1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
#pragma once
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
namespace torch {
namespace jit {
/** Replicate quantize node for prim::If blocks, so that we can match
* quantization patterns in prim::If blocks
*/
TORCH_API void ReplicateQuant(std::shared_ptr<Graph>& graph);
/** Replicate dequantize node for each use, so that we can match
* quantization patterns
*/
TORCH_API void ReplicateDeQuant(std::shared_ptr<Graph>& graph);
/** \brief Insert quantize - dequantize calls to the Tensors
* that are observed in insert_observers pass
*
* For each Tensor that is observed, get the observer module and call
* calculate_qparam on the observer module to get quantization parameters
* and add quantize - int_repr - dequantize function calls using these
* parameters we also have special handling for quantizing "bias" right now.
*
* \param module the input module
* \param method_name the method we want to insert quantization calls for
*/
TORCH_API Module InsertQuantDeQuant(
Module& module,
const std::string& method_name,
bool inplace,
bool debug,
QuantType quant_type = QuantType::STATIC);
TORCH_API Module InsertQuantDeQuantOnDevicePTQ(
Module& module,
const std::string& method_name,
bool inplace,
bool debug,
QuantType quant_type = QuantType::STATIC);
} // namespace jit
} // namespace torch
|