1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_undefinedness.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <ATen/core/symbol.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
static const auto countsAttribute = Symbol::attr("none_counts");
bool hasGradSumToSizeUses(Value* v) {
return std::any_of(v->uses().begin(), v->uses().end(), [](const Use& use) {
return use.user->kind() == aten::_grad_sum_to_size;
});
}
void insertProfileNodesForSpecializeAutogradZero(
Block* block,
ProfilingRecord* pr) {
for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
auto n = *it;
for (const auto offset : c10::irange(n->inputs().size())) {
auto i = n->input(offset);
if (i->type()->cast<OptionalType>() && hasGradSumToSizeUses(i)) {
// here we are profile the definition instead of the use,
// because we are only optimizing in the case of a None value which is
// immutable
auto opt_pn = pr->createProfileIValueNode(i);
c10::Dict<std::string, int64_t> noneCountsDict;
noneCountsDict.insert("num_none", 0);
noneCountsDict.insert("num_present", 0);
IValue init_val(noneCountsDict);
opt_pn->ival_(countsAttribute, init_val);
std::function<void(Stack&)> optional_profiler = [pr,
opt_pn](Stack& stack) {
std::lock_guard<std::mutex> lock(pr->mutex_);
TORCH_INTERNAL_ASSERT(opt_pn->hasAttribute(countsAttribute));
// frame_id is unused
int64_t frame_id = 0;
pop(stack, frame_id);
const auto& counts_attr = opt_pn->ival(countsAttribute);
auto noneCounts = c10::impl::toTypedDict<std::string, int64_t>(
counts_attr.toGenericDict());
IValue value;
pop(stack, value);
if (value.isNone()) {
noneCounts.insert_or_assign(
"num_none", noneCounts.at("num_none") + 1);
} else {
noneCounts.insert_or_assign(
"num_present", noneCounts.at("num_present") + 1);
}
push(stack, value);
};
opt_pn->setCallback(optional_profiler);
opt_pn->insertAfter(i->node());
i->replaceAllUsesAfterNodeWith(opt_pn, opt_pn->output());
}
}
for (auto ib : n->blocks()) {
insertProfileNodesForSpecializeAutogradZero(ib, pr);
}
}
}
void InsertProfileNodesForSpecializeAutogradZero(ProfilingRecord* pr) {
insertProfileNodesForSpecializeAutogradZero(pr->profiled_graph_->block(), pr);
}
struct AutogradZeroSpecializer {
enum class State { Nonzero, Zero, Unknown };
AutogradZeroSpecializer(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
void run() {
if (!isBackwardGraph()) {
return;
}
if (getExecutorMode()) {
if (auto versioning_if = guardSpecializations()) {
specializeAutogradOps(versioning_if->blocks()[0]);
GRAPH_DUMP("After versioning graph", graph_);
}
} else {
setStatesOnGraphInputs();
specializeAutogradOps(graph_->block());
}
GRAPH_DUMP("After specializeAutogradOps graph", graph_);
}
private:
bool isBackwardGraph() {
return std::any_of(
graph_->nodes().begin(), graph_->nodes().end(), [](Node* n) {
switch (n->kind()) {
case prim::AutogradAnyNonZero:
case prim::AutogradAdd:
case aten::_grad_sum_to_size:
return true;
default:
return false;
}
});
}
void replaceBlockInputsWithGraphInputs(Block* b) {
TORCH_INTERNAL_ASSERT(graph_->inputs().size() == b->inputs().size());
size_t num_inputs = graph_->inputs().size();
for (const auto i : c10::irange(num_inputs)) {
b->inputs().at(i)->replaceAllUsesWith(graph_->inputs().at(i));
}
for (const auto i : c10::irange(num_inputs)) {
b->eraseInput(num_inputs - (1 + i));
}
}
void setStatesOnGraphInputs() {
for (Value* input : graph_->inputs()) {
const auto& tp = input->type();
if (auto tt = tp->cast<TensorType>()) {
if (tt->undefined()) {
if (*tt->undefined()) {
state_[input] = State::Zero;
} else {
state_[input] = State::Nonzero;
}
} else {
state_[input] = State::Unknown;
}
} else if (
tp->isSubtypeOf(*TensorType::get()) ||
tp->isSubtypeOf(*ListType::ofTensors())) {
state_[input] = State::Nonzero;
} else {
state_[input] = State::Unknown;
}
}
}
static void getUsesWithAttribute_(
Value* inp,
Symbol attr,
std::vector<Node*>& uses) {
for (auto use : inp->uses()) {
if (use.user->kind() != prim::profile_ivalue) {
continue;
}
if (use.user->hasAttribute(attr)) {
uses.push_back(use.user);
}
getUsesWithAttribute_(use.user->output(), attr, uses);
}
}
// this is to deal with the fact that there could be other passes that
// would like to profile this exact same value. this helper walks
// chains of `prim::profile_ivalue` to locate the one inserted by/for
// `specializeAutogradZero`
static std::vector<Node*> getUsesWithAttribute(Value* inp, Symbol attr) {
std::vector<Node*> uses;
getUsesWithAttribute_(inp, attr, uses);
return uses;
}
static Node* getUse(Value* inp, Symbol kind) {
for (auto use : inp->uses()) {
if (use.user->kind() == kind) {
return use.user;
}
}
return nullptr;
}
void removeProfiledOptionalUses(const std::vector<Node*>& uses) {
TORCH_INTERNAL_ASSERT(!uses.empty());
auto inp = uses[0]->input();
// this removes `prim::profile_ivalue` from the original and to-specialize
// blocks N.B. the false block isn't impacted as it has been already
// encapsulated in a fallback function
for (auto u : uses) {
u->output()->replaceAllUsesWith(inp);
}
}
Node* guardSpecializations() {
auto versioning_if = graph_->create(prim::If, {}, graph_->outputs().size());
auto value_map = [](Value* v) { return v; };
auto true_block = versioning_if->addBlock();
auto false_block = versioning_if->addBlock();
// we will optimize true_block
true_block->cloneFrom(graph_->block(), value_map);
replaceBlockInputsWithGraphInputs(true_block);
false_block->cloneFrom(graph_->block(), value_map);
replaceBlockInputsWithGraphInputs(false_block);
replaceBlockWithFallbackGraph(false_block, graph_->inputs());
WithInsertPoint wip{graph_->block()->param_node()->next()};
Value* none_val = graph_->insertConstant(IValue());
std::vector<Value*> checks;
std::vector<Value*> zero_values;
std::vector<Value*> nonzero_values;
for (auto inp : graph_->inputs()) {
std::vector<Node*> iprofile_counts_nodes =
getUsesWithAttribute(inp, countsAttribute);
if (!iprofile_counts_nodes.empty()) {
// the original `prim::profile_value[num_present=0,...]` on `inp` is
// copied into `true_block` and `false_block`.
auto profile_ivalue_node = iprofile_counts_nodes[0];
TORCH_INTERNAL_ASSERT(
profile_ivalue_node->hasAttribute(countsAttribute));
const auto& counts_attr =
profile_ivalue_node->ival(countsAttribute).toGenericDict();
auto num_present = counts_attr.at(IValue{"num_present"}).toInt();
auto num_none = counts_attr.at(IValue{"num_none"}).toInt();
if (num_present == 0 && num_none != 0) {
auto check = graph_->insert(aten::__is__, {inp, none_val})->node();
checks.push_back(check->output());
profiled_none_.insert(inp);
}
removeProfiledOptionalUses(iprofile_counts_nodes);
continue;
}
if (inp->uses().size() == 0 || !inp->type()->cast<TensorType>()) {
continue;
}
// TODO: check multiple uses ?
auto pout = getUse(inp, prim::profile);
if (!pout) {
continue;
}
auto pttp = pout->ty(attr::profiled_type)->expect<TensorType>();
if (!pttp->undefined().has_value()) {
continue;
}
state_[inp] = *pttp->undefined() ? State::Zero : State::Nonzero;
if (*pttp->undefined()) {
zero_values.push_back(inp);
} else {
nonzero_values.push_back(inp);
}
}
GRAPH_DUMP("After for loop", graph_);
// unable to specialize any of the inputs
if (nonzero_values.size() == 0 && zero_values.size() == 0) {
GRAPH_DUMP("Unable to add any specialization guards", graph_);
versioning_if->destroy();
// the checks we inserted will be cleaned up
// by any subsequent DCE pass
return nullptr;
}
Node* nonzero_check = graph_->insert(prim::AutogradAllNonZero, {})->node();
for (Value* v : nonzero_values) {
nonzero_check->addInput(v);
}
checks.push_back(nonzero_check->output());
Node* zero_check = graph_->insert(prim::AutogradAllZero, {})->node();
for (Value* v : zero_values) {
zero_check->addInput(v);
}
checks.push_back(zero_check->output());
Value* bool_list =
graph_->insertNode(graph_->createList(BoolType::get(), checks))
->output();
Value* conjunction = graph_->insert(aten::all, {bool_list});
versioning_if->addInput(conjunction);
graph_->insertNode(versioning_if);
auto ret = graph_->return_node();
for (const auto i : c10::irange(ret->inputs().size())) {
auto ogo = ret->input(i);
auto ngo = versioning_if->output(i);
ngo->copyMetadata(ogo);
ret->replaceInput(i, ngo);
}
// We've created:
// succesful_checks = Guards(...)
// if (succesful_checks)
// -> optimized graph
// else:
// -> fallback graph
// original graph
//
// Remove the dead original graph
for (auto it = graph_->block()->nodes().reverse().begin();
*it != versioning_if;) {
Node* n = *it;
it++;
n->destroy();
}
GRAPH_DUMP("After guardSpecializations", graph_);
return versioning_if;
}
void specializeAutogradOps(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
auto n = *it;
switch (n->kind()) {
case prim::AutogradAdd: {
auto a = n->input(0);
auto b = n->input(1);
// if one is Autograd zero, we can just drop the add
if (state_[a] == State::Zero) {
// Zero + b == b
n->output()->replaceAllUsesWith(b);
it.destroyCurrent();
} else if (state_[b] == State::Zero) {
// a + Zero == a
n->output()->replaceAllUsesWith(a);
it.destroyCurrent();
} else if (
state_[a] == State::Nonzero && state_[b] == State::Nonzero) {
// when both are Nonzero, we can use a normal, optimizable add
// instruction
WithInsertPoint guard(n);
auto* cOne = graph_->insertConstant(1);
auto* add_node = graph_->insertNode(graph_->create(aten::add, 1));
add_node->addInput(a);
add_node->addInput(b);
add_node->addInput(cOne);
auto* add_output = add_node->output();
add_output->setType(n->output()->type());
state_[add_output] = State::Nonzero;
n->output()->replaceAllUsesWith(add_output);
it.destroyCurrent();
} else {
// otherwise we have conditionally-Nonzero things, and we need
// to actually run an AutogradAdd which will guard for Zeros
// so we leave the op as is
state_[n->output()] = State::Unknown;
}
} break;
case prim::AutogradZero: {
state_[n->output()] = State::Zero;
} break;
case prim::profile: {
// this a profile node on a tensor use
// if we decided to specialize this graph
// its input may have undefinedness info
// otherwise it should be Unknown
if (n->inputs().size() > 0) {
state_[n->output()] = !state_.count(n->input())
? State::Unknown
: state_[n->output()] = state_[n->input()];
}
break;
}
case prim::BailOut: {
if (auto ptt = n->output()->type()->expect<TensorType>()) {
state_[n->output()] = ptt->undefined()
? *ptt->undefined() ? State::Zero : State::Nonzero
: State::Unknown;
}
} break;
// Lowered GradOf block
case prim::If: {
auto if_input = n->input(0)->node();
if (if_input->kind() == prim::AutogradAnyNonZero) {
auto all_zeros = std::all_of(
if_input->inputs().begin(),
if_input->inputs().end(),
[&](Value* v) { return state_[v] == State::Zero; });
auto all_nonzeros = std::all_of(
if_input->inputs().begin(),
if_input->inputs().end(),
[&](Value* v) { return state_[v] == State::Nonzero; });
// Property 1: if all the gradInputs to the GradOf are Zero
// then the gradOutputs are also zero and will be represented as
// AutogradZero nodes
if (all_zeros) {
auto zero =
graph_->createAutogradZero()->insertAfter(n)->output();
state_[zero] = State::Zero;
for (auto o : n->outputs()) {
o->replaceAllUsesWith(zero);
}
it.destroyCurrent();
break;
}
specializeGradSumToSize(n->blocks().at(0));
if (all_nonzeros) {
auto body = n->blocks().at(0);
// hoist the nodes in the GradOf body to be before the linear
// block
for (auto it = body->nodes().begin();
it != body->nodes().end();) {
auto block_node = *it++;
block_node->moveBefore(n);
}
for (size_t i = 0; i < n->outputs().size(); ++i) {
n->outputs().at(i)->replaceAllUsesWith(body->outputs().at(i));
state_[body->outputs().at(i)] = State::Nonzero;
}
it.destroyCurrent();
break;
}
}
for (auto o : n->outputs()) {
state_[o] = State::Unknown;
}
break;
}
default:
for (auto o : n->outputs()) {
state_[o] = State::Unknown;
}
break;
}
}
}
void specializeGradSumToSize(Block* b) {
for (auto it = b->nodes().begin(); it != b->nodes().end(); ++it) {
Node* n = *it;
if (n->kind() == aten::_grad_sum_to_size) {
bool profiled_none_flag = profiled_none_.count(n->input(1));
const Node* node = n->input(1)->node();
// propagate profiled none through other profile_ivalue nodes;
while (!profiled_none_flag && node->kind() == prim::profile_ivalue) {
profiled_none_flag =
profiled_none_flag || profiled_none_.count(node->input(0));
node = node->input(0)->node();
}
if (n->input(1)->mustBeNone() || profiled_none_flag) {
n->output()->replaceAllUsesWith(n->input(0));
it.destroyCurrent();
}
}
}
}
std::shared_ptr<Graph> graph_;
std::unordered_set<Value*> profiled_none_;
std::unordered_map<Value*, State> state_;
};
// propagate autograd zero information through a gradient graph and
// remove grad_of blocks if present.
// Note: this is a very limited pass. It only propagates autograd zeros for
// operations generated by the symbolic autodiff code and cleans up
// AutogradAdds when possible. Outputs of other nodes are conservatively
// marked Unknown and not optimized.
void specializeAutogradZero(std::shared_ptr<Graph> g) {
AutogradZeroSpecializer azs(std::move(g));
azs.run();
}
} // namespace jit
} // namespace torch
|