File: insert_quant_dequant.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1870 lines) | stat: -rw-r--r-- 68,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
#include <torch/csrc/jit/passes/quantization/insert_quant_dequant.h>

#include <c10/core/QScheme.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>

#include <stack>

namespace torch {
namespace jit {

namespace {
using graph_rewrite_helper::PatternInfo;

// dynamic quantization ops for activation: choose_qparams, quant, dequant
using DynamicQuantOps = std::tuple<Node*, Node*, Node*>;

std::string kScalarType = "_scalar_type";

struct QuantOpParams {
  c10::QScheme qscheme{c10::kPerTensorAffine};
  std::vector<Value*> qparams;
  // This is only so that insertQuantizationOps can be templatized
  // and subsequntly significant portion of that code can be reused.
  std::string back() const {
    return "AttributeDoesNotExist";
  }
};

c10::QScheme toAffine(c10::QScheme qscheme) {
  switch (qscheme) {
    case c10::kPerTensorAffine:
    case c10::kPerTensorSymmetric:
      return c10::kPerTensorAffine;
    case c10::kPerChannelAffine:
    case c10::kPerChannelSymmetric:
      return c10::kPerChannelAffine;
    default:
      return qscheme;
  }
}

bool isPerChannel(at::QScheme qscheme) {
  return qscheme == c10::kPerChannelAffine ||
      qscheme == c10::kPerChannelSymmetric;
}

// Go through the CallMethod graph to check if the value is Weight.
bool isWeight(Module& module, Value* v) {
  if (isWeight(v)) {
    return true;
  }
  c10::optional<bool> result;
  auto* self = v->owningGraph()->inputs()[0];
  for (const Use& u : v->uses()) {
    Node* n = u.user;
    if (n->kind() == prim::CallMethod) {
      auto m_opt = getInvokedModuleOpt(module, n, self);
      if (!m_opt.has_value()) {
        return false;
      }
      auto m = *m_opt;
      auto g = m.get_method(n->s(attr::name)).graph();
      auto call_method_result = isWeight(m, g->inputs()[u.offset]);
      if (result.has_value()) {
        // Check to make sure all the CallMethods in the graph produce the same
        // output.
        TORCH_CHECK(
            call_method_result == result.value(),
            "Expected all CallMethods to use either weight "
            "or non-weight value.",
            v->debugName());
      } else {
        result = call_method_result;
      }
    }
  }
  return result.has_value() ? result.value() : false;
}

Node* insertChooseQParams(Graph* graph, Value* original_val) {
  std::string choose_qparams_func = "_choose_qparams_per_tensor";
  // Set the reduce range to default to true, since qnnpack backend ignores this
  // argument.
  bool reduce_range_param = true;
  auto reduce_range = graph->insertConstant(reduce_range_param);
  // choose_qparams_per_tensor has 2 outputs, (scale, zero_point).
  Node* choose_qparams = graph->create(
      at::Symbol::aten(choose_qparams_func),
      {original_val, reduce_range},
      /* num_outputs = */ 2);
  choose_qparams->output(0)->setDebugName(original_val->debugName() + ".scale");
  choose_qparams->output(0)->setType(FloatType::get());
  choose_qparams->output(1)->setDebugName(
      original_val->debugName() + ".zero_point");
  choose_qparams->output(1)->setType(IntType::get());
  graph->insertNode(choose_qparams);
  return choose_qparams;
}

Node* insertQuant(
    Graph* graph,
    const std::vector<Value*>& inputs,
    NodeKind quant_kind,
    const std::string& debugName) {
  Node* quant = graph->create(quant_kind, inputs);
  quant->output()->setDebugName(debugName);
  graph->insertNode(quant);
  return quant;
}

Node* insertDeQuant(
    Graph* graph,
    Value* quantized_val,
    Value* original_val,
    size_t id = 0) {
  Node* dequant = graph->create(Symbol::aten("dequantize"), {quantized_val});
  dequant->output()
      ->setDebugName(
          original_val->debugName() + ".dequant." + c10::guts::to_string(id))
      ->setType(original_val->type());
  graph->insertNode(dequant);
  return dequant;
}

std::vector<Value*> insertDeQuantForAllUse(
    Graph* graph,
    Value* quantized_val,
    Value* original_val) {
  // copy uses to vector since value->uses() is a reference
  // and changing the graph will also change the uses() list
  const std::vector<Use> uses = original_val->uses();
  std::vector<Value*> outputs;
  for (const auto i : c10::irange(uses.size())) {
    auto* user = uses[i].user;
    // Insert dequantize node right before use node, because
    // we want to make sure use node and dequantize node reside
    // in the same block so that quant fusion can happen
    WithInsertPoint ins(user);
    Node* dequant = insertDeQuant(graph, quantized_val, original_val, i);
    user->replaceInput(uses[i].offset, dequant->output());
    outputs.push_back(dequant->output());
  }
  return outputs;
}

Node* insertQParam(
    Graph* graph,
    Value* quantized_input,
    NodeKind node_kind,
    const TypePtr& output_type,
    const std::string& param_name) {
  Node* qparam = graph->create(node_kind, {quantized_input});
  qparam->output()
      ->setDebugName(quantized_input->debugName() + "." + param_name)
      ->setType(output_type);
  graph->insertNode(qparam);
  return qparam;
}

Node* insertScalarToTensor(Graph* graph, Value* scalar_value) {
  Node* n = scalar_value->node();
  WithInsertPoint ins(n->next());
  Value* float_scalar_type = graph->insertConstant(IValue(c10::kFloat));
  Value* none = graph->insertConstant(IValue());
  Node* tensor_node = graph->create(
      Symbol::aten("scalar_tensor"),
      {scalar_value, float_scalar_type, none, none, none});
  Value* tensor_output = tensor_node->output();
  tensor_output->setDebugName(scalar_value->debugName() + ".tensor");
  graph->insertNode(tensor_node);
  // replace original_output with tensor
  scalar_value->replaceAllUsesAfterNodeWith(tensor_node, tensor_output);
  return tensor_node;
}

Node* insertItem(Graph* graph, Value* tensor, const TypePtr& output_type) {
  WithInsertPoint ins(tensor->node()->next());
  Node* n = graph->create(Symbol::aten("item"), {tensor});
  Value* scalar = n->output();
  scalar->setDebugName(tensor->debugName() + ".scalar")->setType(output_type);
  graph->insertNode(n);
  return n;
}

DynamicQuantOps insertChooseQParamQuantDequant(
    Graph* graph,
    Value* original_val,
    Value* dtype,
    NodeKind quant_kind) {
  Node* choose_qparams = insertChooseQParams(graph, original_val);
  std::vector<Value*> quant_inputs = {original_val};
  for (auto& out : choose_qparams->outputs()) {
    quant_inputs.push_back(out);
  }
  quant_inputs.push_back(dtype);
  Node* quant = insertQuant(
      graph, quant_inputs, quant_kind, original_val->debugName() + ".quant");
  Node* dequant = insertDeQuant(graph, quant->output(), original_val);
  return std::make_tuple(choose_qparams, quant, dequant);
}

Node* insertFP16CastOps(Graph* graph, Value* observer_out) {
  // If the weight value is outside of the range for FP16 range, i.e. [5.96e-8,
  // 65504], we saturate the values to the min/max of this range.
  Node* saturated_weight =
      graph->create(Symbol::aten("_saturate_weight_to_fp16"), {observer_out});
  graph->insertNode(saturated_weight);
  graph->lint();

  return saturated_weight;
}

// find the observer for Value `v` and return the name of the observer
c10::optional<std::string> findObserverName(Value* v) {
  // Note that here we just check for the name of observer, but the ideally
  // we should be comparing the type of observer, this is a temporary
  // work around until data only clone of module.clone is supported.
  Node* n = v->node();
  if (n->kind() == prim::CallMethod && n->s(attr::name) == "forward") {
    auto module_instance = n->inputs().at(0);
    if (module_instance->node()->kind() == prim::GetAttr &&
        module_instance->node()->s(attr::name).find("_observer_") !=
            std::string::npos) {
      return module_instance->node()->s(attr::name);
    }
  }
  return c10::nullopt;
}

bool isPlaceholderObserver(Value* observer) {
  if (getModuleName(observer).has_value()) {
    auto name = getModuleName(observer).value();
    // if PlaceholderObserver is (anywhere) in name
    if (name.find("PlaceholderObserver") != std::string::npos) {
      return true;
    }
  }
  return false;
}

at::ScalarType getObserverDtype(Module& module, Value* v) {
  auto observer_name = findObserverName(v);
  if (observer_name.has_value()) {
    auto observer_module = module.attr(observer_name.value()).toModule();
    at::ScalarType scalar_type = observer_module.attr("dtype").toScalarType();
    return scalar_type;
  }
  return at::ScalarType::Undefined;
}

at::ScalarType getObserverComputeDtype(Module& module, Value* v) {
  auto observer_name = findObserverName(v);
  if (observer_name.has_value()) {
    auto observer_module = module.attr(observer_name.value()).toModule();
    if (observer_module.hasattr("compute_dtype")) {
      at::ScalarType scalar_type =
          observer_module.attr("compute_dtype").toScalarType();
      return scalar_type;
    }
  }
  return at::ScalarType::Undefined;
}

c10::optional<std::string> getEmbeddingBagObsName(
    script::Module& module,
    Node* n) {
  Value* v = n->output();
  auto observer = n->input(0);
  auto observer_module = module.attr(findObserverName(v).value()).toModule();
  if (observer_module.hasattr("custom_op")) {
    auto op_name = observer_module.attr("custom_op").toStringRef();
    return isPlaceholderObserver(observer) ? op_name : "";
  }
  return c10::nullopt;
}

bool isEmbeddingBagOp(
    Node* observer,
    c10::optional<std::string> embedding_bag_name) {
  return embedding_bag_name &&
      embedding_bag_name.value().find("embedding_bag_") != std::string::npos;
}

template <typename T>
Node* insertQuantDequantNodes(
    Value* self,
    Node* observer,
    T& qparams,
    const std::string& quantize_func);

// Insert quant and dequant nodes into the graph for both static and dynamic
// quant.
template <>
Node* insertQuantDequantNodes<std::vector<std::string>>(
    Value* self,
    Node* observer,
    std::vector<std::string>& qparam_names,
    const std::string& quantize_func) {
  Graph* g = observer->owningGraph();
  Value* observer_out = observer->output();
  Value* original_val = observer->input(1);
  std::vector<Value*> inputs = {observer_out};
  // Insert GetAttr nodes for quantization parameters
  for (const auto& qparam_name : qparam_names) {
    inputs.push_back(g->insertGetAttr(self, qparam_name));
  }
  Node* quant = insertQuant(
      g,
      inputs,
      at::Symbol::aten(quantize_func),
      original_val->debugName() + ".quant");
  Node* dequant = insertDeQuant(g, quant->output(), original_val);
  return dequant;
}

Node* insertEmbeddingBagOps(Node* observer, const std::string& op_name) {
  Graph* g = observer->owningGraph();
  auto observer_out = observer->output();

  std::string prepack_fn, quant_fn;
  std::vector<Value*> prepack_inputs = {observer_out};
  if (op_name == "embedding_bag_4bit") {
    bool optimized_qparams = false;
    constexpr int NBINS = 200;
    constexpr float RATIO = 0.16;
    Value* optimized_qparams_false = g->insertConstant(optimized_qparams);
    Value* nbins_200 = g->insertConstant(NBINS);
    Value* ratio_0_16 = g->insertConstant(RATIO);
    prepack_fn = "quantized::embedding_bag_4bit_prepack";
    quant_fn = "quantized::embedding_bag_4bit_rowwise_offsets";
    prepack_inputs.push_back(optimized_qparams_false);
    prepack_inputs.push_back(nbins_200);
    prepack_inputs.push_back(ratio_0_16);
  } else if (op_name == "embedding_bag_byte") {
    prepack_fn = "quantized::embedding_bag_byte_prepack";
    quant_fn = "quantized::embedding_bag_byte_rowwise_offsets";
  } else {
    TORCH_INTERNAL_ASSERT(
        false,
        "Graph Mode Quantization currently supports 4-bit and 8-bit embedding bag quantization.");
  }

  std::vector<Use> uses = observer_out->uses();
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  Node* embedding_bag_float_op;
  // We expect that the output of the weight observer will be consumed by the
  // embedding_bag operator.
  for (const Use& use : uses) {
    if (matchCallFuncToUse(use, "embedding_bag", 2) ||
        matchAtenFuncToUse(use, "embedding_bag", 0)) {
      embedding_bag_float_op = use.user;
    }
  }

  // Insert prepack op
  Node* prepack = g->create(Symbol::fromQualString(prepack_fn), prepack_inputs);
  g->insertNode(prepack);

  std::vector<Value*> embedding_bag_inputs =
      // NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
      embedding_bag_float_op->inputs().vec();
  std::vector<Value*> qembedding_bag_inputs = {prepack->output()};
  const auto inputs_size = embedding_bag_float_op->inputs().size();
  const bool is_aten_op =
      embedding_bag_float_op->kind() == Symbol::aten("embedding_bag");
  // Create and insert quantized embedding op.
  Value* none = g->insertConstant(IValue());
  Value* zero = g->insertConstant(IValue(0));
  bool pruned_wt = false;
  auto pruned_const = g->insertConstant(pruned_wt);

  if (is_aten_op) {
    TORCH_CHECK(
        inputs_size == 9,
        "Expecting FP aten::embedding_bag operator to have 9 inputs");
    // input 0 is the output of prepack op.
    // Last input is added after we account for extra input in 4-bit case.
    for (unsigned long i = 1; i < inputs_size - 2; ++i) {
      qembedding_bag_inputs.push_back(embedding_bag_inputs[i]);
    }
    // The sparse field in the float operator denotes sparse gradients.
    // For inference this stands for pruned weights. We currently don't support
    // pruning in graph mode API so we set the field to 0 for inference.
    qembedding_bag_inputs[5] = pruned_const;
  } else {
    TORCH_CHECK(
        inputs_size == 12,
        "Expecting F.embedding_bag operator to have 12 inputs");
    qembedding_bag_inputs.push_back(embedding_bag_inputs[1]); // indices
    qembedding_bag_inputs.push_back(embedding_bag_inputs[3]); // offsets
    qembedding_bag_inputs.push_back(
        embedding_bag_inputs[6]); // scale_grad_by_freq
    qembedding_bag_inputs.push_back(zero); // mode
    qembedding_bag_inputs.push_back(pruned_const); // pruned_weights
    qembedding_bag_inputs.push_back(
        embedding_bag_inputs[9]); // per_sample_weights
  }

  qembedding_bag_inputs.push_back(none); // compressed_indices_mapping
  qembedding_bag_inputs.push_back(embedding_bag_inputs[inputs_size - 2]);

  TORCH_CHECK(
      embedding_bag_inputs[inputs_size - 1]->mustBeNone(),
      "Expected aten::embedding_bag padding_idx input to be None");

  Node* qembedding_bag =
      g->create(Symbol::fromQualString(quant_fn), qembedding_bag_inputs);
  if (is_aten_op) {
    WithInsertPoint ins(embedding_bag_float_op);
    g->insertNode(qembedding_bag);
    // Verify that the outputs (apart from index 0) have no uses in the graph.
    for (const auto i :
         c10::irange(1, embedding_bag_float_op->outputs().size())) {
      TORCH_CHECK(
          !embedding_bag_float_op->output(i)->hasUses(),
          "Expected aten::embedding_bag to only have use for its first output.");
    }
  } else {
    g->insertNode(qembedding_bag);
  }
  embedding_bag_float_op->output(0)->replaceAllUsesWith(
      qembedding_bag->output());
  embedding_bag_float_op->removeAllInputs();
  embedding_bag_float_op->destroy();
  g->lint();
  return qembedding_bag;
}

template <typename T>
void insertQuantizationOps(
    Module& module,
    Value* self,
    Node* observer,
    bool is_per_channel,
    T& qparams,
    QuantType quant_type = QuantType::STATIC) {
  Graph* g = observer->owningGraph();
  // Observer output
  Value* observer_out = observer->output();
  // Inserting before insert point
  WithInsertPoint ins(observer_out->node()->next());

  std::string quantize_func;
  if (is_per_channel) {
    quantize_func = "quantize_per_channel";
  } else {
    quantize_func = "quantize_per_tensor";
  }
  Value* original_val = observer->input(1);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  Node *quant, *choose_qparams, *dequant;
  // Temporary solution to quantize embedding_bag operators. Will be re-written
  // once we support quantization of embedding_bag weights.
  auto embedding_bag_name = getEmbeddingBagObsName(module, observer);
  if (isEmbeddingBagOp(observer, embedding_bag_name)) {
    if (isWeight(module, observer_out)) {
      auto op_name = embedding_bag_name.value();
      Node* dequant = insertEmbeddingBagOps(observer, op_name);
      observer_out->replaceAllUsesWith(original_val);
      original_val->replaceAllUsesAfterNodeWith(dequant, dequant->output());
    } else {
      // Special case for embedding bag operators indices input - we don't
      // quantize the input but we still need to insert observers for it because
      // the order of input and weight can be changed in the module code.
      observer_out->replaceAllUsesWith(original_val);
    }
    return;
  }
  if (quant_type == QuantType::DYNAMIC) {
    if (getObserverDtype(module, observer_out) == at::ScalarType::Half) {
      dequant = insertFP16CastOps(g, observer_out);
    } else if (!isWeight(module, observer_out)) {
      auto observer_dtype = getObserverDtype(module, observer_out);
      auto observer_compute_dtype =
          getObserverComputeDtype(module, observer_out);
      if (observer_dtype == at::ScalarType::QUInt8 ||
          observer_dtype == at::ScalarType::QInt8 ||
          observer_compute_dtype == at::ScalarType::QUInt8 ||
          observer_compute_dtype == at::ScalarType::QInt8) {
        // For activation tensors we insert choose_qparams, quant, dequant ops.
        Value* dtype = g->insertGetAttr(self, qparams.back());
        std::tie(choose_qparams, quant, dequant) =
            insertChooseQParamQuantDequant(
                g, observer_out, dtype, at::Symbol::aten(quantize_func));
      } else {
        // dtype does not require quantization, e.g. float32
        // will just remove the observer call
        observer_out->replaceAllUsesWith(original_val);
        return;
      }
    } else {
      // For weight tensors we insert quant-dequant ops.
      dequant = insertQuantDequantNodes(self, observer, qparams, quantize_func);
    }
  } else { // Static quant
    dequant = insertQuantDequantNodes(self, observer, qparams, quantize_func);
  }
  observer_out->replaceAllUsesWith(original_val);

  original_val->replaceAllUsesAfterNodeWith(dequant, dequant->output());
  GRAPH_DUMP("insert nodes:", original_val->owningGraph());
}

void ReplicateChooseQParamsQuantDequant(std::shared_ptr<Graph>& graph) {
  const PatternInfo& dynamic_quant_pattern = PatternInfo::parse_from_str(R"(
    graph(%a, %reduce_range, %a_dtype):
        %a_scale : float, %a_zero_point : int = aten::_choose_qparams_per_tensor(%a, %reduce_range)
        %a_quant = aten::quantize_per_tensor(%a, %a_scale, %a_zero_point, %a_dtype)
        %a_dequant = aten::dequantize(%a_quant)
        return (%a_dequant) )");
  const Graph& dynamic_quant_graph = *dynamic_quant_pattern.pattern_graph;

  const auto& matches = findPatternMatches(dynamic_quant_graph, *graph);
  if (matches.size() == 0) {
    return;
  }

  const auto& vmap = dynamic_quant_pattern.vmap;
  Value* dequant_val = vmap.at("a_dequant");
  Node* pattern_dequant = dequant_val->node();
  Value* quant_val = vmap.at("a_quant");
  Node* pattern_quant = quant_val->node();
  Value* choose_qparam_val = vmap.at("a_scale");
  Node* pattern_choose_qparam = choose_qparam_val->node();

  std::vector<DynamicQuantOps> nodes_to_rewrite;
  std::vector<Node*> choose_qparam_nodes_to_rewrite;
  for (const Match& match : matches) {
    Node* matched_dequantize = match.nodes_map.at(pattern_dequant);
    Node* matched_quantize = match.nodes_map.at(pattern_quant);
    Node* matched_choose_qparam = match.nodes_map.at(pattern_choose_qparam);
    if (matched_dequantize->output()->uses().size() > 1) {
      nodes_to_rewrite.emplace_back(std::make_tuple(
          matched_choose_qparam, matched_quantize, matched_dequantize));
    }
  }
  for (const auto& nodes : nodes_to_rewrite) {
    auto quant_node = std::get<1>(nodes);
    auto dequant_node = std::get<2>(nodes);
    // get input of quantize call.
    Value* original_val = quant_node->inputs()[0];
    Value* dequant_out = dequant_node->output();
    Value* dtype = quant_node->inputs()[3];
    std::vector<Use> uses = dequant_out->uses();
    for (const Use& use : uses) {
      auto* user = use.user;
      WithInsertPoint ins(user);
      auto quant_ops = insertChooseQParamQuantDequant(
          graph.get(), original_val, dtype, quant_node->kind());
      user->replaceInputWith(dequant_out, std::get<2>(quant_ops)->output());
    }
  }
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  Node *choose_qparams, *quant, *dequant;
  for (const auto& n : nodes_to_rewrite) {
    std::tie(choose_qparams, quant, dequant) = n;
    dequant->removeAllInputs();
    quant->removeAllInputs();
    choose_qparams->removeAllInputs();
  }
  for (const auto& n : nodes_to_rewrite) {
    std::tie(choose_qparams, quant, dequant) = n;
    dequant->destroy();
    quant->destroy();
    choose_qparams->destroy();
  }
}

void RemoveRedundantDequantize(std::shared_ptr<Graph>& graph) {
  const std::string dequantize = R"(
    graph(%a_quant):
        %a_dequant = aten::dequantize(%a_quant)
        return (%a_dequant) )";
  const std::string dequantize_replacement = R"(
    graph(%a):
        return (%a) )";
  auto filter = [&](const Match& match,
                    const std::unordered_map<std::string, Value*>& vmap) {
    const auto& match_vmap = match.values_map;
    auto dequant_node = match_vmap.at(vmap.at("a_dequant"))->node();
    Value* dequant_out = dequant_node->output();
    // Values can be used multiple times in a single node
    if (dequant_out->uses().size() != 1) {
      return false;
    }
    Node* user = dequant_out->uses()[0].user;
    return isTensorInfoNode(user);
  };
  SubgraphRewriter rewriter;
  rewriter.RegisterRewritePattern(dequantize, dequantize_replacement);
  rewriter.runOnGraph(graph, filter);
}

void RemoveRedundantQuantizationOps(std::shared_ptr<Graph>& graph) {
  const std::string dynamic_quant_ops = R"(
    graph(%a, %reduce_range, %a_dtype):
        %a_scale : float, %a_zero_point : int = aten::_choose_qparams_per_tensor(%a, %reduce_range)
        %a_quant = aten::quantize_per_tensor(%a, %a_scale, %a_zero_point, %a_dtype)
        %a_dequant = aten::dequantize(%a_quant)
        return (%a_dequant) )";
  const std::string dynamic_quant_replacement = R"(
    graph(%a, %reduce_range, %a_dtype):
        return (%a) )";
  auto filter = [&](const Match& match,
                    const std::unordered_map<std::string, Value*>& vmap) {
    const auto& match_vmap = match.values_map;
    auto dequant_node = match_vmap.at(vmap.at("a_dequant"))->node();
    Value* dequant_out = dequant_node->output();
    // Values can be used multiple times in a single node
    if (dequant_out->uses().size() != 1) {
      return false;
    }
    Node* user = dequant_out->uses()[0].user;
    return !nodeQuantizable(user, QuantType::DYNAMIC);
  };
  SubgraphRewriter rewriter;
  rewriter.RegisterRewritePattern(dynamic_quant_ops, dynamic_quant_replacement);
  rewriter.runOnGraph(graph, filter);
}

void ReplicateClampScalarArgs(std::shared_ptr<Graph>& graph) {
  std::stack<Block*> blocks_to_visit;
  std::unordered_set<Node*> scalar_nodes_to_rewrite;
  ;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      for (Value* output : n->outputs()) {
        if (getClampScalarInputUse(output) && output->uses().size() > 1) {
          scalar_nodes_to_rewrite.insert(n);
        }
      }
      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }

  for (Node* n : scalar_nodes_to_rewrite) {
    const std::vector<Use> uses = n->output()->uses();
    for (const auto& use : uses) {
      Node* user = use.user;
      WithInsertPoint ins(user);
      Node* cloned_node = graph->createClone(n, [](Value* v) { return v; });
      graph->insertNode(cloned_node);
      user->replaceInput(use.offset, cloned_node->output());
    }
  }

  for (Node* n : scalar_nodes_to_rewrite) {
    n->removeAllInputs();
  }

  for (Node* n : scalar_nodes_to_rewrite) {
    n->destroy();
  }
}

void checkCalculateQParamsResult(const IValue& qparams) {
  TORCH_CHECK(
      qparams.isTuple(),
      "`calculate_qparams` function is expected to return a "
      "Tuple, but got:",
      qparams.tagKind());
  auto tp = qparams.toTuple();
  TORCH_CHECK(
      tp->elements().size() == 2,
      "`calculate_qparams` function is expected to return a "
      "Tuple of size 2, got Tuple of size ",
      tp->elements().size());
  // Expect first two elements of the tuple to be Tensor
  for (const auto i : c10::irange(2)) {
    TORCH_CHECK(
        tp->elements()[i].isTensor(),
        "Element of Tuple is expected to be Tensor, but element ",
        i,
        " has type: ",
        tp->elements()[i].tagKind());
  }
}

class SubGraphCloneHelper {
 public:
  // Given a list of nodes, build a graph corresponding to these nodes.
  // User should make sure to run this graph with expected input.
  std::unique_ptr<GraphFunction> buildGraphFromNodes(
      const std::vector<Node*>& nodes,
      const std::string& name);

  // Given a list of nodes in src, produce a Graph with these nodes.
  void buildObserverSubgraph(
      const std::vector<Node*>& src,
      std::shared_ptr<Graph> dest);

 private:
  // Clone node in the destination Graph g.
  void cloneNodeInGraph(
      Node* node,
      std::shared_ptr<Graph>& g,
      std::unordered_map<Value*, Value*>& remap_values);
};

class InsertQuantDeQuantHelper {
 public:
  InsertQuantDeQuantHelper(QuantType quant_type, bool debug)
      : quant_type_(quant_type), debug_(debug) {}

  void run(Module& module, const std::string& method_name);

  void runForOnDevicePTQ(Module& module, const std::string& method_name);

  // Cleanup observer nodes from graph and observer modules
  // from module object and ClassType
  void cleanup(Module& module);

  // Cleanup observer nodes only but not modules
  // This is for ondevice PTQ
  void removeObserverNodes(Module& m);

  // In order to propagate quantization ops through the ops that doesn't
  // require observation, we'll first inline the graph, and call the
  // PropgateQuantizationOps pass
  void propagateQuantizationOps(Module& module);

  // Used for dynamic quantization to selectively run the weight observers.
  // It extracts the subgraph corresponding to the weight and runs it with
  // the module instance.
  void runWeightObserver(Module& module, const std::string& method_name);

 private:
  ModuleMethodVector getInvokedMethods(
      Module& module,
      const std::string& method_name);

  // Get quantization parameter map of the given Value in Graph
  // by searching for observer module of the value and extract the
  // quantization parameters from the observer module
  std::tuple<c10::QScheme, QParamVector> getQSchemeAndQParamVector(
      script::Module& module,
      Node* n);
  QuantOpParams insertCalculateQParams(
      script::Module& module,
      Graph* g,
      Node* n);

  void checkQScheme(Graph* g, c10::QScheme qscheme) {
    if (qscheme_for_graph_.count(g)) {
      // FIXME[T110786721]: This check was broken before nevery failing.
      // Once fixed, this check triggers and fails tests.
      // Fix the tests that enabling this check produce!
      /*
      TORCH_CHECK(
          qscheme_for_graph_.at(g) == qscheme,
          "Quantizing same graph with different types of "
          "QSchemes is not supported.\n",
          " Expecting:",
          c10::toString(qscheme_for_graph_.at(g)),
          " Got:",
          c10::toString(qscheme));
      */
    } else {
      qscheme_for_graph_[g] = toAffine(qscheme);
    }
  }

  void collectObserverNodesAndValueToQuantize(Module& module, Value*);
  void cleanup(Module& module, Graph* g);
  void removeObserverNodes(Graph* g);
  void quantizeTensors(Module& module, Graph* g, Value* self);
  void insertCalculateQParamsAndQuantizationOps(
      Module& module,
      Graph* g,
      Value* self);

  // Function that extracts and runs the weight observer in a separate
  // subgraph.
  void extractAndRunWeightObserver(
      Module& module,
      Value* self,
      Value* weight_value);

  // Recursively find the nodes that produce the value and add to subgraph.
  void findSubgraph(Value* self, Value* v, std::vector<Node*>& weight_subgraph);

  // Quantizes two types of general ops(ops that works both for floating point
  // and quantized Tensors) in this pass
  // for ops that only manipulates shape, e.g. flatten, quantization
  // is done by swapping with previous dequantize op
  // for ops that manipulates values of Tensor, e.g. average pool, quantization
  // is done by inserting quant/dequant ops after the op
  // also has a special handling of clamp/hardtanh
  void propagateQuantizationOps(Block* block);

  // Propagate quantization parameters from other quantized tensors
  void propagateQParams(
      Value* original_output,
      const std::vector<Value*>& inputs,
      bool is_scalar = false,
      const c10::optional<std::tuple<c10::QScheme, QParamVector>>& qparams_opt =
          c10::nullopt);

  bool isQuantized(Value* v) {
    return quantized_values_.count(v) != 0;
  }

  std::unordered_map<Graph*, std::vector<std::string>>
      observer_modules_to_remove_;
  // We only remove observer module attributes from type in the
  // first encounter of the graph, after that since the attributes
  // is already removed from the ClassType, we'll use the list of slot index to
  // replay this removal
  std::unordered_map<Graph*, std::vector<int>> removed_observer_slots_;
  std::unordered_map<Graph*, std::vector<Node*>> nodes_to_destroy_;
  // Map from Graph to observer node, we can use observer node to
  // get the information of original value that's been observed and
  // the quantization parameters
  std::unordered_map<Graph*, std::vector<Node*>> observer_nodes_for_graph_;
  // A map from qparam name (e.g. _scale) to the attribute name in
  // the module(e.g. weight_scale_0)
  std::unordered_map<Node*, std::unordered_map<std::string, std::string>>
      qparam_name_map_for_node_;
  // Record qscheme for every graph, this is for checking
  // each graph is only quantized with one type of QScheme
  std::unordered_map<Graph*, c10::QScheme> qscheme_for_graph_;

  // Set of quantized values, so that we quantize each value only
  // once
  std::unordered_set<Value*> quantized_values_;

  // Map from original weight value to GraphFunction corresponding to the
  // subgraph that includes the weight observer and dependent nodes.
  std::unordered_map<Value*, std::unique_ptr<GraphFunction>>
      weight_to_graph_fn_;

  QuantType quant_type_ = QuantType::STATIC;
  bool debug_ = false;
};

void InsertQuantDeQuantHelper::collectObserverNodesAndValueToQuantize(
    Module& module,
    Value* v) {
  auto* g = v->owningGraph();
  auto observer_name = findObserverName(v);
  if (!observer_name) {
    return;
  }
  observer_modules_to_remove_[g].push_back(observer_name.value());

  Node* observer = v->node();
  TORCH_INTERNAL_ASSERT(
      observer->kind() == prim::CallMethod &&
      observer->s(attr::name) == "forward" &&
      observer->inputs()[0]->node()->kind() == prim::GetAttr &&
      observer->inputs()[0]->node()->s(attr::name) == observer_name);

  // Observer forward call node
  nodes_to_destroy_[g].push_back(observer);
  // GetAttr node for observer module
  nodes_to_destroy_[g].push_back(observer->inputs()[0]->node());
  observer_nodes_for_graph_[g].push_back(observer);
}

void InsertQuantDeQuantHelper::removeObserverNodes(Module& module) {
  for (auto& method : module.get_methods()) {
    removeObserverNodes(method.graph().get());
  }
  for (Module m : module.children()) {
    removeObserverNodes(m);
  }
}

void InsertQuantDeQuantHelper::removeObserverNodes(Graph* g) {
  if (nodes_to_destroy_.count(g)) {
    for (auto& n : nodes_to_destroy_.at(g)) {
      n->removeAllInputs();
    }
    for (auto& n : nodes_to_destroy_.at(g)) {
      n->destroy();
    }
    nodes_to_destroy_.at(g).clear();
  }
}

void InsertQuantDeQuantHelper::cleanup(Module& module) {
  for (auto& method : module.get_methods()) {
    cleanup(module, method.graph().get());
  }
  for (Module m : module.children()) {
    cleanup(m);
  }
}

void InsertQuantDeQuantHelper::cleanup(Module& module, Graph* g) {
  GRAPH_DUMP("Before Remove Observers:", g);
  removeObserverNodes(g);

  // 1. If we have seen this graph before, this means the observer
  // attributes has been removed from the type(see step 2) but the slot
  // index of these attributes are kept in the list, we'll replay the observer
  // slots removal using these slot indexes
  if (removed_observer_slots_.count(g)) {
    for (auto slot : removed_observer_slots_.at(g)) {
      module._ivalue()->unsafeRemoveSlot(slot);
    }
  }

  // 2. Remove observer modules from last one to first one in order to
  // reduce the time complexity, assuming all the observer modules
  // are added after the existing modules, we'll have complexity of
  // O(N) where N is number of observer modules with this optimization
  if (observer_modules_to_remove_.count(g)) {
    auto& observers = observer_modules_to_remove_.at(g);
    for (int64_t i = observers.size() - 1; i >= 0; --i) {
      auto observer_name = observers[i];
      GRAPH_DEBUG("Trying to remove: ", observer_name);
      if (module.type()->hasAttribute(observer_name)) {
        // We record the slot index here in order to replay the
        // slot removal in other objects that's sharing the ClassType
        // since we're going to remove attribute in the ClassType here
        removed_observer_slots_[g].push_back(
            module.type()->getAttributeSlot(observer_name));
        module._ivalue()->unsafeRemoveAttr(observer_name);
        module.type()->unsafeRemoveAttribute(observer_name);
      }
    }
    observers.clear();
  }
  GRAPH_DUMP("After remove observers :", g);
}

void SubGraphCloneHelper::cloneNodeInGraph(
    Node* node,
    std::shared_ptr<Graph>& g,
    std::unordered_map<Value*, Value*>& remap_old_to_new) {
  auto* block = g->block();
  auto value_fn = [&](Value* v) {
    if (remap_old_to_new.count(v) == 0) {
      auto new_value = g->block()->addInput();
      remap_old_to_new[v] = new_value;
      new_value->copyMetadata(v);
      return new_value;
    } else {
      return remap_old_to_new[v];
    }
  };

  auto new_node = block->appendNode(g->createClone(node, value_fn));
  for (size_t i = 0; i < node->outputs().size(); ++i) {
    auto oo = node->outputs()[i];
    auto no = new_node->outputs()[i];
    remap_old_to_new[oo] = no;
  }
}

void SubGraphCloneHelper::buildObserverSubgraph(
    const std::vector<Node*>& weight_subgraph,
    std::shared_ptr<Graph> dest_graph) {
  std::unordered_map<Value*, Value*> remap_old_to_new;
  // Build weight subgraph
  for (auto n : weight_subgraph) {
    cloneNodeInGraph(n, dest_graph, remap_old_to_new);
  }
  LintGraph(dest_graph);

  // Add last node output value as subgraph output.
  for (auto out : weight_subgraph.back()->outputs()) {
    dest_graph->registerOutput(remap_old_to_new[out]);
  }
  GRAPH_DUMP("New weight observer subgraph: ", dest_graph);
}

std::unique_ptr<GraphFunction> SubGraphCloneHelper::buildGraphFromNodes(
    const std::vector<Node*>& nodes,
    const std::string& name) {
  auto observer_subgraph = std::make_shared<Graph>();
  auto build_observer_graph = [&](GraphFunction& func) {
    buildObserverSubgraph(nodes, func.graph());
  };
  return torch::make_unique<GraphFunction>(
      name, observer_subgraph, build_observer_graph);
}

void InsertQuantDeQuantHelper::findSubgraph(
    Value* self,
    Value* input_val,
    std::vector<Node*>& weight_subgraph) {
  Node* node = input_val->node();
  weight_subgraph.push_back(node);
  const auto& inputs = node->inputs().vec();
  for (auto v : inputs) {
    if (!hitGraphInput(v)) {
      findSubgraph(self, v, weight_subgraph);
    } else {
      TORCH_CHECK(
          v == self,
          "Unexpected value found when handling weight value "
          " in findSubgraph, traced back to:",
          v->debugName(),
          " which is not self:",
          self->debugName());
    }
  }
}

void InsertQuantDeQuantHelper::extractAndRunWeightObserver(
    Module& module,
    Value* self,
    Value* weight_value) {
  std::vector<Node*> weight_subgraph;
  // If the graph was already visited, return the GraphFunction directly.
  // Multiple module instances can share the same graph code, so we don't need
  // to re-run the extraction process.
  if (weight_to_graph_fn_.count(weight_value) == 0) {
    // Extract the subgraph nodes.
    findSubgraph(self, weight_value, weight_subgraph);

    // Reverse to traverse subgraph in correct direction
    std::reverse(weight_subgraph.begin(), weight_subgraph.end());

    // Build the graph using the nodes found from the weight observer.
    SubGraphCloneHelper o;
    std::unique_ptr<GraphFunction> func =
        o.buildGraphFromNodes(weight_subgraph, "observer_subgraph");
    weight_to_graph_fn_[weight_value] = std::move(func);
  }
  Stack module_inp = {module._ivalue()};
  // Run the graph with the module input.
  weight_to_graph_fn_[weight_value]->run(module_inp);
}

void InsertQuantDeQuantHelper::quantizeTensors(
    Module& module,
    Graph* g,
    Value* self) {
  if (!observer_nodes_for_graph_.count(g)) {
    return;
  }
  for (auto* n : observer_nodes_for_graph_.at(g)) {
    auto* original_value = n->input(1);
    auto tp = getQSchemeAndQParamVector(module, n);
    auto qscheme = std::get<0>(tp);
    auto qparam_map = std::get<1>(tp);
    checkQScheme(g, qscheme);
    std::vector<std::string> qparam_names;
    for (auto& pr : qparam_map) {
      const auto& name = pr.first;
      const auto& qparam = pr.second;
      size_t uid = 0;
      auto qparam_name =
          original_value->debugName() + name + "_" + c10::to_string(uid++);
      while (module.hasattr(qparam_name)) {
        qparam_name =
            original_value->debugName() + name + "_" + c10::to_string(uid++);
      }
      qparam_name_map_for_node_[n][name] = qparam_name;
      module.register_attribute(qparam_name, qparam.type(), qparam);
      qparam_names.push_back(qparam_name);
    }
    insertQuantizationOps(
        module, self, n, isPerChannel(qscheme), qparam_names, quant_type_);
  }
}

std::tuple<c10::QScheme, QParamVector> InsertQuantDeQuantHelper::
    getQSchemeAndQParamVector(script::Module& module, Node* n) {
  // TODO: refactor findObserverName to take Node* as input
  Value* v = n->output();
  TORCH_INTERNAL_ASSERT(
      v->type()->isSubtypeOf(*TensorType::get()),
      "Expected output of observer node to be Tensor");
  auto observer_name = findObserverName(v);
  TORCH_INTERNAL_ASSERT(
      observer_name,
      "getQSchemeAndParamMap expects the corresponding observer for ",
      v->debugName(),
      " exists.");
  QParamVector qparams;
  c10::QScheme qscheme = c10::kPerTensorAffine;

  auto observer_module = module.attr(observer_name.value()).toModule();
  auto scalar_type = observer_module.attr("dtype");
  if (isPlaceholderObserver(n->input(0))) {
    // get compute_dtype for dynamic quantization
    if (observer_module.hasattr("compute_dtype")) {
      qparams.push_back(
          std::make_pair(kScalarType, observer_module.attr("compute_dtype")));
    }
    return std::make_tuple(qscheme, qparams);
  } else if (scalar_type == at::ScalarType::Half) {
    return std::make_tuple(qscheme, qparams);
  }
  auto calculate_qparams = observer_module.get_method("calculate_qparams");
  IValue result = calculate_qparams(std::vector<IValue>());
  checkCalculateQParamsResult(result);
  TORCH_CHECK(
      scalar_type.toScalarType() != at::ScalarType::Undefined,
      "dtype of observer can't be undefined");
  auto tp = result.toTuple();
  at::Tensor scale = tp->elements()[0].toTensor().to(at::kFloat);
  at::Tensor zero_point = tp->elements()[1].toTensor().to(at::kInt);
  // quantization parameters should appear in the same order as
  // the argument for quantize_per_tensor/quantize_per_channel function

  qscheme = observer_module.attr("qscheme").toQScheme();
  if (isPerChannel(qscheme)) {
    auto axis = observer_module.attr("ch_axis");
    qparams.push_back(std::make_pair("_scale", scale));
    qparams.push_back(std::make_pair("_zero_point", zero_point));
    qparams.push_back(std::make_pair("_axis", axis.toInt()));
  } else {
    qparams.push_back(std::make_pair("_scale", scale.item<double>()));
    qparams.push_back(
        std::make_pair("_zero_point", zero_point.item<int64_t>()));
  }
  qparams.push_back(std::make_pair(kScalarType, scalar_type));
  return std::make_tuple(qscheme, qparams);
}

ModuleMethodVector InsertQuantDeQuantHelper::getInvokedMethods(
    Module& module,
    const std::string& method_name) {
  auto graph = module.get_method(method_name).graph();

  ModuleMethodVector invoked_methods;
  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      if (n->kind() == prim::CallMethod) {
        auto module_instance = n->inputs()[0];
        auto module_method_name = n->s(attr::name);
        c10::optional<Module> m;
        // calling method on self
        if (module_instance == graph->inputs()[0]) {
          m = module;
        } else if (
            module_instance->node()->kind() == prim::GetAttr &&
            module_instance->node()->s(attr::name).find("_observer_") ==
                std::string::npos) {
          m = getInvokedModuleOpt(module, n, graph->inputs()[0]);
        }
        if (m) {
          invoked_methods.push_back({*m, module_method_name});
        }
      }

      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
  return invoked_methods;
}

void InsertQuantDeQuantHelper::propagateQParams(
    Value* original_output,
    const std::vector<Value*>& inputs,
    bool is_scalar,
    const c10::optional<std::tuple<c10::QScheme, QParamVector>>& qparams_opt) {
  Node* n = original_output->node();
  Graph* graph = n->owningGraph();
  if (is_scalar) {
    // convert Scalar to Tensor
    n = insertScalarToTensor(graph, original_output);
    original_output = n->output();
  }
  // for ops like average pool, we'll insert quant dequant after the op
  // We'll assume the tensor is a PerTensorAffine quantized Tensor for
  // now, and may generalize later if this becomes an issue
  TORCH_INTERNAL_ASSERT(
      inputs.size() == 1, "Expecting single input for the aten function");
  // input of the dequantize node
  Value* quantized_input = inputs[0]->node()->input(0);
  // insert ops after the general op
  Node* quantized_input_node = quantized_input->node();
  // Insert after the node that is later in topological order
  WithInsertPoint ins(
      quantized_input_node->isAfter(n) ? quantized_input_node->next()
                                       : n->next());
  std::vector<Value*> quant_inputs;
  auto quant_kind = Symbol::aten("quantize_per_tensor");
  if (qparams_opt.has_value()) {
    quant_inputs = {original_output};
    auto qscheme = std::get<0>(*qparams_opt);
    auto qparams = std::get<1>(*qparams_opt);
    if (isPerChannel(qscheme)) {
      quant_kind = Symbol::aten("quantize_per_channel");
    }
    for (const auto& qparam : qparams) {
      Value* qparam_val = graph->insertConstant(qparam.second);
      qparam_val->setDebugName(quantized_input->debugName() + qparam.first);
      quant_inputs.push_back(qparam_val);
    }
  } else {
    // Only per tensor affine quantized tensor is supported in this case
    // get quantization parameters from previous quantized op
    Node* scale = insertQParam(
        graph,
        quantized_input,
        at::Symbol::aten("q_scale"),
        FloatType::get(),
        "q_scale");
    Node* zero_point = insertQParam(
        graph,
        quantized_input,
        at::Symbol::aten("q_zero_point"),
        IntType::get(),
        "q_zero_point");
    Node* dtype = insertQParam(
        graph, quantized_input, prim::dtype, IntType::get(), "dtype");
    quant_inputs = {
        original_output,
        scale->output(),
        zero_point->output(),
        dtype->output()};
  }
  Node* quant = insertQuant(
      graph, quant_inputs, quant_kind, original_output->debugName() + ".quant");
  Value* quantized_output = quant->output();
  // replace uses of original output of the general op with quantized
  // output
  original_output->replaceAllUsesAfterNodeWith(quant, quantized_output);
  const auto& outputs =
      insertDeQuantForAllUse(graph, quantized_output, quantized_output);
  for (auto* output : outputs) {
    if (is_scalar) {
      // Convert the dequantized Tensor back to Scalar
      Node* item = insertItem(graph, output, FloatType::get());
      Value* scalar = item->output();
      output->replaceAllUsesAfterNodeWith(item, scalar);
      output = scalar;
    }
    quantized_values_.insert(output);
  }
}

void removeDequantizeFromInputs(const std::unordered_set<Value*>& inputs) {
  // Delete dequantize node, we have one dequantize
  // for each use of the value
  for (auto* dequantized_val : inputs) {
    auto* dequantize_node = dequantized_val->node();
    TORCH_INTERNAL_ASSERT(
        dequantized_val->uses().size() == 1,
        "Expect to have one dequantize node for each use");
    // Replace useses of dequantized_val with the input of
    // dequantize node
    dequantized_val->replaceAllUsesWith(dequantize_node->inputs()[0]);
    dequantize_node->removeAllInputs();
    dequantize_node->destroy();
  }
}

// Check if we need to propagate the quantization ops from input to
// output
c10::optional<std::vector<Value*>> getDequantizedInputs(Value* output) {
  auto inputs = getPassThroughInputs(output);
  if (inputs.size() > 0) {
    // note that we don't need to recursively check for prim::If
    // here because if all inputs of a prim::If is dequantized
    // the dequantize will be factored out before we get to this
    // point
    bool is_dequantized = true;
    for (auto* input : inputs) {
      GRAPH_DEBUG(
          "checking if input:",
          input->debugName(),
          " in node:",
          *input->node(),
          "is quantized");
      is_dequantized &= input->node()->kind() == Symbol::aten("dequantize");
    }
    if (is_dequantized) {
      return inputs;
    }
  }
  return c10::nullopt;
}

void InsertQuantDeQuantHelper::propagateQuantizationOps(Block* block) {
  for (Node* n : block->nodes()) {
    if (n->kind() == prim::If) {
      for (Block* subblock : n->blocks()) {
        propagateQuantizationOps(subblock);
      }
      if (n->outputs().size() == 0) {
        continue;
      }
      if (n->outputs().size() > 1) {
        // Factoring out dequantize for if blocks with multiple outputs
        // is not supported right now
        continue;
      }
    }
    if (isSingleInputGeneralValueAtenFunction(n)) {
      for (auto* output : n->outputs()) {
        if (isQuantized(output)) {
          continue;
        }
        if (auto inputs = getDequantizedInputs(output)) {
          propagateQParams(output, *inputs);
          if (isClamp(n)) {
            for (size_t i = 1; i <= 2; ++i) {
              // propagate qparams for min and max scalar arguments
              // for aten::clamp/aten::hardtanh
              propagateQParams(n->input(i), *inputs, /* is_scalar */ true);
            }
          }
        }
      }
    } else if (auto qparams_opt = getFixedQParams(n)) {
      for (auto* output : n->outputs()) {
        if (isQuantized(output)) {
          continue;
        }
        if (auto inputs = getDequantizedInputs(output)) {
          propagateQParams(output, *inputs, /* is_scalar */ false, qparams_opt);
        }
      }
    } else {
      // For ops that are quantized by propagating dequantize ops,
      // e.g. flatten we need to
      // 1. check if we need to propagate dequantize op
      // 2. remove the dequantize ops from inputs
      // 3. insert dequantize for all outputs
      // to make sure it works for ops with multiple outputs
      // since removing dequantize from inputs is mutating the graph
      // and it will affect future checks for whether all the inputs
      // has been quantized or not(since currently we just check if
      // the value is produced by dequantize op to decide if the value
      // is quantized or not
      // list of dequantized input values
      std::unordered_set<Value*> dequantized_inputs;
      std::vector<Value*> outputs_to_dequantize;
      // 1. collect dequantized inputs and outputs we need to dequantize
      for (auto* output : n->outputs()) {
        if (isQuantized(output)) {
          continue;
        }
        if (auto inputs = getDequantizedInputs(output)) {
          std::copy(
              inputs->begin(),
              inputs->end(),
              std::inserter(dequantized_inputs, dequantized_inputs.end()));
          outputs_to_dequantize.push_back(output);
        }
      }
      // 2. remove the dequantize ops from inputs
      removeDequantizeFromInputs(dequantized_inputs);
      // 3. insert dequantize op for outpus
      for (auto* output : outputs_to_dequantize) {
        insertDeQuantForAllUse(output->owningGraph(), output, output);
      }
    }

    if (isBinaryOpWithScalarInput(n)) {
      // Print warning for add_scalar/mul_scalar when debug is enabled
      // since the quantization parameter for these ops depends on
      // input and it's too complicated to encode the equations in
      // the IR:
      // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/quantized/cpu/BinaryOps.cpp#L64-L74
      if (debug_) {
        TORCH_WARN_ONCE(
            "debug option for add_scalar and mul_scalar is not supported, "
            "please don't use debug option for models that uses these ops.");
      }
    }
  }
}

void InsertQuantDeQuantHelper::runWeightObserver(
    Module& module,
    const std::string& method_name) {
  if (quant_type_ != QuantType::DYNAMIC) {
    return;
  }

  for (auto& invoked_methods : getInvokedMethods(module, method_name)) {
    auto& invoked_module = std::get<0>(invoked_methods);
    const auto& invoked_method_name = std::get<1>(invoked_methods);
    runWeightObserver(invoked_module, invoked_method_name);
  }
  Method method = module.get_method(method_name);
  auto graph = method.graph();
  Value* self = graph->inputs()[0];

  std::vector<Value*> weight_values;
  // Visit all blocks in the current graph to find weight values.
  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (auto n : b->nodes()) {
      for (Value* v : n->outputs()) {
        if (!v->type()->isSubtypeOf(*TensorType::get())) {
          continue;
        }
        auto observer_name = findObserverName(v);
        if (observer_name && isWeight(module, v)) {
          weight_values.push_back(v);
        }
      }
      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
  // For all the observed weight values, find the corresponding subgraph that
  // contributes to the weight tensor, and run that subgraph to observe the
  // weight.
  for (const auto& v : weight_values) {
    extractAndRunWeightObserver(module, self, v);
  }
}

void InsertQuantDeQuantHelper::run(
    Module& module,
    const std::string& method_name) {
  for (auto& invoked_methods : getInvokedMethods(module, method_name)) {
    auto& invoked_module = std::get<0>(invoked_methods);
    const auto& invoked_method_name = std::get<1>(invoked_methods);
    run(invoked_module, invoked_method_name);
  }

  Method method = module.get_method(method_name);
  auto graph = method.graph();
  // We only need to register new parameters if the graph has
  // been quantized before
  // TODO: dedup this part with code in quantizeTensors
  if (observer_nodes_for_graph_.count(graph.get())) {
    for (auto* n : observer_nodes_for_graph_.at(graph.get())) {
      auto tp = getQSchemeAndQParamVector(module, n);
      checkQScheme(graph.get(), std::get<0>(tp));
      auto qparam_map = std::get<1>(tp);
      // We check the size here because for some observers (like
      // PlaceholderObserver) the qparams might be empty.
      if (qparam_map.size() > 0) {
        TORCH_INTERNAL_ASSERT(
            qparam_name_map_for_node_.count(n),
            "Expected to have a qparam_name_map for node:",
            *n);
        auto qparam_name_map = qparam_name_map_for_node_.at(n);
        for (auto& pr : qparam_map) {
          const auto& name = pr.first;
          const auto& qparam = pr.second;
          module._ivalue()->setAttr(qparam_name_map.at(name), qparam);
        }
      }
    }
    return;
  }

  // prim::Param nodes do not belong to the graph. Hence the Insert
  // point is the beginning of graph node. This also safe guards against
  // observing a potentially mutated value due to some in-place operation
  std::vector<Value*> input_values;
  for (const auto idx : c10::irange(1, method.num_inputs())) {
    auto& v = graph->inputs()[idx];
    if (v->type()->isSubtypeOf(*TensorType::get())) {
      input_values.push_back(v);
    }
  }

  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end;) {
      Node* n = *it++;
      for (Value* v : n->outputs()) {
        if (!v->type()->isSubtypeOf(*TensorType::get())) {
          continue;
        }
        collectObserverNodesAndValueToQuantize(module, v);
      }

      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }

  for (Value* v : input_values) {
    collectObserverNodesAndValueToQuantize(module, v);
  }
  GRAPH_DUMP("Before Quantize Tensors:", graph);
  Value* self = graph->inputs()[0];
  quantizeTensors(module, graph.get(), self);
  GRAPH_DUMP("After Quantize Tensors:", graph);
}

void InsertQuantDeQuantHelper::propagateQuantizationOps(Module& module) {
  SwapFunctionalLinear(module);
  auto graph = module.get_method("forward").graph();
  Inline(*graph);
  ConstantPropagation(graph);
  ReplicateChooseQParamsQuantDequant(graph);
  RemoveRedundantQuantizationOps(graph);
  ReplicateQuant(graph);
  ReplicateDeQuant(graph);
  // TODO: add filter to the clamp patterns and remove this pass
  ReplicateClampScalarArgs(graph);
  propagateQuantizationOps(graph->block());
  RemoveRedundantDequantize(graph);
}

// Insert quant and dequant nodes into the graph for both static and dynamic
// quant.
template <>
Node* insertQuantDequantNodes<QuantOpParams>(
    Value* self,
    Node* observer,
    QuantOpParams& qparams,
    const std::string& quantize_func) {
  (void)self;
  Graph* g = observer->owningGraph();
  Value* observer_out = observer->output();
  Value* original_val = observer->input(1);
  std::vector<Value*> inputs;
  // + 1 for tensor to be quantized
  inputs.reserve(qparams.qparams.size() + 1);
  inputs.push_back({observer_out});
  for (const auto& qparam_values : qparams.qparams) {
    inputs.push_back(qparam_values);
  }
  Node* quant = insertQuant(
      g,
      inputs,
      at::Symbol::aten(quantize_func),
      original_val->debugName() + ".quant");
  // Have to make sure that quant node appears after the values it depends on.
  for (Value* v : inputs) {
    quant->moveAfter(v->node());
  }
  Node* dequant = insertDeQuant(g, quant->output(), original_val);
  dequant->moveAfter(quant);
  return dequant;
}

void checkCalculateQParamsResultTypes(const Node* out) {
  TORCH_CHECK(
      out->outputs().size() == 2,
      "cacluate_qparams should produce output of size 2 (scale, zero_point).");
  Value* scale = out->output(0);
  Value* zp = out->output(1);
  TORCH_CHECK(
      scale->type()->expect<TensorType>(),
      "Scale value should be of Tensor type.");
  TORCH_CHECK(
      zp->type()->expect<TensorType>(), "Scale value should be of float type.");
}

QuantOpParams InsertQuantDeQuantHelper::insertCalculateQParams(
    script::Module& module,
    Graph* g,
    Node* n) {
  // TODO: refactor findObserverName to take Node* as input
  Value* self = g->inputs()[0];
  Value* v = n->output();
  TORCH_INTERNAL_ASSERT(
      v->type()->isSubtypeOf(*TensorType::get()),
      "Expected output of observer node to be Tensor");
  auto observer_name = findObserverName(v);
  TORCH_INTERNAL_ASSERT(
      observer_name,
      "getQSchemeAndParamMap expects the corresponding observer for ",
      v->debugName(),
      " exists.");
  std::vector<Value*> qparams_graph_values;
  QuantOpParams quant_op_params;

  TORCH_CHECK(
      !isPlaceholderObserver(n->input(0)),
      "Placeholder observers are not supported in ondevice PTQ.");
  auto observer_module = module.attr(observer_name.value()).toModule();
  Value* observer_module_value = g->insertGetAttr(self, observer_name.value());
  auto scalar_type = observer_module.attr("dtype");
  TORCH_CHECK(
      scalar_type.toScalarType() != at::ScalarType::Undefined,
      "dtype of observer can't be undefined");
  // Not sure if we need to support this for on device PTQ.
  if (scalar_type == at::ScalarType::Half) {
    return quant_op_params;
  }
  auto calculate_qparams = observer_module.get_method("calculate_qparams");
  auto calculate_qparams_schema = calculate_qparams.function().getSchema();
  MatchedSchema matched_schema = matchSchema(
      calculate_qparams_schema,
      v->node()->sourceRange(),
      *g,
      {observer_module_value},
      {});
  Node* call = g->insertMethodCall("calculate_qparams", matched_schema)->node();
  Node* scale_zp_node = g->insertNode(g->createTupleUnpack(call->output(0)));
  checkCalculateQParamsResultTypes(scale_zp_node);
  auto qscheme = observer_module.attr("qscheme").toQScheme();
  quant_op_params.qscheme = qscheme;
  quant_op_params.qparams.push_back(scale_zp_node->output(0)); // scale Value*
  quant_op_params.qparams.push_back(
      scale_zp_node->output(1)); // zero_point Value*
  if (isPerChannel(qscheme)) {
    Value* ch_axis_value = g->insertGetAttr(observer_module_value, "ch_axis");
    quant_op_params.qparams.push_back(ch_axis_value);
  }
  Value* scalar_type_value = g->insertGetAttr(observer_module_value, "dtype");
  quant_op_params.qparams.push_back(scalar_type_value);
  return quant_op_params;
}

void InsertQuantDeQuantHelper::insertCalculateQParamsAndQuantizationOps(
    Module& module,
    Graph* graph,
    Value* self) {
  if (!observer_nodes_for_graph_.count(graph)) {
    return;
  }
  for (auto* n : observer_nodes_for_graph_.at(graph)) {
    Graph* g = n->owningGraph();
    // Observer output
    Value* observer_out = n->output();
    // Inserting before insert point
    WithInsertPoint insert_qparams_calc(observer_out->node()->next());
    auto quant_op_params = insertCalculateQParams(module, g, n);
    insertQuantizationOps(
        module,
        self,
        n,
        isPerChannel(quant_op_params.qscheme),
        quant_op_params,
        quant_type_);
  }
}

void InsertQuantDeQuantHelper::runForOnDevicePTQ(
    Module& module,
    const std::string& method_name) {
  // In all likelihood this really wont do anything because we expect that
  // the input method for quantization's prepare step will be inlined. Thus
  // only call methods we will see will belong to observer's forward calls.
  for (auto& invoked_methods : getInvokedMethods(module, method_name)) {
    auto& invoked_module = std::get<0>(invoked_methods);
    const auto& invoked_method_name = std::get<1>(invoked_methods);
    runForOnDevicePTQ(invoked_module, invoked_method_name);
  }

  Method method = module.get_method(method_name);
  auto graph = method.graph();
  // Unliked the run method we dont need to extract new qparam values for the
  // the same graph used in different call site.
  // Reason is that for on device PTQ we dont:
  // 1. Run calculate_qparams
  // 2. Get the scale and zero point
  // 3. get axis and dtype
  // 4. register values from 2 and 3 as attributes on the parent module.
  // Instead we insert call to calculate_qparams (1) via insertCalculateQParams
  // in the graph itself. Then instead of 2 and 3, we get the output Value*
  // and for 3, we insert GetAttr for axis and dtype and use those Value*
  // with insterQuantizationOps

  // prim::Param nodes do not belong to the graph. Hence the Insert
  // point is the beginning of graph node. This also safe guards against
  // observing a potentially mutated value due to some in-place operation
  std::vector<Value*> input_values;
  for (const auto idx : c10::irange(1, method.num_inputs())) {
    auto& v = graph->inputs()[idx];
    if (v->type()->isSubtypeOf(*TensorType::get())) {
      input_values.push_back(v);
    }
  }

  std::stack<Block*> blocks_to_visit;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end;) {
      Node* n = *it++;
      for (Value* v : n->outputs()) {
        if (!v->type()->isSubtypeOf(*TensorType::get())) {
          continue;
        }
        collectObserverNodesAndValueToQuantize(module, v);
      }

      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }

  for (Value* v : input_values) {
    collectObserverNodesAndValueToQuantize(module, v);
  }

  GRAPH_DUMP("Before insertCalculateQparamsAndQuantizationOps:", graph);
  Value* self = graph->inputs()[0];
  insertCalculateQParamsAndQuantizationOps(module, graph.get(), self);
  GRAPH_DUMP("After insertCalculateQparamsAndQuantizationOps:", graph);
}

} // namespace

void ReplicateQuant(std::shared_ptr<Graph>& graph) {
  std::stack<Block*> blocks_to_visit;
  std::vector<Node*> quant_nodes_to_rewrite;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      // find quantize node that quantizes the output of if
      if ((n->kind() == Symbol::aten("quantize_per_tensor") ||
           n->kind() == Symbol::aten("quantize_per_channel")) &&
          n->input(0)->node()->kind() == prim::If) {
        quant_nodes_to_rewrite.push_back(n);
      }
      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
  for (Node* n : quant_nodes_to_rewrite) {
    Node* if_node = n->input(0)->node();
    // move the nodes that produces the quantization parameters before
    // prim::If
    for (const auto i : c10::irange(1, n->inputs().size())) {
      n->input(i)->node()->moveBefore(if_node);
    }
    // replace all uses of the quantized node with the output of if node
    n->output()->replaceAllUsesWith(if_node->output());
    // add quantize nodes to the end of all blocks
    for (Block* if_block : if_node->blocks()) {
      TORCH_CHECK(
          if_block->outputs().size() == 1,
          "replicate quantize only works for `if` node with one output right now");
      // the original return value of the block
      Value* ret_val = if_block->outputs()[0];
      std::vector<Value*> quantize_inputs = n->inputs().vec();
      quantize_inputs[0] = ret_val;
      WithInsertPoint ins(if_block->return_node());
      Node* quant = graph->create(n->kind(), quantize_inputs);
      if_block->replaceOutput(0, quant->output());
      quant->output()->copyMetadata(ret_val);
      graph->insertNode(quant);
    }
  }

  for (Node* n : quant_nodes_to_rewrite) {
    n->removeAllInputs();
  }
  for (Node* n : quant_nodes_to_rewrite) {
    n->destroy();
  }
}

void ReplicateDeQuant(std::shared_ptr<Graph>& graph) {
  std::stack<Block*> blocks_to_visit;
  std::vector<Node*> dequant_nodes_to_rewrite;
  blocks_to_visit.push(graph->block());
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      if (n->kind() == Symbol::aten("dequantize") &&
          n->output()->uses().size() > 1) {
        dequant_nodes_to_rewrite.push_back(n);
      }
      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
  for (Node* n : dequant_nodes_to_rewrite) {
    auto* quantized_val = n->input(0);
    auto* dequantized_val = n->output();
    insertDeQuantForAllUse(graph.get(), quantized_val, dequantized_val);
  }

  for (Node* n : dequant_nodes_to_rewrite) {
    n->removeAllInputs();
  }

  for (Node* n : dequant_nodes_to_rewrite) {
    n->destroy();
  }
}

Module InsertQuantDeQuant(
    Module& input_module,
    const std::string& method_name,
    bool inplace,
    bool debug,
    QuantType quant_type) {
  Module module = input_module.clone(inplace);
  InsertQuantDeQuantHelper h(quant_type, debug);
  h.runWeightObserver(module, method_name);
  h.run(module, method_name);
  h.cleanup(module);
  h.propagateQuantizationOps(module);
  return module;
}

/*
 *
 * Assumption: method_name method has observer placed
 * Objective: modify that method to insert calls to:
 * 1. calculate_qparams
 * 2. GetAttr for axis and dtype values
 * 3. Use Values from above two to insert calls to quant + dequant
 * Thus after this step you have a graph of, e.g., observe_forward,
 * that has observer nodes, calculate_qparams run on those observer nodes,
 * output of which is used by quant-dequant nodes. output of dequant is used
 * by the actual op.
 * Later on we will replace dequant + op (e.g. linear) with
 * 1. prepacked_op context
 * 2. unpack
 * 3. dequantize
 * 4. linear
 *
 * Of the above pattern 2, 3, and 4 can be replaced by linear_run op
 */
// Module InsertQuantDeQuantForOnDevicePTQ(
Module InsertQuantDeQuantOnDevicePTQ(
    Module& input_module,
    const std::string& method_name,
    bool inplace,
    bool debug,
    QuantType quant_type) {
  Module module = input_module.clone(inplace);
  const std::string kObserveString = "observe_";
  const auto matched_pos = method_name.find(kObserveString);
  const auto end_pos = matched_pos + kObserveString.length();
  const std::string orig_method_name = method_name.substr(end_pos);
  TORCH_CHECK(
      matched_pos == 0,
      "Quant dequant nodes can only be added to observe_",
      orig_method_name,
      ". Please make sure to run prepare step for on-device PTQ.");

  std::string quantize_method_name = "quantize_" + orig_method_name;
  cloneMethod(module, method_name, quantize_method_name);
  InsertQuantDeQuantHelper h(quant_type, debug);
  h.runForOnDevicePTQ(module, quantize_method_name);
  h.removeObserverNodes(module);
  // Dont need:
  // ReplicateChooseQParamsQuantDequant: This is propagating dynamic quant's
  // quant dequant RemoveRedundantQuantizationOps: THis is removing activation
  // observers for dynamic quant when the op related to it is not dynamically
  // quantizable. Doesnt really make sense. In our case we wont have those
  // anyway since for dynamic quant activations wont be observed We can still
  // use this function because the above two methods should really be a noop
  h.propagateQuantizationOps(module);
  return module;
}
} // namespace jit
} // namespace torch