for:", v->debugName());
    return observer;
  }
  c10::optional<Module> result;
  if (boundary_value_map_.count(v)) {
    for (Value* next : boundary_value_map_.at(v)) {
      GRAPH_DEBUG(
          "Going through boundary map:",
          v->debugName(),
          " --> ",
          next->debugName());
      GRAPH_DUMP("From graph:", v->owningGraph());
      GRAPH_DUMP("To graph:", next->owningGraph());
      auto observer_opt = getObserverFor(next);
      if (observer_opt) {
        // Need to make sure all values are
        // configured with same observer
        if (result) {
          TORCH_CHECK(
              *observer_opt == *result,
              "Expecting all values in the graph only configured with one observer");
        } else {
          result = observer_opt;
        }
      }
    }
  }
  GRAPH_DEBUG(
      "Observer module config for ", v->debugName(), ":", result.has_value());
  return result;
}

std::tuple<OptionalModuleVector, OptionalModuleVector, std::vector<size_t>>
InsertObserversHelper::insertObservers(
    Module& module,
    const std::string& method_name,
    bool is_entry_point,
    std::unordered_set<Value*> graph_observed_values) {
  auto graph = module.get_method(method_name).graph();
  return insertObserversFor(
      graph->block(), module, graph_observed_values, is_entry_point);
}

void InsertObserversHelper::recordObserved(
    Value* v,
    const Module& observer_module,
    std::unordered_map<Value*, Module>& values_to_observe,
    std::unordered_set<Value*>& block_observed_values) {
  Value* to_observe = v;
  if (delay_observation_map_.count(v)) {
    to_observe = delay_observation_map_.at(v);
  }
  values_to_observe[to_observe] = observer_module;
  block_observed_values.insert(to_observe);
}

std::tuple<OptionalModuleVector, OptionalModuleVector, std::vector<size_t>>
InsertObserversHelper::insertObserversFor(
    Block* block,
    script::Module& module,
    std::unordered_set<Value*>& block_observed_values,
    bool is_entry_point,
    bool is_user_defined_function) {
  // input/output values, used to skip inserting observers
  // for input and output of the block and the owning graph,
  // we have to insert the observers at call site because
  // the graph itself can be shared
  std::unordered_set<Value*> inputs_outputs;
  // list of observer modules for input values
  std::vector<c10::optional<Module>> block_input_observers;
  // list of observer modules for output values
  std::vector<c10::optional<Module>> block_output_observers;

  // if the current block is the block for entry point graph(the forward graph
  // of the top level module), we can insert observers in the block directly
  if (!is_entry_point) {
    auto* graph = block->owningGraph();
    // graph inputs/outputs
    for (auto list : {graph->inputs(), graph->outputs()}) {
      for (auto* v : list) {
        inputs_outputs.insert(v);
      }
    }
    // block outputs
    for (auto* v : block->outputs()) {
      inputs_outputs.insert(v);
    }

    for (auto* v : block->inputs()) {
      block_input_observers.emplace_back(getObserverFor(v));
    }

    for (auto* v : block->outputs()) {
      // we need explictly skip the values that are already observed
      // this might happen in subblocks for `if` since
      // these subblock has access to all values before the `if` node
      if (!isObserved(v, block_observed_values)) {
        block_output_observers.emplace_back(getObserverFor(v));
      } else {
        block_output_observers.emplace_back(c10::nullopt);
      }
    }
  }

  // This means the block is been processed before, we just
  // need to attach observer modules and construct the information
  // needed by call site here
  bool visited = block_observer_map_.count(block);
  if (visited) {
    // instance clone of observer module and setAttr
    for (const auto& observer_attrs : block_observer_map_.at(block)) {
      const auto& name = std::get<0>(observer_attrs);
      const auto& observer = std::get<1>(observer_attrs);
      module._ivalue()->setAttr(name, observer.deepcopy()._ivalue());
    }
  }
  // NB: Why do we need to process the graph even if it's visited?
  // Reason is `block_observed_values` can
  // change depending on where the method is called, and
  // outputs that's been observed(third item of the returned result)
  // can change depending on that, so for each graph we'll need to go through
  // the whole process of inserting observers, the observers inserted in this
  // block won't change, but the information we return to the caller will change
  // based on `block_observed_values`

  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(block);
  auto* self = block->owningGraph()->inputs()[0];
  // We first construct a map from value to the module, then
  // insert observers for them later, this is to avoid interference
  // of the inserted observers with the analysis to decide where
  // to insert observers, also we only insert observers for
  // "intermediate values" that is not the input/output of the
  // graph
  std::unordered_map<Value*, Module> values_to_observe;

  for (auto* v : block->inputs()) {
    if (!inputs_outputs.count(v) && !values_to_observe.count(v)) {
      if (auto observer_opt = getObserverFor(v)) {
        recordObserved(
            v, *observer_opt, values_to_observe, block_observed_values);
      }
    }
  }
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      if (observer_nodes_.count(n)) {
        continue;
      }
      if (n->kind() == prim::CallMethod || userDefinedCallFunction(n)) {
        script::Module m;
        std::shared_ptr<Graph> g;
        // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
        size_t input_offset;
        bool is_udf_for_subblock = is_user_defined_function;
        if (n->kind() == prim::CallMethod) {
          auto m_opt = getInvokedModuleOpt(module, n, self);
          if (!m_opt.has_value()) {
            continue;
          }
          m = *m_opt;
          g = m.get_method(n->s(attr::name)).graph();
          input_offset = 0;
        } else { // CallFunction
          m = module;
          g = getCallFunctionGraph(n);
          input_offset = 1;
          is_udf_for_subblock = true;
        }

        std::unordered_set<Value*> callee_observed_inputs;
        for (auto i = 0U; i < g->inputs().size(); ++i) {
          auto* node_input = n->input(i + input_offset);
          if (isObserved(node_input, block_observed_values)) {
            callee_observed_inputs.insert(g->inputs()[i]);
          }
        }
        auto* subblock = g->block();
        auto info_from_callee = insertObserversFor(
            subblock, m, callee_observed_inputs, false, is_udf_for_subblock);
        auto input_observers = std::get<0>(info_from_callee);
        auto output_observers = std::get<1>(info_from_callee);
        auto callee_observed_outputs = std::get<2>(info_from_callee);
        for (auto idx : callee_observed_outputs) {
          block_observed_values.insert(n->outputs()[idx]);
        }
        for (auto i = 0U; i < g->inputs().size(); ++i) {
          auto* node_input = n->input(i + input_offset);
          if (input_observers[i] && !inputs_outputs.count(node_input) &&
              !isObserved(node_input, block_observed_values)) {
            recordObserved(
                node_input,
                *input_observers[i],
                values_to_observe,
                block_observed_values);
          }
        }
        for (auto i = 0U; i < n->outputs().size(); ++i) {
          if (output_observers[i] && !inputs_outputs.count(n->output(i)) &&
              !isObserved(n->output(i), block_observed_values)) {
            recordObserved(
                n->output(i),
                *output_observers[i],
                values_to_observe,
                block_observed_values);
          }
        }
      } else if (n->kind() == prim::If) {
        // a vector recoding whether each output is observed or not
        std::vector<bool> aggregated_output_observe_state;
        for (Block* subblock : n->blocks()) {
          if (alwaysRaisesException(subblock)) {
            continue;
          }
          // subblock has access to all the values in the scope of prim::If,
          // so subblock_observed_values == block_observed_values
          auto info_from_subblock =
              insertObserversFor(subblock, module, block_observed_values);
          // subblock for prim::If doesn't have inputs
          auto output_observers = std::get<1>(info_from_subblock);
          auto subblock_observed_outputs = std::get<2>(info_from_subblock);

          // We'll insert output observer for each subblock, and in the end
          // we will check if output of subblocks are quantized consistently
          for (size_t i = 0; i < subblock->outputs().size(); ++i) {
            Value* output = subblock->outputs()[i];
            if (output_observers[i] && !inputs_outputs.count(output) &&
                !isObserved(output, block_observed_values)) {
              recordObserved(
                  output,
                  *output_observers[i],
                  values_to_observe,
                  block_observed_values);
            }
          }
          for (auto idx : subblock_observed_outputs) {
            block_observed_values.insert(subblock->outputs()[idx]);
          }
          std::vector<bool> subblock_output_observe_state;
          for (size_t i = 0; i < subblock->outputs().size(); ++i) {
            Value* output = subblock->outputs()[i];
            subblock_output_observe_state.push_back(
                isObserved(output, block_observed_values));
          }
          if (aggregated_output_observe_state.size() > 0) {
            TORCH_CHECK(
                aggregated_output_observe_state ==
                    subblock_output_observe_state,
                "branches for `if` should return values that are observed "
                "consistently, if node:",
                *n);
          } else {
            aggregated_output_observe_state = subblock_output_observe_state;
          }
        }
        // mark the output of if as observed
        for (size_t i = 0; i < n->outputs().size(); ++i) {
          if (aggregated_output_observe_state[i]) {
            block_observed_values.insert(n->output(i));
          }
        }
      } else if (n->kind() == prim::Loop) {
        TORCH_WARN_ONCE(
            "prim::Loop is not yet supported in quantization, "
            "please make sure nothing needs to be quantized in the "
            "loop");
      }
      for (Value* v : n->outputs()) {
        propagateObservedProperty(v, block_observed_values);
        if (!inputs_outputs.count(v) && !isObserved(v, block_observed_values)) {
          auto observer_opt = getObserverFor(v);
          // If the node is one of the propagate quant node, e.g.
          // aten::cat, we should observe its output only
          // if the input of the node is observed
          if (observer_opt &&
              shouldObserve(n, block_observed_values, quant_type_)) {
            recordObserved(
                v, *observer_opt, values_to_observe, block_observed_values);
          }
        }
      }
    }
  }
  std::vector<size_t> output_idxs;
  for (auto i = 0U; i < block->outputs().size(); ++i) {
    if (isObserved(block->outputs()[i], block_observed_values)) {
      output_idxs.push_back(i);
    }
  }
  if (!visited) {
    NameModuleVector observer_name_and_modules;
    for (const auto& item : values_to_observe) {
      auto* v = item.first;
      auto observer = item.second;
      TORCH_CHECK(
          !is_user_defined_function,
          "Inserting observers for user defined functions is not "
          "supported right now");
      insertObserverFor(v, module, observer, observer_name_and_modules);
    }
    if (insertResetObserverMethod()) {
      insertObserverResetMinMax(module, observer_name_and_modules);
    }
    block_observer_map_[block] = observer_name_and_modules;
  }
  return std::make_tuple(
      block_input_observers, block_output_observers, output_idxs);
}

void InsertObserversHelper::propagateObservedProperty(
    Value* output,
    std::unordered_set<Value*>& block_observed_values) {
  if (pass_through_value_map_.count(output)) {
    // since the vector is always non-empty, we will
    // not return the initial value
    bool all_observed = true;
    for (Value* v : pass_through_value_map_.at(output)) {
      all_observed &=
          observed_values_.count(v) || block_observed_values.count(v);
    }
    if (all_observed) {
      GRAPH_DEBUG("Pass through observed property in node:", *output->node());
      // This is to propagate observed property through
      // all ops that doesn't require observation
      block_observed_values.insert(output);
    }
  }
}

} // namespace

Module InsertObservers(
    Module& input_module,
    const std::string& method_name,
    const QConfigDict& qconfig_dict,
    bool inplace,
    QuantType quant_type) {
  ModuleQConfigMap map_before_clone;
  fillQConfigMap(input_module, qconfig_dict, map_before_clone);
  ModuleCloneHelper mh;
  Module module = mh.clone(input_module, map_before_clone, inplace);
  SwapFunctionalLinear(module);
  ModuleQConfigMap module_qconfig_map;
  // Since the types are changed after clone, we need to fill
  // the qconfig map again
  fillQConfigMap(module, qconfig_dict, module_qconfig_map);
  GRAPH_DEBUG("Quant type:", quant_type);
  InsertObserversHelper helper(module_qconfig_map, quant_type);
  helper.preprocess(module, method_name);
  helper.fillBoundaryValueMap(module, method_name);
  // analyze needs to run after fillBoundaryValueMap
  // since we need to know the boundary value mapping to trace
  // through the calls
  helper.analyze(module, method_name);
  helper.insertObservers(module, method_name, /* is_entry_point */ true);
  return module;
}

Module InsertObserversForOnDevicePTQ(
    Module& input_module,
    const std::string& method_name,
    const QConfigDict& qconfig_dict,
    bool inplace,
    QuantType quant_type) {
  ModuleQConfigMap map_before_clone;
  fillQConfigMap(input_module, qconfig_dict, map_before_clone);
  ModuleCloneHelper mh;
  Module cloned_module = mh.clone(input_module, map_before_clone, inplace);
  std::shared_ptr<Graph> g = cloned_module.get_method(method_name).graph();
  SwapFunctionalLinear(g);
  std::string observer_method_name = "observe_" + method_name;
  cloneMethod(cloned_module, method_name, observer_method_name);
  ModuleQConfigMap module_qconfig_map;
  // Since the types are changed after clone, we need to fill
  // the qconfig map again
  fillQConfigMap(cloned_module, qconfig_dict, module_qconfig_map);
  GRAPH_DEBUG("Quant type:", quant_type);
  InsertObserversHelper helper(module_qconfig_map, quant_type);
  // Removes list mutation part is not clear. Is it needed
  helper.preprocess(cloned_module, observer_method_name);
  // Since we expect the graph to be inlined this should not have any use
  // However, this function does handle if blocks
  // Although as far as I understood If blocks are not really handled
  // in JIT quantization. Should we just protect against this. That is if we
  // find observable value inside If block? Also side effect of inlining is that
  // you will have multiple getattrs for the same attribute and thus potentially
  // multiple observers observing the same value. This will also lead to
  // increased size of the packed param struct. I dont expect this to be a
  // commong pattern but something to be aware fo Note that current quant
  // workflow does not prevent this anyway since during inset quant dequant
  // things are inlined anyway
  helper.fillBoundaryValueMap(cloned_module, observer_method_name);
  // analyze needs to run after fillBoundaryValueMap
  // since we need to know the boundary value mapping to trace
  // through the calls
  helper.analyze(cloned_module, observer_method_name);
  // Remove activation observer if quant_type is dynamic
  if (quant_type == QuantType::DYNAMIC) {
    helper.removeActivationObservers();
  }
  helper.setInsertResetObserverMethod(true, method_name);
  helper.insertObservers(
      cloned_module, observer_method_name, /* is_entry_point */ true);
  return cloned_module;
}
} // namespace jit
} // namespace torch