File: shape_analysis.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2218 lines) | stat: -rw-r--r-- 87,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
#include <torch/csrc/jit/passes/shape_analysis.h>

#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/passes/utils/op_registry.h>
#include <torch/csrc/jit/runtime/exception_message.h>
#include <torch/csrc/jit/runtime/operator.h>

#include <torch/csrc/autograd/variable.h>

#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/core/symbol.h>

#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty_strided.h>
#endif

#include <exception>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>

namespace torch {
namespace jit {

bool mergeTypes(
    ArrayRef<Value*> lhs,
    ArrayRef<Value*> rhs,
    ArrayRef<Value*> outputs) {
  AT_ASSERT(lhs.size() == rhs.size() && rhs.size() == outputs.size());
  bool changed = false;
  for (const auto i : c10::irange(lhs.size())) {
    auto old_output_type = outputs[i]->type();
    auto new_type =
        unifyTypes(lhs[i]->type(), rhs[i]->type(), /*default_to_union=*/true);
    AT_ASSERT(new_type);
    outputs[i]->setType(*new_type);
    if (*old_output_type != *outputs[i]->type())
      changed = true;
  }
  return changed;
}

void applyTypes(ArrayRef<Value*> src, ArrayRef<Value*> dst) {
  AT_ASSERT(src.size() == dst.size());
  for (const auto i : c10::irange(src.size())) {
    dst[i]->setType(src[i]->type());
  }
}

void PropertyPropBase::propagateBlock(Block* block, bool insert_expands) {
  for (Node* node : block->nodes()) {
    try {
      propagateNode(node, insert_expands);
    } catch (propagation_error& e) {
      setUnshapedType(node);
    } catch (std::exception& e) {
      throw ErrorReport(node->sourceRange())
          << ExceptionMessage(e)
          << "\nThe above operation failed shape propagation in this context";
    }
  }
}

void PropertyPropBase::processIf(Node* node) {
  auto then_block = node->blocks().at(0);
  auto else_block = node->blocks().at(1);
  propagateBlock(then_block);
  propagateBlock(else_block);
  mergeTypes(then_block->outputs(), else_block->outputs(), node->outputs());
}

void PropertyPropBase::processLoop(Node* node) {
  LoopView loop(node);
  // propagate counter type
  loop.currentTripCount()->setType(loop.maxTripCount()->type());
  applyTypes(loop.carriedInputs(), loop.bodyCarriedInputs());

  do {
    propagateBlock(loop.bodyBlock(), /*insert_expands=*/false);
    // note: inserting expands is unsafe at this point, we don't know
    // if the types are stable yet, so the arguments to expand may change
  } while (mergeTypes(
      loop.bodyCarriedInputs(),
      loop.bodyCarriedOutputs(),
      loop.bodyCarriedInputs()));

  // now that the types are stable, we can insert the expands
  propagateBlock(loop.bodyBlock(), /*insert_expands=*/true);
  applyTypes(loop.bodyCarriedInputs(), loop.carriedOutputs());
}

void PropertyPropBase::setUnshapedType(Value* o) {
  o->setType(unshapedType(o->type()));
}

void PropertyPropBase::setUnshapedType(Node* node) {
  for (auto o : node->outputs()) {
    setUnshapedType(o);
  }
}

namespace prim {
using namespace ::c10::prim;
}

#define SHAPE_ASSERT(cond) \
  if (!(cond))             \
  throw propagation_error()

namespace {

bool isValidArgumentForRunning(Value* v) {
  // allow constants
  if (toIValue(v))
    return true;
  if (TensorTypePtr tt = v->type()->cast<TensorType>()) {
    if (!tt->scalarType()) {
      return false;
    }
    return !at::isIntegralType(*tt->scalarType(), /*includeBool=*/false);
  }
  return v->type()->isSubtypeOf(*FloatType::get());
}

bool isValidReturnForRunning(Value* v) {
  return v->type()->isSubtypeOf(*TensorType::get()) ||
      v->type()->isSubtypeOf(*NumberType::get());
}

bool containsTensorType(const TypePtr& t) {
  auto n_contained = t->containedTypes().size();
  if (n_contained == 1) {
    return t->containedTypes().at(0)->isSubtypeOf(*TensorType::get());
  } else if (n_contained > 1) {
    return std::any_of(
        t->containedTypes().begin(),
        t->containedTypes().end(),
        containsTensorType);
  }
  return false;
}

// for each node in the schema with type Tensor, extract the T type
// returns c10::nullopt if any Tensor in the schema does not have a known
// shape ignores non-tensor in the list of inputs
c10::optional<std::vector<TensorTypePtr>> gatherTensorTypes(
    Node* node,
    bool complete = false) {
  std::vector<TensorTypePtr> tensor_types;

  auto schema_opt = node->maybeSchema();
  if (!schema_opt) {
    return c10::nullopt;
  }
  auto& schema = *schema_opt;
  auto& args = schema.arguments();
  // can't handle varargs primitives because we don't know what should be a
  // Tensor
  if (schema.is_vararg()) {
    return c10::nullopt;
  }
  for (const auto i : c10::irange(args.size())) {
    if (args[i].type()->isSubtypeOf(*ListType::ofTensors())) {
      return c10::nullopt;
    } else if (args[i].type()->isSubtypeOf(*TensorType::get())) {
      if (auto type = node->input(i)->type()->cast<TensorType>()) {
        if (complete && !type->isComplete()) {
          return c10::nullopt;
        }
        tensor_types.push_back(type);
      } else {
        return c10::nullopt;
      }
    } else /* non-tensor type */ {
      continue;
    }
  }
  return tensor_types;
}

int64_t wrapDim(int64_t dim, at::IntArrayRef sizes) {
  if (dim < 0) {
    dim += (int64_t)sizes.size();
  }
  return dim;
}

c10::ScalarType unionScalarTypes(
    c10::ScalarType original,
    c10::ScalarType next) {
  if (original == c10::ScalarType::Undefined) {
    return next;
  } else {
    return c10::promoteTypes(original, next);
  }
}

// Promotes result types for arithmetic operations on Tensor operands using
// new type promotion logic. See tensor_attributes.rst for details.
// This doesn't handle the case of arithmetic ops with Scalar arguments (when
// `Tensor.getUnsafeTensorImpl()->is_wrapped_nubmer()` would return true)
c10::optional<c10::ScalarType> getPromotedTypeForArithmeticOp(Node* node) {
  c10::ScalarType dimmed = c10::ScalarType::Undefined;
  c10::ScalarType zerodim = c10::ScalarType::Undefined;
  // binary arithmetic ops, more than 2 args is alpha.
  for (const auto i : c10::irange(2)) {
    auto dtt = node->inputs()[i]->type()->expect<TensorType>();
    auto inputDtype = dtt->scalarType();
    if (!dtt || !inputDtype) {
      return c10::nullopt;
    }
    if (dtt->dim() && *dtt->dim() > 0) {
      dimmed = unionScalarTypes(dimmed, *inputDtype);
    } else if (!isFloatingType(dimmed)) {
      // if no dimensions
      zerodim = unionScalarTypes(zerodim, *inputDtype);
    }
  }
  // if a tensor with dimensions is already of the highest category, don't
  // need to check zero-dim tensors.
  if (isFloatingType(dimmed)) {
    return dimmed;
  }
  // int_tensor * zero_dim_floating -> floating_tensor
  if (isIntegralType(dimmed, false) && isFloatingType(zerodim)) {
    return zerodim;
  }
  // bool_tensor * non_bool_scalar -> non_bool_tensor
  if (c10::ScalarType::Bool == dimmed &&
      c10::ScalarType::Undefined != zerodim) {
    return zerodim;
  }
  // types of dimensioned tensors generally take precedence over zero-dim
  // tensors if not promoting due to category. e.g.:
  // int_tensor * long -> int_tensor
  if (c10::ScalarType::Undefined != dimmed) {
    return dimmed;
  }

  // no dimmed tensors. e.g. zero_dim_tensor + zero_dim_tensor.
  return zerodim;
}

class ShapePropagator : public PropertyPropBase {
 public:
  explicit ShapePropagator(const std::shared_ptr<Graph>& graph)
      : PropertyPropBase(graph), aliasDb_(graph) {
    collectResizeSet(graph->block());
  }

 private:
  ValueSet resized_alias_set;
  const AliasDb aliasDb_;

  bool resizesInput(Node* n) {
    static std::unordered_set<Symbol> resize_ops{
        aten::resize_,
        aten::resize_as_,
        aten::copy_,
        aten::set_,
        aten::unsqueeze_,
        aten::t_,
        aten::transpose_,
    };

    if (resize_ops.count(n->kind()))
      return true;

    if (!n->maybeSchema())
      return false;

    // ops which take the result and write to input "out"
    if (auto out_arg_index = n->schema().argumentIndexWithName("out")) {
      auto arg = n->schema().arguments().at(*out_arg_index);
      return arg.kwarg_only() && arg.type()->isSubtypeOf(*TensorType::get());
    }
    return false;
  }

  void collectResizeSet(Block* block) {
    for (Node* n : block->nodes()) {
      for (Block* b : n->blocks()) {
        collectResizeSet(b);
      }
      if (resizesInput(n)) {
        for (const auto input : n->inputs()) {
          if (aliasDb_.writesToAlias(n, {input})) {
            resized_alias_set.insert(input);
          }
        }
      }
    }
  }

  IValue representativeValue(Value* v) {
    TypePtr type_ = v->type();
    // if the value is actually constant, just use it!
    if (auto iv = toIValue(v)) {
      return *iv;
    }
    if (TensorTypePtr type = type_->cast<TensorType>()) {
      if (type->isComplete()) {
        at::DeviceGuard device_guard(*type->device());
        return at::empty_strided(
                   *type->sizes().concrete_sizes(),
                   *type->strides().concrete_sizes(),
                   at::TensorOptions(*type->device())
                       .dtype(*type->scalarType()))
            .zero_();
      }
      // fallthrough
    } else if (type_->isSubtypeOf(*FloatType::get())) {
      return 0.f;
    }
    // we should not get here because isValidArgumentForRunning should have
    // prevented it
    std::stringstream ss;
    ss << "unable to create representative value for: " << type_->str()
       << ". File a bug report";
    throw std::runtime_error(ss.str());
  }

  void broadcastBinary(
      Node* node,
      std::vector<TensorTypePtr>& types,
      size_t idx1,
      size_t idx2) {
    auto expected_size = at::infer_size(
        *types[idx1]->sizes().concrete_sizes(),
        *types[idx2]->sizes().concrete_sizes());
    auto broadcast = [&](size_t input_idx) {
      TensorTypePtr input_type = types.at(input_idx);
      if (input_type->sizes() == expected_size)
        return;
      auto graph = node->owningGraph();
      WithInsertPoint point_guard{node};
      Node* expand = graph
                         ->create(
                             aten::expand,
                             {node->inputs().at(input_idx),
                              graph->insertConstant(expected_size),
                              graph->insertConstant(false)})
                         ->insertBefore(node);
      propagateNode(expand);
      node->replaceInput(input_idx, expand->output());
    };
    broadcast(idx1);
    broadcast(idx2);
    types[0] = node->inputs().at(idx1)->type()->expect<TensorType>();
    types[1] = node->inputs().at(idx2)->type()->expect<TensorType>();
  }

  OperatorSet cannot_propagate_shape_by_running_it = {
      "aten::inverse(Tensor self) -> Tensor",
  };

  // Check if this node depends on a value that has been mutated previously. If
  // it has, then it's not safe to run this node in isolation, since we don't
  // know whether the dependency has been executed.
  std::unordered_map<Node*, bool> dependsOnMutationMemo_;
  bool dependsOnMutation(Node* node) {
    if (dependsOnMutationMemo_.count(node) != 0) {
      return dependsOnMutationMemo_[node];
    }

    if (aliasDb_.hasWriters(node)) {
      // If something could have written to a value used by this node, we can't
      // guarantee the result is the same when running it in isolation.
      dependsOnMutationMemo_[node] = true;
      return true;
    }

    // recursively check the producers of its inputs. We need to do this if the
    // mutable value has been laundered through a pure function:
    //   a += 1
    //   c = a + b
    //   d = c + 1
    // In this case, `d` cares whether `a` has been mutated even though it's not
    // a direct input.
    auto depends = false;
    for (auto input : node->inputs()) {
      depends |= dependsOnMutation(input->node());
    }

    dependsOnMutationMemo_[node] = depends;
    return depends;
  }

  bool canPropagateShapeByRunningIt(Node* node) {
    if (node->isMemberOf(cannot_propagate_shape_by_running_it)) {
      return false;
    }

    if (dependsOnMutation(node)) {
      return false;
    }

    bool valid_args = std::all_of(
        node->inputs().begin(),
        node->inputs().end(),
        isValidArgumentForRunning);
    if (!valid_args)
      return false;

    bool valid_returns = std::all_of(
        node->outputs().begin(),
        node->outputs().end(),
        isValidReturnForRunning);
    if (!valid_returns)
      return false;

    return true;
  }

  // If there's no Tensor in outputs, e.g float / float,
  // we don't need to propagate shape.
  bool DoesntRefineOutputs(Node* node) {
    auto outputs = node->outputs();
    for (auto& out : outputs) {
      if (containsTensorType(out->type())) {
        return false;
      }
    }
    return true;
  }

  bool PropagateShapeOnNodeByRunningIt(Node* node, Operation op = nullptr) {
    if (!canPropagateShapeByRunningIt(node))
      return false;

    if (!op)
      op = node->getOperation();

    Stack stack;

    for (auto input : node->inputs()) {
      stack.push_back(representativeValue(input));
    }

    // XXX: we're not catching any exceptions from the op for now. This
    // is to uncover any mistakes we could make when editing this code,
    // and eventually it shouldn't matter, because this phase should be
    // preceded by schema checking.
    op(stack);

    AT_ASSERT(stack.size() == node->outputs().size());
    for (const auto i : c10::irange(stack.size())) {
      // some ops may have mixed tensor/primitive outputs
      // for primitives, we don't need to change the type because it is already
      // its most constrained form.
      auto tensor_type = node->outputs()[i]->type()->cast<TensorType>();
      if (stack[i].isTensor() && tensor_type) {
        // gradient information isn't always available or part of represenative
        // inputs, maintain original grad property
        auto tensor_grad = tensor_type->requiresGrad();
        node->outputs()[i]->setType(TensorType::create(stack[i].toTensor())
                                        ->withRequiresGrad(tensor_grad));
      }
    }
    return true;
  }

  void PropagateCatShape(Node* cat_node) {
    static const auto propagate_complete =
        [](Node* node, at::ArrayRef<Value*> tensors) -> bool {
      auto input_types =
          fmap(tensors, [](Value* v) { return v->type()->cast<TensorType>(); });
      if (!std::all_of(
              input_types.begin(),
              input_types.end(),
              [](const TensorTypePtr& tp) {
                return tp != nullptr && tp->isComplete();
              })) {
        return false;
      }
      if (!node->is_constant(attr::dim))
        return false;
      std::vector<int64_t> sizes = *input_types[0]->sizes().concrete_sizes();
      const int64_t dim = wrapDim(node->get<int64_t>(attr::dim).value(), sizes);
      const int64_t ndim = (int64_t)sizes.size();

      if (dim < 0 || dim >= ndim)
        return false;

      sizes[dim] = 0;
      for (auto& tp : input_types) {
        auto tp_sizes = tp->sizes().concrete_sizes().value();
        if (sizes.size() != tp_sizes.size())
          return false;
        for (const auto i : c10::irange(ndim)) {
          if (sizes[i] != tp_sizes[i] && i != dim) {
            return false;
          }
        }
        sizes[dim] += tp_sizes[dim];
      }
      node->output()->setType(input_types[0]->withSizes(sizes));
      return true;
    };
    static const auto propagate = [](Node* node,
                                     at::ArrayRef<Value*> tensors) -> bool {
      for (Value* v : tensors) {
        if (auto type = v->type()->cast<TensorType>()) {
          node->output()->setType(type->dimensionedOnly());
          return true;
        }
      }
      return false;
    };
    auto list_node =
        ((cat_node->kind() == prim::FusedConcat)
             ? cat_node
             : cat_node->namedInput(attr::tensors)->node());
    if (list_node->kind() == prim::ListConstruct ||
        cat_node->kind() == prim::FusedConcat) {
      auto tensors = list_node->inputs();
      if (!tensors.empty()) {
        // NOLINTNEXTLINE(bugprone-branch-clone)
        if (propagate_complete(cat_node, tensors)) {
          return;
        } else if (propagate(cat_node, tensors)) {
          return;
        }
      }
    }
    setUnshapedType(cat_node);
  }

  void propagateTorchTensorShape(Node* node) {
    auto input_type = node->inputs().at(0)->type();

    size_t dims = 0;
    auto input_base_type = input_type;
    auto list_type = input_type->cast<ListType>();
    while (list_type) {
      dims++;
      input_base_type = list_type->getElementType();
      list_type = input_base_type->cast<ListType>();
    }

    at::optional<at::ScalarType> default_type =
        tryScalarTypeFromJitType(*input_base_type);
    if (auto grad_index = node->schema().argumentIndexWithName("dtype")) {
      auto inp = toIValue(node->inputs().at(*grad_index));
      if (inp == c10::nullopt) {
        return;
      } else if (!inp->isNone()) {
        default_type = inp->toScalarType();
      }
    }

    at::Device default_device = at::kCPU;
    if (auto device_index = node->schema().argumentIndexWithName("device")) {
      auto inp = toIValue(node->inputs().at(*device_index));
      if (inp == c10::nullopt) {
        return;
      } else if (!inp->isNone()) {
        default_device = inp->toDevice();
      }
    }
    node->output()->setType(TensorType::create(
        default_type, default_device, dims, /*requires_grad=*/c10::nullopt));
  }

  // returns whether any such values were found
  bool setUnshapedTypeIfAliasResizedSet(at::ArrayRef<Value*> vs) {
    bool in_resize = false;
    for (auto v : vs) {
      if (aliasDb_.mayAlias(ValueSet{v}, resized_alias_set)) {
        setUnshapedType(v);
        in_resize = true;
      }
    }
    return in_resize;
  }

  void propagateNode(Node* node, bool insert_expands = true) override {
    // Certain ops like resize_ change the input tensors size. Because our
    // analysis is flow invariant, we set any Tensor that can alias a resized
    // Tensor to the base Tensor Type without size information.
    if (setUnshapedTypeIfAliasResizedSet(node->inputs())) {
      return setUnshapedType(node);
    }

    // These don't require the types, and have complicated schema. Return early
    // after we process them.
    switch (node->kind()) {
      case prim::If:
        return processIf(node);
      case prim::Loop: {
        return processLoop(node);
      }
      case aten::Bool:
      case aten::Int:
      case aten::Float:
      case aten::ScalarImplicit:
      case aten::FloatImplicit:
      case aten::IntImplicit:
        return; // correct num type is already set
      case prim::NumToTensor: {
        TypePtr typ = node->input()->type();
        if (typ->isSubtypeOf(*IntType::get()) ||
            typ->isSubtypeOf(*BoolType::get())) {
          node->output()->setType(TensorType::create(
              at::kLong, at::kCPU, 0, /*requires_grad=*/c10::nullopt));
        } else if (node->input()->type()->isSubtypeOf(*FloatType::get())) {
          node->output()->setType(TensorType::create(
              at::kDouble, at::kCPU, 0, /*requires_grad=*/c10::nullopt));
        }
        return;
      }
      case aten::tensor:
      case aten::as_tensor: {
        // as_tensor has an overloaded schema and can either have a tensor or
        // a list as the first input, if the input is a tensor, we delegate
        // the shape propagation in PropagateTensorShapeOnNode
        if (node->inputs().at(0)->type()->isSubtypeOf(*TensorType::get())) {
          break;
        }
        return propagateTorchTensorShape(node);
      }
      case prim::TupleConstruct: {
        // We refresh the tuple type, because the input types could have been
        // refined.
        auto orig_type = node->output()->type()->expect<TupleType>();
        auto new_types =
            fmap(node->inputs(), [](Value* v) { return v->type(); });
        node->output()->setType(
            orig_type->createWithContained(std::move(new_types)));
        return;
      }
      case prim::TupleUnpack: {
        auto tuple_type = node->input()->type()->cast<TupleType>();
        AT_ASSERT(
            tuple_type &&
            tuple_type->elements().size() == node->outputs().size());
        auto elems = tuple_type->elements();
        for (size_t i = 0; i < node->outputs().size(); ++i) {
          node->output(i)->setType(elems[i]);
        }
        return;
      }
      case prim::Constant: {
        if (node->output()->type()->isSubtypeOf(*TensorType::get())) {
          node->output()->inferTypeFrom(node->t(attr::value));
        }
        return;
      }
      case prim::unchecked_unwrap_optional: {
        // If we have specialized the optional type to the element type,
        // we want to pass it down. We write this as input.isSubtypeOf(output)
        // to be sure that we don't screw up nested optionals.
        if (node->input()->type()->isSubtypeOf(*node->output()->type())) {
          node->output()->setType(node->input()->type());
        }
        return;
      }
      case prim::ConstantChunk: {
        Value* tensor = node->input();
        if (auto type = tensor->type()->cast<TensorType>()) {
          type = type->dimensionedOnly();
          for (Value* output : node->outputs()) {
            output->setType(type);
          }
        } else {
          setUnshapedType(node);
        }
        return;
      }
      case prim::grad: {
        auto tt = node->input()->type()->expect<TensorType>();
        // grad may be undefined
        // requires_grad may be required
        auto grad_type = TensorType::get()->withPossiblyUndefined();
        node->output()->setType(grad_type);
        return;
      }
      case prim::CallFunction:
      case prim::CallMethod:
      case prim::AutogradZero: {
        setUnshapedType(node);
        return;
      }
      case prim::GetAttr: {
        auto cls = node->input()->type()->expect<ClassType>();
        // propagate any type specializations encoded in the type of the class
        node->output()->setType(cls->getAttribute(node->s(attr::name)));
        return;
      }
      case aten::_unwrap_optional: {
        // If we have specialized the optional type to the element type,
        // we want to pass it down. We write this as input.isSubtypeOf(output)
        // to be sure that we don't screw up nested optionals.
        if (node->input()->type()->isSubtypeOf(*node->output()->type())) {
          node->output()->setType(node->input()->type());
        }
        return;
      }
      default:
        break; // fall-through
    }

    if (node->hasSideEffects()) {
      return;
    }

    if (node->matches("aten::cat(Tensor[] tensors, int dim) -> Tensor") ||
        node->kind() == prim::FusedConcat) {
      return PropagateCatShape(node);
    }

    if (auto maybe_complete_types =
            gatherTensorTypes(node, /*complete=*/true)) {
      if (PropagateCompleteShapeOnNode(
              node, insert_expands, std::move(*maybe_complete_types))) {
        return;
      }
    }

    if (PropagateTensorShapeOnNode(node, insert_expands)) {
      return;
    }

    if (DoesntRefineOutputs(node)) {
      return;
    }

    if (PropagateShapeOnNodeByRunningIt(node)) {
      return;
    }
    return setUnshapedType(node);
  }

  static c10::optional<size_t> determineListSize(Value* list) {
    AT_ASSERT(list->type()->cast<ListType>());
    if (auto shape = constant_as<c10::List<int64_t>>(list)) {
      return shape->size();
    }
    auto input_node = list->node();
    if (input_node->kind() == prim::ListConstruct) {
      return input_node->inputs().size();
    }
    return c10::nullopt;
  }

  // is it ok to try to run the op
  // If an input is a constant, then we assume that the input is valid
  // and we can try to run it.
  // Otherwise:
  // Integral typed _inputs_ are often an indicator that we're indexing into
  // a tensor, so we should special-case these ops in the shape propagation.
  // Additionally, passing in a zero representative tensor into an integer
  // division op causes divide-by-zero errors
  // _Outputs_ must be tensors or primitives
  // We will call inferTypeFrom on the tensors, and ignore the primitives.
  // However, we allow primitive returns because we want to support mixed
  // primitive/tensor outputs.

  bool PropagateTensorShapeOnNode(Node* node, bool insert_expands) {
    static const auto broadcast =
        [](std::vector<TensorTypePtr>& tensor_types,
           c10::optional<at::ScalarType> t) -> TensorTypePtr {
      if (tensor_types.size() == 1) {
        return tensor_types[0]->dimensionedOnly()->withScalarType(t);
      }
      AT_ASSERT(!tensor_types.empty());
      auto any_type = tensor_types[0];
      auto max_dims = any_type->dim();
      for (auto& type : tensor_types) {
        if (!max_dims || !type->dim()) {
          max_dims = c10::nullopt;
        } else {
          max_dims = std::max(*max_dims, *type->dim());
        }
      }
      return TensorType::create(
          t,
          any_type->device(),
          max_dims,
          /*requires_grad=*/c10::nullopt);
    };

    using type_vec_t = std::vector<TensorTypePtr>;
    // Formula is expected to return a vector of length equal to the number of
    // tensor outputs of the node, or an empty vector which implies that it
    // failed to propagate.
    using formula_t = std::function<type_vec_t(Node*)>;
    static std::mutex shape_formulas_mutex;
    static std::vector<std::pair<OperatorSet, formula_t>> shape_formulas;
    struct register_formula_for {
      register_formula_for(OperatorSet operators, formula_t formula) {
        std::unique_lock<std::mutex> lock{shape_formulas_mutex};
        shape_formulas.emplace_back(std::move(operators), std::move(formula));
      }
    };

    // Requirements:
    //   dims           : preserved
    //   scalar type    : preserved
    //   device         : preserved
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    static const register_formula_for simple_unary_ops{
        {
            "aten::acos(Tensor self) -> Tensor",
            "aten::neg(Tensor self) -> Tensor",
            "aten::t(Tensor self) -> Tensor",
            "aten::sigmoid(Tensor self) -> Tensor",
            "aten::logit(Tensor self, float? eps=None) -> Tensor",
            "aten::tanh(Tensor self) -> Tensor",
            "aten::relu(Tensor self) -> Tensor",
            "aten::asin(Tensor self) -> Tensor",
            "aten::atan(Tensor self) -> Tensor",
            "aten::ceil(Tensor self) -> Tensor",
            "aten::clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor",
            "aten::contiguous(Tensor(a) self, *, MemoryFormat memory_format=contiguous_format) -> Tensor(a)",
            "aten::bernoulli(Tensor self, *, Generator? generator) -> Tensor",
            "aten::celu(Tensor self, Scalar alpha) -> Tensor",
            "aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor",
            "aten::clamp_max(Tensor self, Scalar max) -> Tensor",
            "aten::clamp_min(Tensor self, Scalar min) -> Tensor",
            "aten::alpha_dropout(Tensor input, float p, bool train) -> Tensor",
            "aten::bernoulli(Tensor self, float p, *, Generator? generator) -> Tensor",
            "aten::cos(Tensor self) -> Tensor",
            "aten::cosh(Tensor self) -> Tensor",
            "aten::digamma(Tensor self) -> Tensor",
            "aten::dropout(Tensor input, float p, bool train) -> Tensor",
            "aten::elu(Tensor self, Scalar alpha, Scalar scale, Scalar input_scale) -> Tensor",
            "aten::erf(Tensor self) -> Tensor",
            "aten::erfc(Tensor self) -> Tensor",
            "aten::erfinv(Tensor self) -> Tensor",
            "aten::exp(Tensor self) -> Tensor",
            "aten::expm1(Tensor self) -> Tensor",
            "aten::log(Tensor self) -> Tensor",
            "aten::log10(Tensor self) -> Tensor",
            "aten::log1p(Tensor self) -> Tensor",
            "aten::log2(Tensor self) -> Tensor",
            "aten::log_sigmoid(Tensor self) -> Tensor",
            "aten::floor(Tensor self) -> Tensor",
            "aten::frac(Tensor self) -> Tensor",
            "aten::flip(Tensor self, int[] dims) -> Tensor",
            "aten::feature_alpha_dropout(Tensor input, float p, bool train) -> Tensor",
            "aten::feature_dropout(Tensor input, float p, bool train) -> Tensor",
            "aten::hardshrink(Tensor self, Scalar lambd) -> Tensor",
            "aten::hardtanh(Tensor self, Scalar min_val, Scalar max_val) -> Tensor",
            "aten::glu(Tensor self, int dim) -> Tensor",
            "aten::inverse(Tensor self) -> Tensor",
            "aten::leaky_relu(Tensor self, Scalar negative_slope) -> Tensor",
            "aten::lgamma(Tensor self) -> Tensor",
            "aten::mvlgamma(Tensor self, int p) -> Tensor",
            "aten::normal(float mean, Tensor std, *, Generator? generator) -> Tensor",
            "aten::normal(Tensor mean, float std, *, Generator? generator) -> Tensor",
            "aten::permute(Tensor self, int[] dims) -> Tensor",
            "aten::pin_memory(Tensor(a) self, Device? device=None) -> Tensor(a)",
            "aten::pinverse(Tensor self, float rcond) -> Tensor",
            "aten::reciprocal(Tensor self) -> Tensor",
            "aten::relu(Tensor self) -> Tensor",
            "aten::round(Tensor self) -> Tensor",
            "aten::rrelu(Tensor self, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
            "aten::rsqrt(Tensor self) -> Tensor",
            "aten::selu(Tensor self) -> Tensor",
            "aten::gelu(Tensor self, *, str approximate='none') -> Tensor",
            "aten::sigmoid(Tensor self) -> Tensor",
            "aten::sign(Tensor self) -> Tensor",
            "aten::sin(Tensor self) -> Tensor",
            "aten::sinh(Tensor self) -> Tensor",
            "aten::softplus(Tensor self, Scalar beta, Scalar threshold) -> Tensor",
            "aten::softshrink(Tensor self, Scalar lambd) -> Tensor",
            "aten::sqrt(Tensor self) -> Tensor",
            "aten::tan(Tensor self) -> Tensor",
            "aten::tanh(Tensor self) -> Tensor",
            "aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor",
            "aten::transpose(Tensor self, int dim0, int dim1) -> Tensor",
            "aten::tril(Tensor self, int diagonal) -> Tensor",
            "aten::triu(Tensor self, int diagonal) -> Tensor",
            "aten::trunc(Tensor self) -> Tensor",
            "aten::rot90(Tensor self, int k, int[] dims) -> Tensor",
            "aten::narrow(Tensor self, int dim, int start, int length) -> Tensor",
            "aten::slice(Tensor self, int dim, int? start=None, int? end=None, int step=1) -> Tensor",
            "aten::alias(Tensor self) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          auto input_type = node->input(0)->type()->cast<TensorType>();
          return input_type ? type_vec_t{input_type->dimensionedOnly()}
                            : type_vec_t{};
        }};

    // Requirements:
    //   dims           : preserved
    //   scalar type    : preserved, except complex maps to float
    //   device         : preserved
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    static const register_formula_for simple_unary_ops_complex_to_float{
        {
            "aten::abs(Tensor self) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          auto input_type = node->input(0)->type()->cast<TensorType>();

          // Maps complex -> float
          if (input_type->scalarType()) {
            const auto scalar_type = *(input_type->scalarType());
            if (isComplexType(scalar_type)) {
              const auto out_type = c10::toRealValueType(scalar_type);
              return type_vec_t{
                  input_type->dimensionedOnly()->withScalarType(out_type)};
            }
          }

          return input_type ? type_vec_t{input_type->dimensionedOnly()}
                            : type_vec_t{};
        }};

    // Requirements:
    //   dims           : broadcast all tensor args
    //   scalar type    : promoted from input dtypes
    //   device         : always matching and preserved
    //   tensor inputs  : *
    //   tensor outputs : 1
    static const register_formula_for broadcasting_ops_arithmetic{
        {
            // Tensor-Tensor operators
            "aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
            "aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
            "aten::mul(Tensor self, Tensor other) -> Tensor",
            "aten::div(Tensor self, Tensor other) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_tensor_types = gatherTensorTypes(node)) {
            AT_ASSERT(maybe_tensor_types->size() >= 2);
            auto dtype = getPromotedTypeForArithmeticOp(node);
            return {broadcast(*maybe_tensor_types, dtype)};
          }
          return {};
        }};

    // Requirements:
    //   dims           : broadcast all tensor args
    //   scalar type    : always matching and preserved
    //   device         : always matching and preserved
    //   tensor inputs  : *
    //   tensor outputs : 1
    static const register_formula_for broadcasting_ops{
        {
            "aten::pow(Tensor self, Tensor exponent) -> Tensor",
            "aten::fmod(Tensor self, Tensor other) -> Tensor",
            "aten::remainder(Tensor self, Tensor other) -> Tensor",
            "aten::lerp(Tensor self, Tensor end, Scalar weight) -> Tensor",
            "aten::lerp(Tensor self, Tensor end, Tensor weight) -> Tensor",
            "aten::max(Tensor self, Tensor other) -> Tensor",
            "aten::min(Tensor self, Tensor other) -> Tensor",
            "aten::__and__(Tensor self, Tensor other) -> Tensor",
            "aten::__or__(Tensor self, Tensor other) -> Tensor",
            "aten::__xor__(Tensor self, Tensor other) -> Tensor",
            "aten::__lshift__(Tensor self, Tensor other) -> Tensor",
            "aten::__rshift__(Tensor self, Tensor other) -> Tensor",
            "aten::__iand__(Tensor self, Tensor other) -> Tensor",
            "aten::__ior__(Tensor self, Tensor other) -> Tensor",
            "aten::__ixor__(Tensor self, Tensor other) -> Tensor",
            "aten::__ilshift__(Tensor self, Tensor other) -> Tensor",
            "aten::__irshift__(Tensor self, Tensor other) -> Tensor",

            // Ops with Tensor-Tensor overloads only
            "aten::atan2(Tensor self, Tensor other) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_tensor_types = gatherTensorTypes(node)) {
            AT_ASSERT(maybe_tensor_types->size() >= 2);
            auto first_scalar_type = (*maybe_tensor_types)[0]->scalarType();
            auto second_scalar_type = (*maybe_tensor_types)[1]->scalarType();
            if (!first_scalar_type || !second_scalar_type) {
              return {};
            }
            size_t arg_for_type = 0;
            if (c10::promoteTypes(*first_scalar_type, *second_scalar_type) !=
                first_scalar_type) {
              arg_for_type = 1;
            }
            auto t = (*maybe_tensor_types)[arg_for_type]->scalarType();
            return {broadcast(*maybe_tensor_types, *t)};
          }
          return {};
        }};

    static const register_formula_for fused_accum_binary_ops{
        {
            // Non-binary ops
            "aten::addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value) -> Tensor",
            "aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_tensor_types = gatherTensorTypes(node)) {
            auto dtype = (*maybe_tensor_types)[0]->scalarType();
            if (!dtype) {
              return {};
            }
            return {broadcast(*maybe_tensor_types, *dtype)};
          }
          return {};
        }};

    static const register_formula_for broadcasting_tensor_scalar_ops_arithmetic{
        {
            // Tensor-Scalar operators
            "aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor",
            "aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor",
            "aten::mul(Tensor self, Scalar other) -> Tensor",
            "aten::div(Tensor self, Scalar other) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_tensor_types = gatherTensorTypes(node)) {
            auto first_scalar_type = (*maybe_tensor_types)[0]->scalarType();
            auto second_scalar_type =
                tryScalarTypeFromJitType(*node->inputs()[1]->type());
            if (!first_scalar_type || !second_scalar_type) {
              return {};
            }
            if (isIntegralType(*first_scalar_type, false) &&
                isFloatingType(*second_scalar_type)) {
              auto default_dtype =
                  at::typeMetaToScalarType(caffe2::get_default_dtype());
              return {broadcast(*maybe_tensor_types, default_dtype)};
            }
            if (c10::ScalarType::Bool == *first_scalar_type &&
                c10::ScalarType::Bool != *second_scalar_type) {
              auto result_type =
                  c10::promoteTypes(*first_scalar_type, *second_scalar_type);
              return {broadcast(*maybe_tensor_types, result_type)};
            }
            return {broadcast(*maybe_tensor_types, first_scalar_type)};
          }
          return {};
        }};

    // NB: we always take the scalar type of the Tensor
    static const register_formula_for broadcasting_tensor_scalar_ops{
        {

            "aten::pow(Tensor self, Scalar exponent) -> Tensor",
            "aten::fmod(Tensor self, Scalar other) -> Tensor",
            "aten::remainder(Tensor self, Scalar other) -> Tensor",
            "aten::pow(Scalar self, Tensor exponent) -> Tensor",
            "aten::__and__(Tensor self, Scalar other) -> Tensor",
            "aten::__or__(Tensor self, Scalar other) -> Tensor",
            "aten::__xor__(Tensor self, Scalar other) -> Tensor",
            "aten::__lshift__(Tensor self, Scalar other) -> Tensor",
            "aten::__rshift__(Tensor self, Scalar other) -> Tensor",
            "aten::__iand__(Tensor self, Scalar other) -> Tensor",
            "aten::__ior__(Tensor self, Scalar other) -> Tensor",
            "aten::__ixor__(Tensor self, Scalar other) -> Tensor",
            "aten::__ilshift__(Tensor self, Scalar other) -> Tensor",
            "aten::__irshift__(Tensor self, Scalar other) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_tensor_types = gatherTensorTypes(node)) {
            return {broadcast(
                *maybe_tensor_types, (*maybe_tensor_types)[0]->scalarType())};
          }
          return {};
        }};

    // aten::where is special in that its return type is the second argument's
    // (self) type rather than the that of condition
    static const register_formula_for where_op{
        {
            "aten::where(Tensor condition, Tensor self, Tensor other) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_tensor_types = gatherTensorTypes(node)) {
            return {broadcast(
                *maybe_tensor_types, (*maybe_tensor_types)[1]->scalarType())};
          }
          return {};
        }};

    static const auto any_tensor_type = [](Node* node) -> TensorTypePtr {
      for (Value* input : node->inputs()) {
        if (auto type = input->type()->cast<TensorType>()) {
          if (type->dim().has_value()) {
            return type;
          }
        }
      }
      return nullptr;
    };

    // Requirements:
    //   dims           : always matching and preserved
    //   scalar type    : always matching and preserved
    //   device         : always matching and preserved
    //   tensor inputs  : 2
    //   tensor outputs : 1
    static const register_formula_for binary_ops_strict_match{
        {
            "aten::normal(Tensor mean, Tensor std, *, Generator? generator) -> Tensor",
            "aten::mm(Tensor self, Tensor mat2) -> Tensor",
            "aten::bmm(Tensor self, Tensor mat2) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto type = any_tensor_type(node)) {
            return {type};
          }
          return {};
        }};

    // Requirements:
    //   dims           : all tensor args are broadcast
    //   scalar type    : byte/uint8
    //   device         : always matching and preserved
    //   tensor inputs  : *
    //   tensor outputs : 1
    static const register_formula_for comparison_ops{
        {
            "aten::lt(Tensor self, Tensor other) -> Tensor",
            "aten::le(Tensor self, Tensor other) -> Tensor",
            "aten::gt(Tensor self, Tensor other) -> Tensor",
            "aten::ge(Tensor self, Tensor other) -> Tensor",
            "aten::eq(Tensor self, Tensor other) -> Tensor",
            "aten::ne(Tensor self, Tensor other) -> Tensor",
            "aten::lt(Tensor self, Scalar other) -> Tensor",
            "aten::le(Tensor self, Scalar other) -> Tensor",
            "aten::gt(Tensor self, Scalar other) -> Tensor",
            "aten::ge(Tensor self, Scalar other) -> Tensor",
            "aten::eq(Tensor self, Scalar other) -> Tensor",
            "aten::ne(Tensor self, Scalar other) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_tensor_types = gatherTensorTypes(node)) {
            return {broadcast(*maybe_tensor_types, at::kBool)};
          }
          return {};
        }};

    static const register_formula_for nn_ops_first_input_formula{
        *nn_ops_first_input_preserving(), [](Node* node) -> type_vec_t {
          if (auto type = node->input(0)->type()->cast<TensorType>()) {
            return {type->dimensionedOnly()};
          }
          return {};
        }};

    // Requirements:
    //   dims           : 0
    //   scalar type    : preserved
    //   device         : preserved
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    static const register_formula_for all_reduce_ops{
        {
            "aten::det(Tensor self) -> Tensor",
            "aten::logdet(Tensor self) -> Tensor",
            "aten::max(Tensor self) -> Tensor",
            "aten::min(Tensor self) -> Tensor",
            "aten::median(Tensor self) -> Tensor",
            "aten::nanmedian(Tensor self) -> Tensor",
            "aten::norm(Tensor self, Scalar p) -> Tensor",
            "aten::std(Tensor self, bool unbiased) -> Tensor",
            "aten::trace(Tensor self) -> Tensor",
            "aten::var(Tensor self, bool unbiased) -> Tensor",
            "aten::all(Tensor self) -> Tensor",
            "aten::any(Tensor self) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto type = node->input(0)->type()->cast<TensorType>()) {
            return {type->withDim(0)};
          }
          return {};
        }};

    // Requirements:
    //   dims           : 0
    //   scalar type    : dtype if specified, else preserved
    //   device         : preserved
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    static const register_formula_for reduce_ops_with_opt_dtype{
        {"aten::mean(Tensor self, *, int? dtype) -> Tensor"},
        [](Node* node) -> type_vec_t {
          at::optional<IValue> maybe_dtype_option = node->get(attr::dtype);
          if (auto type = node->input(0)->type()->cast<TensorType>()) {
            auto ret = type->withDim(0);
            if (maybe_dtype_option && !maybe_dtype_option->isNone()) {
              return {ret->withScalarType(maybe_dtype_option->toScalarType())};
            } else {
              return {ret};
            }
          }
          return {};
        }};

    // Requirements:
    //   dims           : 0
    //   scalar type    : dtype if specified, else preserved if floating point,
    //   otherwise long/int64 device         : preserved tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    static const register_formula_for
        all_reduce_ops_with_integer_upcast_and_dtype{
            {
                "aten::sum(Tensor self, *, int? dtype) -> Tensor",
                "aten::prod(Tensor self, *, int? dtype) -> Tensor",
            },
            [](Node* node) -> type_vec_t {
              if (auto type = node->input(0)->type()->cast<TensorType>()) {
                type = type->withDim(0);
                at::optional<IValue> maybe_dtype_option =
                    node->get(attr::dtype);
                if (maybe_dtype_option && !maybe_dtype_option->isNone()) {
                  return {
                      type->withScalarType(maybe_dtype_option->toScalarType())};
                }
                if (type->scalarType()) {
                  return {
                      at::isFloatingType(*type->scalarType())
                          ? type
                          : type->withScalarType(at::kLong)};
                } else {
                  return {type};
                }
              }
              return {};
            }};

    static const auto reduce_op_handler = [](Node* node,
                                             int64_t num_reduced_dim = 0,
                                             bool upcast_integer = false,
                                             c10::optional<IValue> opt_dtype =
                                                 c10::nullopt) -> type_vec_t {
      if (auto type = node->input(0)->type()->cast<TensorType>()) {
        if (!type->scalarType() || !type->dim()) {
          return {};
        }
        if (opt_dtype && !opt_dtype->isNone()) {
          type = type->withScalarType(opt_dtype->toScalarType());
        } else if (upcast_integer && !at::isFloatingType(*type->scalarType())) {
          type = type->withScalarType(at::kLong);
        }
        // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
        if (*type->dim() >= num_reduced_dim && num_reduced_dim > 0) {
          return {type->withDim(*type->dim() - num_reduced_dim)};
        } else {
          return {type};
        }
      }
      return {};
    };

    static const auto multidim_reduce_with_keepdim =
        [](Node* node,
           int64_t num_reduced_dim,
           bool upcast_integer) -> type_vec_t {
      auto maybe_keepdim = node->get<bool>(attr::keepdim);
      if (!maybe_keepdim)
        return {};
      return reduce_op_handler(
          node, *maybe_keepdim ? 0 : num_reduced_dim, upcast_integer);
    };

    // Requirements:
    //   dims           : 0 if dim is None, otherwise preserved if keepdim ==
    //   false or 1 smaller otherwise scalar type    : preserved device :
    //   preserved tensor inputs  : 1 tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    //   - Has a bool keepdim argument
    static const register_formula_for argminmax{
        {
            "aten::argmax(Tensor self, int? dim, bool keepdim) -> Tensor",
            "aten::argmin(Tensor self, int? dim, bool keepdim) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto type = node->input(0)->type()->cast<TensorType>()) {
            if (node->input(1)->type()->kind() == c10::TypeKind::NoneType) {
              return {type->withDim(0)};
            } else {
              return multidim_reduce_with_keepdim(
                  node, /*num_reduced_dim=*/1, /*upcast_integer=*/false);
            }
          }
          return {};
        }};

    // Requirements:
    //   dims           : preserved if keepdim == false, 1 smaller otherwise
    //   scalar type    : preserved for first output, byte/uint8 for second
    //   output if exists device         : preserved tensor inputs  : 1 tensor
    //   outputs : 1 or 2
    // Additionally:
    //   - First input should be the only tensor input
    //   - Has a bool keepdim argument
    static const register_formula_for dim_reduce_ops{
        {
            "aten::all(Tensor self, int dim, bool keepdim) -> Tensor",
            "aten::any(Tensor self, int dim, bool keepdim) -> Tensor",

            // Ops returning indices as second output
            "aten::kthvalue(Tensor self, int k, int dim, bool keepdim) -> (Tensor, Tensor)",
            "aten::max(Tensor self, int dim, bool keepdim) -> (Tensor, Tensor)",
            "aten::min(Tensor self, int dim, bool keepdim) -> (Tensor, Tensor)",
            "aten::median(Tensor self, int dim, bool keepdim) -> (Tensor, Tensor)",
            "aten::nanmedian(Tensor self, int dim, bool keepdim) -> (Tensor, Tensor)",
            "aten::mode(Tensor self, int dim, bool keepdim) -> (Tensor, Tensor)",
        },
        [](Node* node) -> type_vec_t {
          // NB: Note that while this function is generally meant to be used
          // with ops that have a single output, we will fix up its return right
          // below.
          auto output_types = multidim_reduce_with_keepdim(
              node, /*num_reduced_dim=*/1, /*upcast_integer=*/false);
          if (!output_types.empty() && node->outputs().size() == 2) {
            output_types.push_back(
                output_types.back()->withScalarType(at::kLong));
          }
          return output_types;
        }};

    // Requirements:
    //   dims           : preserved if keepdim == false, 1 smaller otherwise
    //   scalar type    : dtype if specified. preserved if floating point,
    //   otherwise long/int64 device         : preserved tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    //   - has a bool keepdim argument
    static const register_formula_for dim_reduce_ops_with_integer_upcast{
        {
            "aten::prod(Tensor self, int dim, bool keepdim, *, int? dtype) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          auto maybe_keepdim = node->get<bool>(attr::keepdim);
          at::optional<IValue> opt_dtype = node->get(attr::dtype);
          return reduce_op_handler(
              node,
              /*num_reduce_dim=*/*maybe_keepdim ? 0 : 1,
              /*integer_upcast=*/true,
              opt_dtype);
        }};

    // Requirements:
    //   dims           : preserved
    //   scalar type    : dtype if specified, preserved if floating point,
    //    otherwise long/int64
    //   device         : preserved
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - First input should be the only tensor input
    static const register_formula_for dim_reduce_ops_dtype{
        {"aten::cumprod(Tensor self, int dim, *, int? dtype) -> Tensor",
         "aten::cumsum(Tensor self, int dim, *, int? dtype) -> Tensor",
         "aten::log_softmax(Tensor self, int dim, int? dtype) -> Tensor"},
        [](Node* node) -> type_vec_t {
          at::optional<IValue> opt_dtype = node->get(attr::dtype);
          return reduce_op_handler(
              node, /*num_reduce_dim=*/0, /*integer_upcast=*/true, opt_dtype);
        }};

    // Requirements:
    //   dims           : preserved
    //   scalar type    : dtype if specified, otherwise preserved
    //   device         : preserved
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - has bool keepdim and int[] dim arguments
    static const register_formula_for register_softmax{
        {"aten::softmax(Tensor self, int dim, int? dtype) -> Tensor"},
        [](Node* node) -> type_vec_t {
          at::optional<IValue> opt_dtype = node->get(attr::dtype);
          return reduce_op_handler(
              node, /*num_reduced_dim=*/0, /*upcast_integer=*/false, opt_dtype);
        }};

    static const auto factory_with_ndim =
        [](Node* node, int dim, at::ScalarType default_dtype) -> type_vec_t {
      at::optional<IValue> maybe_layout_option = node->get(attr::layout);
      if (!maybe_layout_option)
        return {};

      at::optional<IValue> maybe_device_option = node->get(attr::device);
      if (!maybe_device_option)
        return {};
      auto device =
          (maybe_device_option->isNone() ? at::kCPU
                                         : maybe_device_option->toDevice());

      at::optional<IValue> maybe_dtype_option = node->get(attr::dtype);
      if (!maybe_dtype_option)
        return {};
      auto dtype =
          (maybe_dtype_option->isNone() ? default_dtype
                                        : maybe_dtype_option->toScalarType());

      return {TensorType::create(
          dtype, device, dim, /*requires_grad=*/c10::nullopt)};
    };

    static const auto factory_like_with_ndim = [](Node* node,
                                                  int dim) -> type_vec_t {
      auto tt = node->input(0)->type()->expect<TensorType>();
      auto in_type = tt->scalarType();
      auto in_dev = tt->device();

      at::optional<IValue> maybe_layout_option = node->get(attr::layout);
      if (!maybe_layout_option)
        return {};

      at::optional<IValue> maybe_device_option = node->get(attr::device);
      if (!maybe_device_option)
        return {};

      if (!maybe_device_option->isNone()) {
        in_dev = maybe_device_option->toDevice();
      }

      at::optional<IValue> maybe_dtype_option = node->get(attr::dtype);
      if (!maybe_dtype_option)
        return {};

      if (!maybe_dtype_option->isNone()) {
        in_type = maybe_dtype_option->toScalarType();
      }

      return {TensorType::create(
          in_type, in_dev, dim, /*requires_grad=*/c10::nullopt)};
    };

    // Requirements:
    //   dims           : preserved
    //   scalar type    : equal to value of dtype
    //   device         : equal to value of device
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - has ScalarType dtype, Layeout layout and Device device arguments
    static const register_formula_for like_factories_with_options{
        {
            "aten::empty_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
            "aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
            "aten::ones_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
            "aten::rand_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
            "aten::randint_like(Tensor self, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
            "aten::randint_like(Tensor self, int low, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
            "aten::randn_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
            "aten::zeros_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto type =
                  node->namedInput(attr::self)->type()->cast<TensorType>()) {
            if (type->dim()) {
              return factory_like_with_ndim(node, (int)*type->dim());
            }
          }
          return {};
        }};

    // Requirements:
    //   dims           : equal to number of elements in size
    //   scalar type    : equal to value of dtype
    //   device         : equal to value of device
    //   tensor inputs  : 1
    //   tensor outputs : 1
    // Additionally:
    //   - has int[] size, ScalarType dtype, Layeout layout and Device device
    //   arguments
    static const register_formula_for size_factories_with_options{
        {
            "aten::empty(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory, MemoryFormat? memory_format=contiguous_format) -> Tensor",
            "aten::full(int[] size, Scalar fill_value, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
            "aten::ones(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
            "aten::rand(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
            "aten::randn(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
            "aten::zeros(int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_size = node->get<c10::List<int64_t>>(attr::size)) {
            return factory_with_ndim(
                node, (int)maybe_size->size(), at::kDouble);
          }
          return {};
        }};

    static const register_formula_for randint{
        {
            "aten::randint(int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
            "aten::randint(int low, int high, int[] size, *, int? dtype, int? layout, Device? device, bool? pin_memory) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto maybe_size = node->get<c10::List<int64_t>>(attr::size)) {
            return factory_with_ndim(node, (int)maybe_size->size(), at::kLong);
          }
          return {};
        }};

    static const auto get_cast_scalar_type = [](Node* node) -> at::ScalarType {
      switch (node->kind()) {
        case aten::_cast_Byte:
          return at::kByte;
        case aten::_cast_Char:
          return at::kChar;
        case aten::_cast_Double:
          return at::kDouble;
        case aten::_cast_Float:
          return at::kFloat;
        case aten::_cast_Half:
          return at::kHalf;
        case aten::_cast_Int:
          return at::kInt;
        case aten::_cast_Long:
          return at::kLong;
        case aten::_cast_Short:
          return at::kShort;
        default:
          AT_ASSERTM(
              false,
              "unknown node kind in get_cast_scalar_type: ",
              node->kind().toQualString());
      }
    };
    static const register_formula_for cast_ops{
        {
            "aten::_cast_Byte(Tensor self, bool non_blocking) -> Tensor",
            "aten::_cast_Char(Tensor self, bool non_blocking) -> Tensor",
            "aten::_cast_Double(Tensor self, bool non_blocking) -> Tensor",
            "aten::_cast_Float(Tensor self, bool non_blocking) -> Tensor",
            "aten::_cast_Half(Tensor self, bool non_blocking) -> Tensor",
            "aten::_cast_Int(Tensor self, bool non_blocking) -> Tensor",
            "aten::_cast_Long(Tensor self, bool non_blocking) -> Tensor",
            "aten::_cast_Short(Tensor self, bool non_blocking) -> Tensor",
        },
        [](Node* node) -> type_vec_t {
          if (auto type =
                  node->namedInput(attr::self)->type()->cast<TensorType>()) {
            return {type->withScalarType(get_cast_scalar_type(node))};
          }
          return {};
        }};

    // First, try to match one of the registered formulas to their operator
    // sets.
    for (auto& entry : shape_formulas) {
      if (node->isMemberOf(entry.first)) {
        auto types = entry.second(node);
        if (types.empty()) {
          return false;
        } else {
          auto outputs = node->outputs();
          AT_ASSERT(types.size() == outputs.size());
          for (const auto i : c10::irange(types.size())) {
            AT_ASSERT(outputs[i]->type()->isSubtypeOf(*TensorType::get()));
            outputs[i]->setType(types[i]);
          }
          return true;
        }
      }
    }

    // This section implements shape prop for an assorted set of nodes that only
    // need partial information about their input types.
    const auto input_type = [node](size_t index) {
      auto result = node->input(index)->type()->cast<TensorType>();
      if (result) {
        result = result->dimensionedOnly();
      }
      return result;
    };
    if (node->matches(
            "aten::masked_select(Tensor self, Tensor mask) -> Tensor")) {
      if (auto type = input_type(0)) {
        node->output()->setType(type->withDim(1));
        return true;
      }
    } else if (node->matches("aten::detach(Tensor(a) self) -> Tensor(a)")) {
      if (auto type = input_type(0)) {
        node->output()->setType(type->withRequiresGrad(false));
        return true;
      }
    } else if (
        node->matches(
            "aten::batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)")) {
      if (auto type = input_type(0)) {
        if (type->scalarType() == at::kHalf) {
          type = type->withScalarType(at::kFloat);
        }
        type = type->withDim(1);
        node->outputs()[0]->setType(type);
        node->outputs()[1]->setType(type);
        return true;
      }
    } else if (node->matches(
                   "aten::dot(Tensor self, Tensor tensor) -> Tensor")) {
      if (auto type = any_tensor_type(node)) {
        node->output()->setType(type->withDim(0));
        return true;
      }
    } else if (
        node->matches("aten::mv(Tensor self, Tensor vec) -> Tensor") ||
        node->matches(
            "aten::addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta, Scalar alpha) -> Tensor")) {
      if (auto type = any_tensor_type(node)) {
        node->output()->setType(type->withDim(1));
        return true;
      }
    } else if (
        node->matches(
            "aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor") ||
        node->matches(
            "aten::addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta, Scalar alpha) -> Tensor") ||
        node->matches(
            "aten::addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta, Scalar alpha) -> Tensor")) {
      if (auto type = any_tensor_type(node)) {
        node->output()->setType(type->withDim(2));
        return true;
      }
    } else if (
        node->matches(
            "aten::baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta, Scalar alpha) -> Tensor")) {
      if (auto type = any_tensor_type(node)) {
        node->output()->setType(type->withDim(3));
        return true;
      }
    } else if (
        node->matches(
            "aten::index_select(Tensor self, int dim, Tensor index) -> Tensor")) {
      auto type = input_type(0);
      auto index_type = input_type(1);
      // index_select behaves very weirdly when self.dim() == 0. It allows both
      // 0D and 1D indices, and returns a value that has as many dimensions as
      // index.
      if (type && index_type && type->dim()) {
        if (*type->dim() == 0) {
          node->output()->setType(type->withDim(index_type->dim()));
        } else {
          node->output()->setType(type);
        }
        return true;
      }
    } else if (
        node->matches(
            "aten::gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor")) {
      auto type = input_type(0);
      auto index_type = input_type(1);
      // Gather has this annoying edge case where index always needs to match
      // the number of dims of self, **except** when self is 1D and index is 0D
      // in which case we return a 0D output.
      if (type && index_type && index_type->dim()) {
        if (*index_type->dim() == 0) {
          node->output()->setType(type->withDim(0));
        } else {
          node->output()->setType(type);
        }
        return true;
      }
    } else if (
        node->matches(
            "aten::embedding(Tensor weight, Tensor indices, int padding_idx, bool scale_grad_by_freq, bool sparse) -> Tensor")) {
      auto weight_type = input_type(0);
      auto indices_type = input_type(1);
      if (weight_type && indices_type && indices_type->dim()) {
        node->output()->setType(weight_type->withDim(*indices_type->dim() + 1));
        return true;
      }
    } else if (
        node->matches(
            "aten::bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias) -> Tensor")) {
      if (auto type = input_type(0)) {
        node->output()->setType(type);
        return true;
      }
      if (auto type = input_type(1)) {
        node->output()->setType(type);
        return true;
      }
    } else if (
        node->matches(
            "aten::dist(Tensor self, Tensor other, Scalar p) -> Tensor")) {
      if (auto type = any_tensor_type(node)) {
        node->output()->setType(type->withDim(0));
        return true;
      }
    }

    // The code below implements formulas that need type information for all
    // their tensor inputs, and have exactly one output.
    std::vector<TensorTypePtr> tensor_types;
    static const auto reshape_prop =
        [](Node* node,
           Symbol shape_input,
           const std::vector<TensorTypePtr>& tensor_types) -> TensorTypePtr {
      if (auto list_size = determineListSize(node->namedInput(shape_input))) {
        return tensor_types.at(0)->withDim(*list_size);
      }
      return nullptr;
    };
    const auto getSingleOutputType = [&]() -> TypePtr {
      if (node->matches("aten::type_as(Tensor self, Tensor other) -> Tensor")) {
        return tensor_types.at(0)->withScalarType(
            tensor_types.at(1)->scalarType());
      } else if (
          node->matches(
              "aten::view_as(Tensor(a) self, Tensor other) -> Tensor(a)") ||
          node->matches(
              "aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)") ||
          node->matches(
              "aten::reshape_as(Tensor(a) self, Tensor other) -> Tensor(a)")) {
        return tensor_types.at(0)->withDim(tensor_types.at(1)->dim());
      } else if (
          node->matches("aten::view(Tensor self, int[] size) -> Tensor") ||
          node->matches(
              "aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor") ||
          node->matches(
              "aten::as_strided(Tensor self, int[] size, int[] stride, int? storage_offset) -> Tensor")) {
        return reshape_prop(node, attr::size, tensor_types);
      } else if (
          node->matches(
              "aten::as_tensor(Tensor data, *, ScalarType? dtype, Device? device) -> Tensor")) {
        TypePtr input_type = node->inputs().at(0)->type();
        if (auto type = input_type->cast<TensorType>()) {
          if (type->scalarType() && type->device()) {
            at::ScalarType default_type = *type->scalarType();
            c10::Device default_device = *type->device();
            if (auto dtype_index =
                    node->schema().argumentIndexWithName("dtype")) {
              auto inp = toIValue(node->inputs().at(*dtype_index));
              if (inp == c10::nullopt) {
                return nullptr;
              }
              if (!inp->isNone()) {
                default_type = inp->toScalarType();
              }
            }
            if (auto device_index =
                    node->schema().argumentIndexWithName("device")) {
              auto inp = toIValue(node->inputs().at(*device_index));
              if (inp == c10::nullopt) {
                return nullptr;
              }
              if (!inp->isNone()) {
                default_device = inp->toDevice();
              }
            }
            node->output()->setType(TensorType::create(
                default_type,
                default_device,
                type->dim(),
                /*requires_grad=*/c10::nullopt));
          }
        }
        return nullptr;
      } else if (
          node->matches(
              "aten::reshape(Tensor(a) self, int[] shape) -> Tensor(a)")) {
        return reshape_prop(node, attr::shape, tensor_types);
      } else if (node->matches(
                     "aten::repeat(Tensor self, int[] repeats) -> Tensor")) {
        return reshape_prop(node, attr::repeats, tensor_types);
      } else if (node->matches(
                     "aten::unsqueeze(Tensor self, int dim) -> Tensor")) {
        auto& t = tensor_types.at(0);
        if (!t->dim()) {
          return t;
        }
        return t->withDim(*t->dim() + 1);
      } else if (
          node->matches(
              "aten::select(Tensor self, int dim, int index) -> Tensor") ||
          node->matches(
              "aten::diagonal(Tensor self, int offset, int dim1, int dim2) -> Tensor")) {
        auto& t = tensor_types.at(0);
        return t->dim() && *t->dim() > 0 ? t->withDim(*t->dim() - 1) : nullptr;
      } else if (node->matches(
                     "aten::matmul(Tensor self, Tensor other) -> Tensor")) {
        if (!tensor_types.at(0)->dim() || !tensor_types.at(1)->dim()) {
          return nullptr;
        }
        int dim1 = *tensor_types.at(0)->dim();
        int dim2 = *tensor_types.at(1)->dim();
        if (dim1 == 1 && dim2 == 1) {
          // Dot product
          return tensor_types.at(0)->withDim(0);
          // NOLINTNEXTLINE(bugprone-branch-clone)
        } else if (dim1 == 2 && dim2 == 2) {
          // Matrix multiply
          return tensor_types.at(0);
        } else if (dim1 == 1 && dim2 == 2) {
          // Unsqueeze + matrix multiply + squeeze
          return tensor_types.at(0);
        } else if (dim1 == 2 && dim2 == 1) {
          // Matrix vector multiply
          return tensor_types.at(1);
        } else {
          // Batched matrix multiply (possibly with squeeze + unsqueeze if one
          // argument is 1D)
          auto type = broadcast(tensor_types, tensor_types[0]->scalarType());
          if (dim1 == 1 || dim2 == 1) {
            type = type->withDim(type->dim().value() - 1);
          }
          return type;
        }
      } else if (node->matches("aten::nonzero(Tensor self) -> Tensor")) {
        return tensor_types.at(0)->dimensionedOnly()->withScalarType(at::kLong);
      } else if (node->matches(
                     "aten::take(Tensor self, Tensor index) -> Tensor")) {
        return tensor_types.at(1)->dimensionedOnly()->withScalarType(
            tensor_types.at(0)->scalarType());
      } else if (node->matches(
                     "aten::diagflat(Tensor self, int offset) -> Tensor")) {
        return tensor_types.at(0)->withDim(2);
      } else if (node->matches(
                     "aten::diag(Tensor self, int diagonal) -> Tensor")) {
        auto& t = tensor_types.at(0);
        if (t->dim() && *t->dim() == 1) {
          return t->withDim(2);
        } else if (t->dim() && *t->dim() == 2) {
          return t->withDim(1);
        } else {
          return nullptr;
        }
      } else if (
          node->matches(
              "aten::unfold(Tensor self, int dimension, int size, int step) -> Tensor")) {
        auto& t = tensor_types.at(0);
        if (!t->dim()) {
          return nullptr;
        }
        return t->withDim(*t->dim() + 1);
      } else if (node->matches(
                     "aten::polygamma(int n, Tensor self) -> Tensor")) {
        return tensor_types.at(0);
      }
      return nullptr;
    };
    if (auto maybe_tensor_types = gatherTensorTypes(node)) {
      tensor_types = std::move(*maybe_tensor_types);
    } else {
      return false;
    }
    if (node->outputs().size() == 1) {
      if (auto type = getSingleOutputType()) {
        node->output()->setType(type);
        return true;
      }
    }
    return false;
  }

  bool PropagateCompleteShapeOnNode(
      Node* node,
      bool insert_expands,
      std::vector<TensorTypePtr> tensor_types) {
    // For expensive ops we can directly encode their shape propagation
    // here, otherwise we fallback to running a fake version of the op
    // to get a quick and dirty propagation.
    if (node->matches(
            "aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor") ||
        node->matches(
            "aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor") ||
        node->matches("aten::mul(Tensor self, Tensor other) -> Tensor")) {
      // These nodes handle tensors of different shapes internally, so there's
      // no need to insert explicit expand nodes.
      return PropagateShapeOnNodeByRunningIt(node);
    } else if (node->matches(
                   "aten::div(Tensor self, Tensor other) -> Tensor")) {
      // "div" handle tensors of different shapes internally, so there's no need
      // to insert explicit expand nodes.
      // Note that this function could be merged to the one above , but "div" is
      // not always safe to run by itself due to integer divide-by-zero.
      // We fake the execution by running "mul" operation instead.
      auto op = getOperatorForLiteral(
                    "aten::mul(Tensor self, Tensor other) -> Tensor")
                    ->getOperation();
      return PropagateShapeOnNodeByRunningIt(node, op);
    } else if (node->matches(
                   "aten::pow(Tensor self, Scalar exponent) -> Tensor")) {
      node->output()->setType(tensor_types.at(0));
      return true;
    } else if (
        node->matches(
            "aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor") ||
        node->matches(
            "aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor") ||
        node->matches("aten::div(Tensor self, Scalar other) -> Tensor") ||
        node->matches("aten::mul(Tensor self, Scalar other) -> Tensor")) {
      auto first_scalar_type = (tensor_types)[0]->scalarType();
      auto second_scalar_type =
          tryScalarTypeFromJitType(*node->inputs()[1]->type());
      if (!first_scalar_type || !second_scalar_type) {
        return false;
      }
      if (isIntegralType(*first_scalar_type, false) &&
          isFloatingType(*second_scalar_type)) {
        auto default_dtype =
            at::typeMetaToScalarType(caffe2::get_default_dtype());
        auto type = tensor_types[0]->withScalarType(default_dtype);
        node->output()->setType(type);
        return true;
      }
      if (c10::ScalarType::Bool == *first_scalar_type &&
          c10::ScalarType::Bool != *second_scalar_type) {
        auto result_type =
            c10::promoteTypes(*first_scalar_type, *second_scalar_type);
        auto type = tensor_types[0]->withScalarType(result_type);
        node->output()->setType(type);
        return true;
      }
      auto type = tensor_types[0]->withScalarType(first_scalar_type);
      node->output()->setType(type);
      return true;
    } else if (
        insert_expands &&
        (node->matches("aten::pow(Tensor self, Tensor exponent) -> Tensor") ||
         node->matches("aten::min(Tensor self, Tensor other) -> Tensor") ||
         node->matches("aten::max(Tensor self, Tensor other) -> Tensor") ||
         node->matches("aten::lt(Tensor self, Tensor other) -> Tensor") ||
         node->matches("aten::le(Tensor self, Tensor other) -> Tensor") ||
         node->matches("aten::gt(Tensor self, Tensor other) -> Tensor") ||
         node->matches("aten::ge(Tensor self, Tensor other) -> Tensor") ||
         node->matches("aten::eq(Tensor self, Tensor other) -> Tensor") ||
         node->matches("aten::ne(Tensor self, Tensor other) -> Tensor"))) {
      // Binary broadcasting ops
      // NB: we don't handle the nodes in any other way (note the lack of
      // return!), because the type casting logic in scalar cases is
      // non-trivial. It's better to just run them.
      broadcastBinary(node, tensor_types, 0, 1);
      return PropagateShapeOnNodeByRunningIt(node);
    } else if (
        node->matches(
            "aten::logit(Tensor self, float? eps = None) -> Tensor") ||
        node->matches("aten::neg(Tensor self) -> Tensor") ||
        node->matches("aten::sigmoid(Tensor self) -> Tensor") ||
        node->matches("aten::tanh(Tensor self) -> Tensor")) {
      node->output()->setType(tensor_types.at(0)->contiguous());
      return true;
    } else if (node->matches("aten::mm(Tensor self, Tensor mat2) -> Tensor")) {
      auto lhs_type = tensor_types.at(0);
      auto rhs_type = tensor_types.at(1);
      auto lhs_sizes = lhs_type->sizes().concrete_sizes().value();
      auto rhs_sizes = rhs_type->sizes().concrete_sizes().value();
      SHAPE_ASSERT(
          *lhs_type->sizes().size() == 2 && *rhs_type->sizes().size() == 2);
      node->output()->setType(TensorType::createContiguous(
          *lhs_type->scalarType(),
          *lhs_type->device(),
          at::IntArrayRef{lhs_sizes[0], rhs_sizes[1]}));
      return true;
    } else if (node->matches("aten::t(Tensor self) -> Tensor")) {
      auto tp = tensor_types.at(0);
      auto sizes = tp->sizes().concrete_sizes().value();
      auto strides = tp->strides().concrete_sizes().value();
      SHAPE_ASSERT(sizes.size() == 2);
      std::swap(sizes.at(0), sizes.at(1));
      std::swap(strides.at(0), strides.at(1));
      node->output()->setType(tp->withSizesStrides(sizes, strides));
      return true;
    } else if (
        node->matches(
            "aten::narrow(Tensor self, int dim, int start, int length) -> Tensor",
            /*const_inputs=*/{attr::dim, attr::length})) {
      auto tp = tensor_types.at(0);
      auto sizes = tp->sizes().concrete_sizes().value();
      int64_t dim = node->get<int64_t>(attr::dim).value();
      int64_t length = node->get<int64_t>(attr::length).value();
      SHAPE_ASSERT(dim >= 0 && static_cast<size_t>(dim) < sizes.size());
      sizes.at(dim) = length;
      node->output()->setType(
          tp->withSizesStrides(sizes, tp->strides().concrete_sizes().value()));
      return true;
    } else if (node->matches(
                   "aten::sum(Tensor self, *, int? dtype) -> Tensor")) {
      node->output()->setType(tensor_types.at(0)->withSizes({}));
      return true;
    } else if (
        node->matches(
            "aten::sum(Tensor self, int[]? dim, bool keepdim, *, int? dtype) -> Tensor",
            /*const_inputs=*/{attr::dim, attr::keepdim})) {
      auto& tp = tensor_types.at(0);
      auto sizes = tp->sizes().concrete_sizes().value();
      auto dims = node->get<c10::List<int64_t>>(attr::dim).value();
      bool keepdim = node->get<bool>(attr::keepdim).value();
      std::reverse(dims.begin(), dims.end());
      for (int64_t dim : dims) {
        SHAPE_ASSERT(dim >= 0 && static_cast<size_t>(dim) < sizes.size());
        if (keepdim) {
          sizes.at(dim) = 1;
        } else {
          sizes.erase(sizes.begin() + dim);
        }
      }
      node->output()->setType(tp->withSizes(sizes));
      return true;
    } else if (node->matches(
                   "aten::squeeze(Tensor self, int dim) -> Tensor",
                   /*const_inputs=*/attr::dim)) {
      auto& tp = tensor_types.at(0);
      auto sizes = tp->sizes().concrete_sizes().value();
      auto strides = tp->strides().concrete_sizes().value();
      int64_t dim = wrapDim(node->get<int64_t>(attr::dim).value(), sizes);
      SHAPE_ASSERT(dim >= 0 && static_cast<size_t>(dim) < sizes.size());
      if (sizes.at(dim) == 1) {
        sizes.erase(sizes.begin() + dim);
        strides.erase(strides.begin() + dim);
      }
      node->output()->setType(tp->withSizesStrides(sizes, strides));
      return true;
    } else if (node->matches(
                   "aten::unsqueeze(Tensor self, int dim) -> Tensor",
                   /*const_inputs=*/attr::dim)) {
      auto& tp = tensor_types.at(0);
      auto sizes = tp->sizes().concrete_sizes().value();
      auto strides = tp->strides().concrete_sizes().value();
      int64_t dim = wrapDim(node->get<int64_t>(attr::dim).value(), sizes);
      SHAPE_ASSERT(dim >= 0 && static_cast<size_t>(dim) <= sizes.size());
      int64_t new_stride = dim >= static_cast<int64_t>(sizes.size())
          ? 1
          : sizes.at(dim) * strides.at(dim);
      sizes.insert(sizes.begin() + dim, 1);
      strides.insert(strides.begin() + dim, new_stride);
      node->output()->setType(tp->withSizesStrides(sizes, strides));
      return true;
    } else if (node->matches(
                   "aten::view(Tensor self, int[] size) -> Tensor",
                   /*const_inputs=*/attr::size)) {
      auto sizes = node->get<c10::List<int64_t>>(attr::size).value();
      bool inferred = false;
      // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
      size_t inferred_idx;
      int64_t size_product = 1;
      for (const auto i : c10::irange(sizes.size())) {
        if (sizes.get(i) == -1) {
          if (inferred)
            throw propagation_error();
          inferred = true;
          inferred_idx = i;
        } else {
          size_product *= sizes.get(i);
        }
      }

      if (inferred) {
        SHAPE_ASSERT(size_product != 0);
        size_t numel = 1;
        auto concrete_sizes =
            tensor_types.at(0)->sizes().concrete_sizes().value();
        for (int64_t s : concrete_sizes)
          numel *= s;
        int64_t inferred_size = numel / size_product;
        sizes[inferred_idx] = inferred_size;
      }
      node->output()->setType(tensor_types.at(0)->withSizes(sizes.vec()));
      return true;
    } else if (node->matches(
                   "aten::type_as(Tensor self, Tensor other) -> Tensor")) {
      if (tensor_types.at(0)->scalarType() ==
          tensor_types.at(1)->scalarType()) {
        node->output()->setType(node->namedInput(attr::self)->type());
      } else {
        // This will be a copy, so the result will be contiguous
        node->output()->setType(tensor_types.at(1)->withSizes(
            tensor_types.at(0)->sizes().concrete_sizes().value()));
      }
      return true;
    } else if (
        node->matches(
            "aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor",
            /*const_inputs=*/attr::size)) {
      auto tp = tensor_types.at(0);
      auto sizesAndStrides = at::inferExpandGeometry_dimvector(
          tp->sizes().concrete_sizes().value(),
          tp->strides().concrete_sizes().value(),
          node->get<c10::List<int64_t>>(attr::size).value().vec());
      node->output()->setType(
          tp->withSizesStrides(sizesAndStrides.sizes, sizesAndStrides.strides));
      return true;
    } else if (
        node->matches(
            "aten::index_select(Tensor self, int dim, Tensor index) -> Tensor",
            /*const_inputs=*/attr::dim)) {
      auto ten = tensor_types.at(0);
      auto index = tensor_types.at(1);
      int64_t dim = node->get<int64_t>(attr::dim).value();
      SHAPE_ASSERT(*index->sizes().size() == 1);
      SHAPE_ASSERT(dim >= 0 && static_cast<size_t>(dim) < ten->sizes().size());
      std::vector<int64_t> sizes = ten->sizes().concrete_sizes().value();
      sizes[dim] = index->sizes()[0].value();
      node->output()->setType(ten->withSizes(sizes));
      return true;
    } else if (node->matches(
                   "aten::chunk(Tensor self, int chunks, int dim) -> Tensor[]",
                   /*const_inputs=*/{attr::chunks, attr::dim})) {
      auto input_type = tensor_types.at(0);
      auto sizes = input_type->sizes().concrete_sizes().value();
      auto strides = input_type->strides().concrete_sizes().value();
      int64_t dim = node->get<int64_t>(attr::dim).value();
      int64_t chunks = node->get<int64_t>(attr::chunks).value();
      sizes[dim] /= chunks;
      for (Value* output : node->outputs()) {
        output->setType(input_type->withSizesStrides(sizes, strides));
      }
      if (*input_type->sizes()[dim] % chunks != 0) {
        sizes[dim] = *input_type->sizes()[dim] % chunks;
        node->outputs().back()->setType(
            input_type->withSizesStrides(sizes, strides));
      }
      return true;
    } else if (node->kind() == ::c10::onnx::Shape) {
      SHAPE_ASSERT(node->inputs().size() == 1 && node->outputs().size() == 1);
      std::vector<int64_t> dim_vec = {
          (int64_t)*tensor_types.at(0)->sizes().size()};
      at::IntArrayRef dims(dim_vec);
      node->output()->setType(
          TensorType::createContiguous(at::kLong, at::kCPU, dims));
      return true;
    } else if (node->kind() == ::c10::onnx::Reshape) {
      setUnshapedType(node);
      return true;
    }
    setUnshapedType(node);
    return false;
  }
};
} // anonymous namespace

void PropagateInputShapes(const std::shared_ptr<Graph>& graph) {
  ShapePropagator(graph).propagateBlock(graph->block());
}

namespace {

using TypeCache = std::unordered_map<TypePtr, TypePtr>;

TypePtr getOrCreateUnshapedType(TypePtr type, TypeCache& unshaped_type_cache);

TypePtr unshapedTypeImpl(TypePtr type, TypeCache& unshaped_type_cache) {
  if (type->isSubtypeOf(*TensorType::get())) {
    return TensorType::get();
  }
  at::ArrayRef<TypePtr> contained = type->containedTypes();
  if (contained.empty()) {
    return type;
  }
  std::vector<TypePtr> unshaped_contained_types;
  for (const auto& contained_type : contained) {
    unshaped_contained_types.push_back(
        getOrCreateUnshapedType(contained_type, unshaped_type_cache));
  }
  return type->withContained(unshaped_contained_types);
}

TypePtr getOrCreateUnshapedType(TypePtr type, TypeCache& unshaped_type_cache) {
  auto maybe_cached_type = unshaped_type_cache.find(type);
  if (maybe_cached_type != unshaped_type_cache.end()) {
    return maybe_cached_type->second;
  }
  auto unshaped_type = unshapedTypeImpl(type, unshaped_type_cache);
  unshaped_type_cache[type] = unshaped_type;
  return unshaped_type;
}

void EraseShapeInformation(
    const std::shared_ptr<Graph>& graph,
    TypeCache& unshaped_type_cache);

void EraseShapeInformation(
    at::ArrayRef<Value*> vals,
    TypeCache& unshaped_type_cache) {
  for (Value* v : vals) {
    v->setType(getOrCreateUnshapedType(v->type(), unshaped_type_cache));
  }
}

void EraseShapeInformation(Block* b, TypeCache& unshaped_type_cache) {
  EraseShapeInformation(b->inputs(), unshaped_type_cache);
  EraseShapeInformation(b->outputs(), unshaped_type_cache);
  for (Node* n : b->nodes()) {
    EraseShapeInformation(n->outputs(), unshaped_type_cache);
    for (Block* sb : n->blocks()) {
      EraseShapeInformation(sb, unshaped_type_cache);
    }
    if (n->hasAttribute(attr::Subgraph)) {
      EraseShapeInformation(n->g(attr::Subgraph), unshaped_type_cache);
    }
  }
}

void EraseShapeInformation(
    const std::shared_ptr<Graph>& graph,
    TypeCache& unshaped_type_cache) {
  EraseShapeInformation(graph->block(), unshaped_type_cache);
}

} // anonymous namespace

void EraseShapeInformation(const std::shared_ptr<Graph>& graph) {
  TypeCache unshaped_type_cache;
  EraseShapeInformation(graph->block(), unshaped_type_cache);
}
} // namespace jit
} // namespace torch