1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/restore_mutation.h>
namespace torch {
namespace jit {
bool MutationRemover::removeListMutation() {
return RemoveListMutation(graph_->block());
}
bool MutationRemover::removeTensorMutation() {
return RemoveTensorMutation(graph_->block());
}
bool MutationRemover::hasSideEffectOrAlias(Value* v, AliasDb* aliasDb) {
// bail on nodes with side effects, blocks, or graph / graph inputs
Node* n = v->node();
bool unhandled_node = n->blocks().size() != 0 ||
n->hasAttribute(attr::Subgraph) || n->hasSideEffects() ||
(v->node()->kind() == prim::Param);
// if the output isn't contained or alias by the inputs to its node, it's
// unique. No need to check for alias if the node is a ListConstruct.
bool mayAliasInputs = (v->node()->kind() != prim::ListConstruct) &&
aliasDb->mayContainAlias(v->node()->inputs(), v);
return unhandled_node || mayAliasInputs || (v->node()->kind() == prim::Param);
}
Node* MutationRemover::createSpecialMappedOp(Node* n) {
WithInsertPoint guard(n);
auto inputs = n->inputs();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Node* new_node;
if (n->matches(
"aten::fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!)")) {
auto dtype = graph_->insert(prim::dtype, {inputs.at(0)});
new_node = graph_
->insert(
aten::full_like,
{inputs.at(0), inputs.at(1)},
{NamedValue("dtype", dtype)})
->node();
new_node->copyMetadata(n);
new_node->output()->setType(n->output()->type());
} else if (n->matches("aten::zero_(Tensor(a!) self) -> Tensor(a!)")) {
new_node = graph_->insert(aten::zeros_like, {n->inputs().at(0)})->node();
} else if (
n->matches(
"aten::normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)")) {
// TODO: we should have normal_like operator
// normal(float mean, float std, int[] size, *, Generator? generator=None,
// ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool?
// pin_memory=None) -> Tensor
auto size = graph_->insert(aten::size, {n->inputs().at(0)});
auto dtype = graph_->insert(prim::dtype, {n->inputs().at(0)});
auto layout = graph_->insert(prim::layout, {n->inputs().at(0)});
auto device = graph_->insert(prim::device, {n->inputs().at(0)});
auto pin_memory = graph_->insert(aten::is_pinned, {n->inputs().at(0)});
auto generator = graph_->insertConstant(IValue());
new_node = graph_->insertNode(graph_->create(
aten::normal,
{n->inputs().at(1),
n->inputs().at(2),
size,
generator,
dtype,
layout,
device,
pin_memory}));
} else {
TORCH_INTERNAL_ASSERT(false);
}
new_node->copyMetadata(n);
new_node->output()->setType(n->output()->type());
return new_node;
}
bool removableSetItem(Node* n) {
if (n->kind() != aten::_set_item ||
n->input(1)->node()->kind() != prim::Constant) {
return false;
}
if (n->inputs().at(0)->node()->kind() != prim::ListConstruct) {
return false;
}
auto li_node = n->inputs().at(0)->node();
int64_t index = *constant_as<int64_t>(n->input(1));
if (index < 0) {
index += li_node->inputs().size();
}
auto li_len = static_cast<int64_t>(li_node->inputs().size());
return index < li_len && index >= 0;
}
bool MutationRemover::listMutationFollowingListConstruct(Node* n) {
return (
(n->kind() == aten::append ||
(n->kind() == aten::insert &&
n->inputs().at(1)->node()->kind() == prim::Constant) ||
(removableSetItem(n))) &&
n->inputs().at(0)->node()->kind() == prim::ListConstruct);
}
bool MutationRemover::tryMakeCreationAndMutationAtomic(
Value* mutated_value,
Node* mutating_op) {
// We can only remove mutation to values that are unique aliases in the
// graph. if x = y[0] or y = self.y, then removing the mutation could
// change observable semantics
if (hasSideEffectOrAlias(mutated_value, getOrCreateAliasDb())) {
return false;
}
// In order to safely remove a mutation, the creation of a tensor and its
// subsequent mutation need to be one atomic operation
return getOrCreateAliasDb()->moveBeforeTopologicallyValid(
mutated_value->node(), mutating_op);
}
bool MutationRemover::tryMakeUnaliasedIfOutputAndMutationAtomic(
Value* mutated_value,
Node* mutating_op) {
// if cond:
// x = op()
// else:
// x = op()
// x = add_(1)
// if x in both blocks have no other uses and are unaliased in the graph,
// and we make the if node and the mutation atomic,
// then removing mutation add_ does not change observable semantics
if (mutated_value->node()->kind() != prim::If) {
return false;
}
auto if_node = mutated_value->node();
auto offset = mutated_value->offset();
auto true_value = if_node->blocks().at(0)->outputs().at(offset);
auto false_value = if_node->blocks().at(1)->outputs().at(offset);
if (true_value->uses().size() > 1 || false_value->uses().size() > 1) {
return false;
}
if (hasSideEffectOrAlias(true_value, getOrCreateAliasDb()) ||
hasSideEffectOrAlias(false_value, getOrCreateAliasDb())) {
return false;
}
return getOrCreateAliasDb()->moveBeforeTopologicallyValid(
if_node, mutating_op);
}
bool MutationRemover::RemoveListMutation(Block* block) {
bool changed = false;
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
auto* node = *it;
it++;
for (Block* sub_block : node->blocks()) {
changed |= RemoveListMutation(sub_block);
}
if (!listMutationFollowingListConstruct(node)) {
continue;
}
Value* mutated_value = node->inputs().at(0);
if (!tryMakeCreationAndMutationAtomic(mutated_value, node)) {
continue;
}
changed = true;
// We rewrite something like:
// x = {v0}
// x.append(v1) (or x.insert(0, v1))
// to:
// x = {v0, v1} (or x = {v1, v0})
// We can remove x.append from the the alias db list of writes.
// All other aliasing properties remain valid.
Node* list_construct = mutated_value->node();
switch (node->kind()) {
case aten::append:
list_construct->addInput(node->inputs().at(1));
break;
case aten::insert: {
int pos = toIValue(node->inputs().at(1))->toInt();
int size = list_construct->inputs().size();
// insert to neg position equals insert to std::max(pos+size, 0)
if (pos < 0) {
pos = std::max(pos + size, 0);
}
// insert beyond current list length is the same as append
pos = std::min(pos, size);
list_construct->insertInput(pos, node->inputs().at(2));
break;
}
case aten::_set_item: {
int pos = toIValue(node->inputs().at(1))->toInt();
int size = list_construct->inputs().size();
if (pos < 0) {
pos = std::max(pos + size, 0);
}
list_construct->replaceInput(pos, node->input(2));
break;
}
default:
TORCH_INTERNAL_ASSERT(false);
}
// process use-chain and aliasing of node output
bool has_output = (node->outputs().size() > 0);
if (has_output) {
node->output()->replaceAllUsesWith(mutated_value);
getOrCreateAliasDb()->writeIndex_->erase(node);
}
node->destroy();
// TODO: don't strictly need to reset write cache, evaluate on models
getOrCreateAliasDb()->buildWrittenToLocationsIndex();
}
return changed;
}
bool MutationRemover::RemoveTensorMutation(Block* block) {
bool changed = false;
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
auto* node = *it;
it++;
for (Block* sub_block : node->blocks()) {
changed |= RemoveTensorMutation(sub_block);
}
if (mutation_filter_) {
const auto& mutation_filter = *mutation_filter_;
if (!mutation_filter(node)) {
continue;
}
}
// TODO: out op variants
if (!inplaceOpVariant(node)) {
continue;
}
Value* mutated_value = node->inputs().at(0);
if (!tryMakeCreationAndMutationAtomic(mutated_value, node) &&
!tryMakeUnaliasedIfOutputAndMutationAtomic(mutated_value, node)) {
continue;
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Node* new_node;
if (isSpecialMappedOp(node)) {
new_node = createSpecialMappedOp(node);
} else {
auto schema_name = node->schema().name();
auto new_schema = schema_name.substr(0, schema_name.size() - 1);
new_node = graph_->create(Symbol::fromQualString(new_schema), 1);
new_node->copyMetadata(node);
new_node->insertBefore(node);
for (Value* input : node->inputs()) {
new_node->addInput(input);
}
new_node->output()->setType(node->output()->type());
// weird case where there is an inplace op and an equivalent functional op
// of the same symbol, but they have different schemas
if (!new_node->maybeOperator()) {
new_node->destroy();
continue;
}
}
changed = true;
mutated_value->replaceAllUsesAfterNodeWith(node, new_node->output());
node->output()->replaceAllUsesWith(new_node->output());
// We rewrite something like:
// x = torch.zeros()
// x.add_(1)
// x.add_(2)
// to:
// x = torch.zeros()
// x0 = x.add(1)
// x0.add_(2)
// For the remainder of the function, x0 will have the
// same aliasing relationships as the original x.
// To avoid rebuilding the entire alias db, we can replace
// the memory DAG element of x with x0.
getOrCreateAliasDb()->replaceWithNewValue(
mutated_value, new_node->output());
// it is an invariant that all mutable types have an element in the memory
// DAG so we must regive x an alias db element. We have already verified
// that the mutated value is a fresh alias with a single use.
getOrCreateAliasDb()->createValue(mutated_value);
// We must erase the destroyed node from the AliasDb lists of writes
getOrCreateAliasDb()->writeIndex_->erase(node);
node->destroy();
// now that we have removed a mutating op, the write cache is stale
// TODO: don't strictly need to reset write cache, evaluate on models
getOrCreateAliasDb()->buildWrittenToLocationsIndex();
}
return changed;
}
bool MutationRemover::inplaceOpVariant(Node* n) {
if (!n->kind().is_aten()) {
return false;
}
if (isSpecialMappedOp(n)) {
return true;
}
auto name = n->schema().name();
bool inplace_op = name.at(name.size() - 1) == '_';
if (!inplace_op) {
return false;
}
// needs to have alias analysis by schema
auto op = n->maybeOperator();
if (!op) {
return false;
}
if (op->aliasAnalysisKind() != AliasAnalysisKind::FROM_SCHEMA) {
return false;
}
// all inplace ops at time of writing have a single input that is mutated
// and returned. check that this is true, anything else could have strange
// semantics,
if (n->outputs().size() != 1 || n->inputs().size() == 0) {
return false;
}
auto inputs = n->inputs();
if (!getOrCreateAliasDb()->writesToAlias(n, {inputs.at(0)}) ||
getOrCreateAliasDb()->writesToAlias(
n, {inputs.slice(1).begin(), inputs.slice(1).end()})) {
return false;
}
auto new_schema = name.substr(0, name.size() - 1);
return getAllOperatorsFor(Symbol::fromQualString(new_schema)).size() != 0;
}
bool RemoveListMutation(const std::shared_ptr<Graph>& graph) {
MutationRemover mr(graph);
return mr.removeListMutation();
}
bool RemoveTensorMutation(
const std::shared_ptr<Graph>& graph,
c10::optional<std::function<bool(Node*)>> mutation_filter) {
MutationRemover mr(graph, std::move(mutation_filter));
return mr.removeTensorMutation();
}
static const std::unordered_set<Symbol> activation_ops = []() {
std::unordered_set<Symbol> target_ops;
for (const auto& iter : activation_type_promotion_mapping) {
std::string name = std::string(iter.first.toQualString()) + "_";
target_ops.insert(Symbol::fromQualString(name));
}
return target_ops;
}();
bool InplaceToFunctionalActivation(const std::shared_ptr<Graph>& graph) {
return RemoveTensorMutation(graph, [](Node* node) {
return activation_ops.count(node->kind()) != 0;
});
}
} // namespace jit
} // namespace torch
|