File: symbolic_shape_analysis.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1187 lines) | stat: -rw-r--r-- 43,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
#include <ATen/core/symbol.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/integer_value_refinement.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/peephole_list_idioms.h>
#include <torch/csrc/jit/passes/peephole_non_tensor.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_cache.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/runtime/exception_message.h>
#include <torch/csrc/jit/runtime/symbolic_shape_registry.h>
#include <torch/csrc/utils/memory.h>
#include <algorithm>
#include <memory>
#include <numeric>
#include <unordered_map>
#include <vector>

/*
XXX: this is still in prototype phase and has much work left to do, including
but not limited to:
- Refactor APIs
- Add decent coverage of common ops
- Add shape analysis pass on Graph that handles Loops
- Allow concurrent reads to the operator map
- Supporting returning partially evaluated shape compute graph
*/

static bool symbolic_shape_analysis_test_mode = false;

namespace torch {
namespace jit {

// This is similar to c10::SymbolicShape, but instead of either having
// a concrete dimension or a symbolic dimension, an argument may be:
// - A Symbolic Dimension
// - A Constant Integer
// - Neither of the above. The third case can occur due to inputs to
// ops like view that accept negative values. Maintaining the distinction
// between an unknown symbolic dimension and an unknown integer allows
// us to optimize out comparisons to values < 0 (symbolic shapes are always >=
// 0) For example, a call like graph(%y: Tensor(SS(-1), 10, 10), %inp: int):
//   %five: int = prim::Constant[value=5]()
//   %zero: int = prim::Constant[value=0]()
//   %1 : int = aten::size(%y, %zero)
//   %2 : int[] = prim::ListConstruct(%five, %1, %inp)
//   %y.2: Tensor(5, SS(-1), (New Symbolic Shape)) = aten::view(%y, %2)
//
// x.view([5, y.size(0), inp])
// will have inputs equal to [5, SS(-1), c10::nullopt]

struct ShapeArg
    : public std::
          pair<c10::optional<c10::ShapeSymbol>, c10::optional<int64_t>> {
  using pair::pair;

  static ShapeArg unknownInteger() {
    return ShapeArg();
  }

  ShapeArg(int64_t int_value) {
    this->first = c10::nullopt;
    this->second = int_value;
  }

  ShapeArg(c10::ShapeSymbol ss) {
    if (ss.is_static()) {
      this->first = c10::nullopt;
      this->second = ss.value();
    } else {
      this->first = ss;
      this->second = c10::nullopt;
    }
  }

  c10::optional<int64_t> asConstantInt() const {
    return this->second;
  }

  c10::optional<c10::ShapeSymbol> asShapeSymbol() const {
    return this->first;
  }

 private:
  ShapeArg() {
    this->first = c10::nullopt;
    this->second = c10::nullopt;
  }
};

std::ostream& operator<<(std::ostream& out, const ShapeArg& sa) {
  if (auto val = sa.asConstantInt()) {
    out << *val;
  } else if (auto ss = sa.asShapeSymbol()) {
    out << *ss;
  } else {
    out << "UNK";
  }
  return out;
}

struct ShapeArguments {
  // Superset of SymbolicShape, with additional support for unknown, nonsymbolic
  // vals
 public:
  ShapeArguments(const c10::SymbolicShape& ss) {
    has_dim_ = ss.rank().has_value();
    if (has_dim_) {
      for (size_t i = 0; i < *ss.rank(); ++i) {
        maybe_shape_symbols_.emplace_back(ss.at(i));
      }
    }
  }

  ShapeArguments(std::vector<ShapeArg> ss)
      : has_dim_(true), maybe_shape_symbols_(std::move(ss)) {}

  bool has_dim() const {
    return has_dim_;
  }

  int64_t len() const {
    TORCH_INTERNAL_ASSERT(has_dim_, "ShapeArguments has no known dim")
    return (int64_t)maybe_shape_symbols_.size();
  }

  const ShapeArg at(size_t i) const {
    TORCH_INTERNAL_ASSERT(has_dim_, "ShapeArguments has no known dim")
    return maybe_shape_symbols_.at(i);
  }

 private:
  bool has_dim_;
  std::vector<ShapeArg> maybe_shape_symbols_;
};

std::ostream& operator<<(std::ostream& os, const ShapeArguments& sa) {
  if (!sa.has_dim()) {
    os << "(UNKNOWN DIM)";
    return os;
  }

  os << "(";
  for (size_t i = 0; i < sa.len(); i++) {
    os << sa.at(i);
  }
  os << ")";

  return os;
}

bool setSymbolicShapeAnalysisTestMode(bool value) {
  bool old_value = symbolic_shape_analysis_test_mode;
  symbolic_shape_analysis_test_mode = value;
  return old_value;
}

bool symbolicShapeAnalysisTestModeEnabled() {
  return symbolic_shape_analysis_test_mode;
}

using SSArgument = c10::variant<ShapeArguments, IValue>;

std::ostream& operator<<(std::ostream& out, const SSArgument& sa) {
  if (const IValue* iv = c10::get_if<IValue>(&sa)) {
    out << *iv;
  } else {
    out << c10::get<ShapeArguments>(sa);
  }
  return out;
}

namespace {

bool isListOfInts(const TypePtr& type) {
  return type->cast<ListType>() &&
      type->cast<ListType>()->getElementType()->cast<IntType>();
}

bool isListOfListOfInts(const TypePtr& type) {
  // Allows List[Optional[List[Int]]]
  if (!type->cast<ListType>()) {
    return false;
  }
  TypePtr element_type = type->cast<ListType>()->getElementType();
  if (element_type->cast<OptionalType>()) {
    element_type = element_type->cast<OptionalType>()->getElementType();
  }
  return isListOfInts(element_type);
}

bool isListOfTensors(const TypePtr& type) {
  return type->cast<ListType>() &&
      type->cast<ListType>()->getElementType()->cast<TensorType>();
}

c10::optional<size_t> normIndex(int64_t index, size_t len) {
  if (index < 0) {
    index = index + len;
  }
  if (index >= 0 && index < static_cast<int64_t>(len)) {
    return index;
  } else {
    return c10::nullopt;
  }
}

bool shapeGraphCleanupPasses(std::shared_ptr<Graph> graph) {
  // TODO: lower simple tuples ?
  bool made_change = RemoveListMutation(graph);
  made_change |= UnrollConstantLoops(graph);
  made_change |= ConstantPropagation(graph);
  made_change |= PeepholeOptimizeNonTensor(graph);
  made_change |= PeepholeOptimizeListIdioms(graph, /*refine_list_len*/ true);
  made_change |= RefineIntegerValues(graph);
  made_change |= ConstantPropagation(graph);
  // todo add return change for constant pooling
  ConstantPooling(graph);
  made_change |= EliminateCommonSubexpression(graph);
  EliminateDeadCode(graph);
  return made_change;
}

void replaceWithIValue(Value* v, IValue val) {
  WithInsertPoint guard(*v->node()->owningBlock()->nodes().begin());
  v->replaceAllUsesWith(v->owningGraph()->insertConstant(val));
}

c10::SymbolicShape extractListShape(
    Value* list,
    std::unordered_map<Value*, int64_t>& symbolic_shape_values,
    const AliasDb& db) {
  if (list->node()->kind() == prim::Constant) {
    auto int_list = toIValue(list)->toIntVector();
    return c10::SymbolicShape(int_list);
  }
  // We need a list construct or a constant output
  // that is not written to in order to analyze the output shape
  if (list->node()->kind() != prim::ListConstruct || db.hasWriters(list)) {
    GRAPH_DEBUG("Could not extract shape");
    return c10::SymbolicShape();
  }
  Node* list_construct = list->node();
  std::vector<c10::optional<int64_t>> output_shape;
  for (Value* input : list_construct->inputs()) {
    if (symbolic_shape_values.count(input)) {
      output_shape.emplace_back(symbolic_shape_values[input]);
    } else {
      output_shape.push_back(constant_as<int64_t>(input));
    }
  }
  return c10::SymbolicShape(output_shape);
}

// Symbolic Shape Analysis works through iteratively partially evaluating
// a TorchScript shape compute graph by inputing properties from input
// Tensors. We can substitute in properties like `len(x)` and `x[1]`
// if they are statically on the input Tensors. We can also use
// assertions like `assert len(x) == 4` in order to refine the input
// length and unroll loops over its elements. We iteratively optimize and
// substitute in properties until we are unable to make any further
// optimizations. Finally, we try to extract Tensor properties from the output.
// For instance `return [1, 2, inp[2] + 1, inp[3]]` we know that the ouptut
// will be length 4 with first two dimensions equal to 1 and 2. We can also
// deduce that the 4th dimension has the same symbolic shape as inp[3], which
// means that we do know its concrete value statically but we can asssign sets
// of tensor dimensions which must be equal at runtime.

struct SymbolicShapeOpAnalyzer {
  std::shared_ptr<Graph> shape_compute_graph_;
  const FunctionSchema* schema_;
  std::vector<SSArgument> inputs_;

  // For the case where we have a JIT graph,
  // subsititute optional types for their component types
  // if the type is known. This doesn't need to be done
  // for known IValues.
  void refineInputUnionTypes(const Node* parent_graph_node) {
    for (size_t op_in_index = 0;
         op_in_index < shape_compute_graph_->inputs().size();
         op_in_index++) {
      auto type = parent_graph_node->input(op_in_index)->type();
      if (auto opt_type = shape_compute_graph_->inputs()
                              .at(op_in_index)
                              ->type()
                              ->cast<OptionalType>()) {
        // None will get handled with constant substitution later
        if (!type->cast<OptionalType>() &&
            !NoneType::get()->isSubtypeOf(*type)) {
          shape_compute_graph_->inputs()
              .at(op_in_index)
              ->setType(opt_type->getElementType());
        }
      } else if (shape_compute_graph_->inputs()
                     .at(op_in_index)
                     ->type()
                     ->cast<NumberType>()) {
        shape_compute_graph_->inputs().at(op_in_index)->setType(type);
      }
    }
  }

  // We handle non-constant values in the shape propagation step
  void substituteConstantInputs() {
    if (shape_compute_graph_->inputs().size() == 0) {
      return;
    }

    bool seen_tensor_list = false;

    size_t op_in_index = 0;
    while (op_in_index < shape_compute_graph_->inputs().size()) {
      Value* graph_in_var = shape_compute_graph_->inputs().at(op_in_index);
      if (!isListOfListOfInts(graph_in_var->type())) {
        op_in_index++;
        continue;
      }

      // Modifying the graph where _node is part of to not use the tensor
      // construct

      // When we have partially evaluate a list of Tensors like cat(tensor[])
      // We have a few problems:
      // - optimizing out calls to the length of the list: len(tensors)
      // - resolving accesses of the list to the tensor symbolic sizes the
      // corresponding list element We can solve both of these problems by
      // replacing the partial evaluation of cat([x, y]) def cat(tensors:
      // List[List[int]], dim: int)
      //    body
      // with
      // def cat(x, y, dim: int)
      //     tensors = [x, y]
      //     body
      TORCH_INTERNAL_ASSERT(
          !seen_tensor_list,
          "SSA doesn't handle case with multiple tensor lists")
      seen_tensor_list = true;

      uint64_t li_length = inputs_.size() - (schema_->arguments().size() - 1);
      std::vector<Value*> li_inputs;

      TypePtr element_type =
          graph_in_var->type()->cast<ListType>()->getElementType();
      for (size_t j = op_in_index; j < op_in_index + li_length; ++j) {
        auto new_inp = shape_compute_graph_->insertInput(op_in_index + j);
        new_inp->setType(element_type);
        li_inputs.push_back(new_inp);
      }
      WithInsertPoint guard(*shape_compute_graph_->block()->nodes().begin());
      auto new_li = shape_compute_graph_->insertNode(
          shape_compute_graph_->createList(element_type, li_inputs));
      graph_in_var->replaceAllUsesWith(new_li->output());
      shape_compute_graph_->eraseInput(op_in_index + li_length);
    }

    TORCH_INTERNAL_ASSERT(
        shape_compute_graph_->inputs().size() <= inputs_.size(),
        "Shape Compute Graph expected to have less inputs than actual inputs"); //?

    for (size_t op_in_index = 0;
         op_in_index < shape_compute_graph_->inputs().size();
         op_in_index++) {
      SSArgument& argument = inputs_[op_in_index];
      Value* graph_in_var = shape_compute_graph_->inputs().at(op_in_index);

      if (IValue* cur_val = c10::get_if<IValue>(&argument)) {
        GRAPH_DEBUG("Substituting constant input ", *cur_val);
        replaceWithIValue(graph_in_var, *cur_val);
      } else {
        auto cur_arg = c10::get<ShapeArguments>(argument);
        if (cur_arg.has_dim()) {
          graph_in_var->setType(ListType::ofInts());
        }
      }
    }
  }

  void substituteSymbolicProperties(
      std::unordered_map<Value*, int64_t>* symbolic_shape_values) {
    // clang-format off
    // here we iteratively substitute properties of the node's input tensors
    // into the shape compute graph. we can substitute constants into the
    // like len(inp) or inp[0] if the tensor has a fixed length or a fixed
    // first dimension. we also try to resolve symbolic shapes of the same
    // symbolic value to the same Value * in the shape compute graph.
    // for the shape logic:
    // dim1 = inp1[0]
    // dim2 = inp2[0]
    // return dim1 if dim2 == 1 else dim2
    // if we see that inp1[0] and inp2[0] both have the same symbolic shape
    // value, then it is a valid transformation to replace dim2 with dim1 or
    // vice versa. to do this we collect all Value * for a particular symbolic
    // shape. Then, we replace all Value * within that set with their dominator.
    // In the example above, this allows us to infer  that the output will be the
    // symbolic dimension value of dim1.

    // if `symbolic_shape_values` is not null, record list accesses
    // which resolve to symbolic dimension values with their concrete symbolic
    // shape value. Because symbolic dimensions are represented as negative numbers and
    // are not real values, inserting them as constants in the graph would invalidate
    // the graph for further use. Instead, we keep track of what their value would be
    // for extracting output shapes.
    // clang-format on

    std::unordered_map<int64_t, std::vector<Value*>> symbolic_shape_map;

    TORCH_INTERNAL_ASSERT(
        inputs_.size() >= shape_compute_graph_->inputs().size(),
        "Missing Arg for Shape Graph");
    for (int64_t index = 0; index < shape_compute_graph_->inputs().size();
         index++) {
      auto shape_arguments = c10::get_if<ShapeArguments>(&inputs_[index]);
      if (!shape_arguments || !shape_arguments->has_dim()) {
        continue;
      }
      // Add support for testing symbolic shapes with dynamic dims

      for (const Use& use : shape_compute_graph_->inputs().at(index)->uses()) {
        // TODO: either decompose composite ops like slice or add handling here
        switch (use.user->kind()) {
          case aten::len: {
            size_t len = shape_arguments->len();
            replaceWithIValue(use.user->output(), static_cast<int64_t>(len));
          } break;
          case aten::__getitem__: {
            auto index = constant_as<int64_t>(use.user->inputs().at(1));
            if (!index) {
              continue;
            }
            auto norm_index = normIndex(*index, shape_arguments->len());
            if (!norm_index) {
              continue;
            }
            auto shape_arg = shape_arguments->at(*norm_index);
            if (auto const_int = shape_arg.asConstantInt()) {
              replaceWithIValue(use.user->output(), const_int);
              continue;
            }
            auto maybe_shape_symbol = shape_arg.asShapeSymbol();
            if (!maybe_shape_symbol) {
              continue;
            }
            auto shape_symbol = *maybe_shape_symbol;
            if (symbolic_shape_values) {
              symbolic_shape_values->emplace(
                  use.user->output(), shape_symbol.value());
            } else {
              int64_t symbolic_index = shape_symbol.value();
              symbolic_shape_map[symbolic_index].push_back(use.user->output());
            }
            for (const auto& sym_uses : use.user->output()->uses()) {
              auto k = sym_uses.user->kind();
              if (k != aten::ge && k != aten::le && k != aten::ne &&
                  k != aten::eq && k != aten::lt && k != aten::gt) {
                break;
              }
              auto other_index = 1 - sym_uses.offset;
              auto other_value =
                  constant_as<int64_t>(sym_uses.user->input(other_index));
              if (!other_value) {
                continue;
              }

              // check for dim >= 0, 0 <= dim
              // dim >= 0
              if (k == aten::ge && *other_value == 0 && other_index == 1) {
                replaceWithIValue(sym_uses.user->output(), true);
                continue;
              }
              // 0 <= dim
              if (k == aten::le && *other_value == 0 && other_index == 0) {
                replaceWithIValue(sym_uses.user->output(), true);
                continue;
              }

              // check for dim comparisons to negative number
              if (*other_value >= 0) {
                continue;
              }
              if (k == aten::eq || k == aten::ne) {
                // True if:
                // -2 != {Positive}
                replaceWithIValue(sym_uses.user->output(), k == aten::ne);
              } else {
                // True if:
                // -2 <= / < {Positive}
                // {Positive} >= / > {-2}
                bool true_val =
                    ((other_index == 0 && (k == aten::le || k == aten::lt)) ||
                     (other_index == 1 && (k == aten::ge || k == aten::gt)));
                replaceWithIValue(sym_uses.user->output(), true_val);
              }
            }
          }
        }
      }

      for (const auto& symbolic_set : symbolic_shape_map) {
        mergeSymbolicShapeSets(symbolic_set.second);
      }
    }
  }

  void mergeSymbolicShapeSets(const std::vector<Value*>& symbolic_set) {
    // `symbolic_set` represents a set of Value * which are all equal
    // to each other. Here, we optimize the graph by replacing values
    // in the set with other dominating values.
    // in the following example, where a, b and c are all in the same
    // symbolic set:
    // if cond:
    //    a = li[0]
    //    b = li[1]
    //    return [a, b]
    // else:
    //    c = li[0]
    //    return [c, c]
    // we can replace `b` with `a` because it is dominated by `a`,
    // but we cannot replace `c` with another dominating value

    // there are ways to compute this more efficiently but typically number of
    // Values for each symbolic set is low and this is cheap to run
    for (const auto i : c10::irange(symbolic_set.size())) {
      Value* v = symbolic_set[i];
      Value* dominating_value = v;
      for (const auto& sym_set : symbolic_set) {
        if (dominating_value->node()->isDominatedBy(sym_set->node())) {
          dominating_value = sym_set;
        }
      }
      if (dominating_value != v) {
        v->replaceAllUsesWith(dominating_value);
      }
    }
  }

  std::vector<c10::SymbolicShape> propagateShapesInGraph() {
    bool made_change = true;
    constexpr size_t MAX_ATTEMPTS = 8;
    for (int attempt_num = 0; made_change && attempt_num < MAX_ATTEMPTS;
         attempt_num++) {
      // symbolic shape concrete values are only used in final shape extraction
      GRAPH_DUMP("Before substitution: ", shape_compute_graph_);
      substituteSymbolicProperties(/*symbolic_shape_values*/ nullptr);
      GRAPH_DUMP("Before Opt: ", shape_compute_graph_);
      made_change = shapeGraphCleanupPasses(shape_compute_graph_);
    }
    std::unordered_map<Value*, int64_t> symbolic_shape_values;
    substituteSymbolicProperties(&symbolic_shape_values);
    GRAPH_DUMP("Done with partial evaluation", shape_compute_graph_);

    return extractOutputShape(symbolic_shape_values);
  }

  std::vector<c10::SymbolicShape> extractOutputShape(
      std::unordered_map<Value*, int64_t>& symbolic_shape_values) {
    TORCH_INTERNAL_ASSERT(
        shape_compute_graph_->outputs().size() == schema_->returns().size());
    // TODO: would be nice if there were easy facility to look at uses and see
    // if they are all pure instead of instanting db.
    auto res = std::vector<c10::SymbolicShape>();
    AliasDb db(shape_compute_graph_);
    for (size_t i = 0; i < shape_compute_graph_->outputs().size(); ++i) {
      auto output = shape_compute_graph_->outputs().at(i);
      auto type = output->type();
      TORCH_INTERNAL_ASSERT(isListOfInts(type));
      c10::SymbolicShape ss =
          extractListShape(output, symbolic_shape_values, db);
      GRAPH_DEBUG("Extracted Output: ", ss);
      res.push_back(ss);
    }
    return res;
  }

 public:
  SymbolicShapeOpAnalyzer(const FunctionSchema* schema) : schema_(schema) {
    shape_compute_graph_ = nullptr;
    if (!schema_) {
      return;
    }
    auto maybe_graph = shapeComputeGraphForSchema(*schema_);
    if (!maybe_graph) {
      return;
    }
    shape_compute_graph_ = (*maybe_graph)->copy();
  }

  SymbolicShapeOpAnalyzer(
      const FunctionSchema* schema,
      std::shared_ptr<Graph> graph)
      : schema_(schema) {
    shape_compute_graph_ = graph->copy();
  }

  c10::optional<std::vector<c10::SymbolicShape>> run(
      std::vector<SSArgument>& inputs) {
    if (!shape_compute_graph_) {
      return c10::nullopt;
    }
    inputs_ = inputs;
    substituteConstantInputs();
    GRAPH_DEBUG(inputs_)
    return propagateShapesInGraph();
  }

  std::shared_ptr<Graph> getShapeComputeGraph() {
    return shape_compute_graph_;
  }
};

SSArgument tensorShapeArg(Value* tensor_v) {
  auto tt = tensor_v->type()->expect<TensorType>();
  c10::SymbolicShape symbolic_shapes = tt->symbolic_sizes();

  // for testing, we don't insert complete tensor shapes and rely on our
  // partial evaluation pipeline to propagate information.
  // this is a good proxy for our ability to propagate non-complete shape
  // information.
  if (symbolic_shapes.isComplete() && !symbolic_shape_analysis_test_mode) {
    return IValue(tt->sizes().concrete_sizes());
  }
  if (toIValue(tensor_v)) {
    auto size = constant_as<at::Tensor>(tensor_v)->sizes();
    if (!symbolic_shape_analysis_test_mode) {
      return IValue(size);
    } else {
      return c10::SymbolicShape(size);
    }
  }
  return symbolic_shapes;
}

std::vector<SSArgument> getNodeInputShapes(Node* n, const AliasDb& db) {
  // TODO: fix the List of integers implementation, and
  // extract out the shape changes, otherwise this is complete
  // NB: shape compute graphs may have less inputs than their node
  // counterparts to allow e.g. sharing one single unary definition
  // so iterate on # of shape inputs
  // We make lists of Tensor inputs variadic, which results in
  // offset between a node index and its corresponding graph index
  std::vector<SSArgument> input_shapes = std::vector<SSArgument>();

  for (size_t node_index = 0; node_index < n->inputs().size(); ++node_index) {
    auto type = n->input(node_index)->type();

    if (type->castRaw<TensorType>()) {
      input_shapes.push_back(tensorShapeArg(n->input(node_index)));
      continue;
    }
    if (isListOfTensors(type)) {
      // waiting for more use cases to decide on best generalization
      if (n->input(node_index)->node()->kind() == prim::Constant) {
        auto ival = toIValue(n->input(node_index));
        for (const auto& ten : ival->toTensorVector()) {
          input_shapes.emplace_back(c10::List<int64_t>(ten.sizes()));
        }
      } else if (
          n->input(node_index)->node()->kind() == prim::ListConstruct &&
          !db.hasWriters(n->input(node_index))) {
        auto li_construct_node = n->input(node_index)->node();
        for (size_t j = 0; j < li_construct_node->inputs().size(); ++j) {
          input_shapes.push_back(tensorShapeArg(li_construct_node->input(j)));
        }
      } else {
        TORCH_INTERNAL_ASSERT(false, "Unhandled List, we shouldn't get here");
      }
      continue;
    }
    if (auto ival = toIValue(n->input(node_index))) {
      input_shapes.emplace_back(*ival);
      continue;
    }
    if (type->cast<ListType>() &&
        type->cast<ListType>()->getElementType()->cast<IntType>()) {
      auto input_src_node = n->input(node_index)->node();
      if (input_src_node->kind() == prim::ListConstruct &&
          !db.hasWriters(n->input(node_index))) {
        // it is a very common in graphs to see patterns like:
        // z = x.view(y.size())
        // or:
        // z = x.view(1, 10, y.size(0), y.size(1))
        // We want to propagate symbolic dimensions and concrete sizes
        // from y to z. To do this we try to associate symbolic dimensions
        // or concrete sizes with the integer list inputs that have a
        // constructor taken from constants or y.size() or y.size(0)
        auto list_construct = n->input(node_index)->node();
        std::vector<ShapeArg> shape;
        for (Value* v : list_construct->inputs()) {
          if (auto constant = constant_as<int64_t>(v)) {
            shape.emplace_back(*constant);
          } else if (v->node()->kind() == aten::size) {
            auto const_index = constant_as<int64_t>(v->node()->input(1));
            auto tt = v->node()->input(0)->type()->expect<TensorType>();
            auto ss = tt->symbolic_sizes();
            if (!ss.rank() || !const_index) {
              // if we are getting a size of a tensor, it is an unknown
              // symbolic dimension instead of an unknown integer (must be
              // >=0)
              shape.emplace_back(at::ShapeSymbol::newSymbol());
              continue;
            }
            auto norm_index = normIndex(*const_index, *ss.rank());
            if (!norm_index) {
              shape.emplace_back(at::ShapeSymbol::newSymbol());
              continue;
            }
            shape.emplace_back(ss[*norm_index]);
          } else {
            shape.emplace_back(ShapeArg::unknownInteger());
          }
        }
        input_shapes.emplace_back(ShapeArguments(shape));
        continue;
      }
      if (input_src_node->kind() == aten::size &&
          !db.hasWriters(n->input(node_index))) {
        auto ten_inp = input_src_node->input();
        auto ss = ten_inp->type()->expect<TensorType>()->symbolic_sizes();
        input_shapes.emplace_back(ss);
        continue;
      }
    }
    GRAPH_DEBUG(
        "Unhandled input: ",
        n->kind().toDisplayString(),
        " arg num: ",
        node_index);
    input_shapes.emplace_back(c10::SymbolicShape());
  }
  TORCH_INTERNAL_ASSERT(
      input_shapes.size() >= n->inputs().size(),
      "input_shapes size: ",
      input_shapes.size(),
      " n inputs size: ",
      n->inputs().size());
  return input_shapes;
}

void applyOutputShapeToGraph(
    Node* node,
    const std::vector<c10::SymbolicShape>& output_shapes) {
  TORCH_INTERNAL_ASSERT(
      node->outputs().size() == output_shapes.size(),
      "Output shape size mismatch");
  for (size_t i = 0; i < output_shapes.size(); ++i) {
    auto& ss = output_shapes.at(i);
    node->output(i)->setType(
        node->output(i)->type()->expect<TensorType>()->withSymbolicShapes(ss));
  }
}

std::shared_ptr<Graph> PropagateShapesWithShapeFunction(
    Node* n,
    const AliasDb& db) {
  const FunctionSchema* func_schema = n->maybeSchema();
  if (!func_schema) {
    return nullptr;
  }
  auto op_analyzer = SymbolicShapeOpAnalyzer(func_schema);
  if (!op_analyzer.getShapeComputeGraph()) {
    return nullptr;
  }
  auto input_shapes = getNodeInputShapes(n, db);
  op_analyzer.refineInputUnionTypes(n);

  if (auto output_shapes = op_analyzer.run(input_shapes)) {
    applyOutputShapeToGraph(n, *output_shapes);
  }

  return op_analyzer.getShapeComputeGraph();
}

c10::SymbolicShape combine_bounds(
    c10::SymbolicShape& lower_bound,
    c10::SymbolicShape& upper_bound) {
  // TODO: At some point we might want to add support for dynamic dims
  TORCH_INTERNAL_ASSERT(lower_bound.rank() == upper_bound.rank());
  if (lower_bound.rank() == c10::nullopt) {
    return c10::SymbolicShape();
  }
  std::vector<c10::ShapeSymbol> merged_shapes;
  for (int i = 0; i < lower_bound.rank(); i++) {
    // TODO: Merge equivalent expressions (not needed for current use case)
    if (lower_bound[i] == upper_bound[i]) {
      merged_shapes.push_back(lower_bound[i]);
    } else {
      merged_shapes.push_back(c10::ShapeSymbol::newSymbol());
    }
  }
  return c10::SymbolicShape(merged_shapes);
}

struct SymbolicShapeGraphAnalyzer {
  SymbolicShapeGraphAnalyzer(
      std::shared_ptr<Graph>& graph,
      Node* beg,
      Node* end)
      : graph_(graph), beg_(beg), end_(end) {
    TORCH_INTERNAL_ASSERT(
        beg_->owningBlock() == end_->owningBlock() && end_->isAfter(beg_));
  }

  c10::optional<ShapeComputeGraphMapping> run() {
    AliasDb db(graph_);
    std::unordered_map<Node*, std::shared_ptr<Graph>> partial_evaluated_graphs =
        propagateShapesAndGatherPartialEvalShapeGraphs(db);

    auto stitched_shape_compute_graph = std::make_shared<Graph>();
    // We want to build up a computational graph which computes all shapes
    // we dont know statically - that is, all symbolic shapes within
    // the region [beg, end). it must be executable before beg.
    // TODO: dont require dimensions of tensors to be set AOT ?

    for (auto it = beg_->iterator(); it != end_->iterator(); it++) {
      auto curr = *it;
      if (curr->kind() == prim::Constant) {
        continue;
      }
      // TODO: generalize logic to for other tensor input ops when they are
      // added
      if (curr->kind() == prim::ListConstruct) {
        auto uses = curr->output()->uses();
        if (!std::all_of(uses.begin(), uses.end(), [](const Use& use) {
              return use.user->kind() == aten::cat;
            })) {
          GRAPH_DEBUG("Non cat list use ", getHeader(curr));
          return c10::nullopt;
        }
        continue;
      }

      if (!partial_evaluated_graphs.count(curr)) {
        GRAPH_DEBUG("No graph ", getHeader(curr));
        return c10::nullopt;
      }

      auto outputs = curr->outputs();
      for (Value* v : outputs) {
        auto tt = v->type()->cast<TensorType>();
        if (!tt) {
          GRAPH_DEBUG("Non tensor node", getHeader(curr));
          return c10::nullopt;
        }
        auto symbolic_sizes = tt->symbolic_sizes();
        // TODO: dont require # of dimensions of tensors set ?
        if (!symbolic_sizes.rank()) {
          GRAPH_DEBUG("No rank on output ", getHeader(curr));
          return c10::nullopt;
        }
      }
      auto partial_eval_graph = partial_evaluated_graphs[curr];
      joinPartialEvaluatedShapeGraphToLargeShapeGraph(
          curr, partial_eval_graph, stitched_shape_compute_graph);
    }

    size_t MAX_ITER = 8;
    bool made_change = true;
    size_t i = 0;
    while (i < MAX_ITER && made_change) {
      i++;
      made_change = shapeGraphCleanupPasses(stitched_shape_compute_graph);
    }

    // for any output that is duplicated, the symbolic shape must be equal
    // take the symbolic shape that is generated first and get equivalent ones
    std::unordered_map<int64_t, int64_t> discovered_sym_shape_equalities;
    std::unordered_map<Value*, int64_t> graph_output_to_symbolic_shape_dim;
    std::vector<size_t> erase_indices;

    for (size_t i = 0; i < stitched_shape_compute_graph->outputs().size();
         ++i) {
      Value* output = stitched_shape_compute_graph->outputs().at(i);
      // this Value is already contained, so the symbolic shape for i must be
      // equal to the symbolic shape at the existing index
      if (graph_output_to_symbolic_shape_dim.count(output)) {
        auto curr_sym_shape = output_index_to_symbolic_shape_[i];
        auto existing_sym_shape = graph_output_to_symbolic_shape_dim[output];
        discovered_sym_shape_equalities[curr_sym_shape] = existing_sym_shape;
        erase_indices.push_back(i);
      } else {
        graph_output_to_symbolic_shape_dim[output] =
            output_index_to_symbolic_shape_[i];
      }
    }
    for (int64_t i = erase_indices.size() - 1; i >= 0; i--) {
      stitched_shape_compute_graph->eraseOutput(erase_indices[i]);
    }
    for (size_t i = 0; i < stitched_shape_compute_graph->inputs().size();) {
      if (!stitched_shape_compute_graph->inputs().at(i)->hasUses()) {
        enclosing_graph_value_to_shape_graph_input_.erase(
            stitched_shape_compute_graph->inputs().at(i));
        stitched_shape_compute_graph->eraseInput(i);
      } else {
        ++i;
      }
    }

    updateGraphWithSymbolicShapeEqualities(discovered_sym_shape_equalities);
    return ShapeComputeGraphMapping(
        stitched_shape_compute_graph,
        enclosing_graph_value_to_shape_graph_input_,
        graph_output_to_symbolic_shape_dim);
  }

  void updateGraphWithSymbolicShapeEqualities(
      std::unordered_map<int64_t, int64_t>& sym_shape_equalities) {
    for (auto it = beg_->iterator(); it != end_->iterator(); it++) {
      auto curr = *it;
      for (size_t i = 0; i < curr->outputs().size(); ++i) {
        auto output = curr->output(i);
        auto tt = output->type()->cast<TensorType>();
        if (!tt || !tt->symbolic_sizes().rank()) {
          continue;
        }
        bool changed = false;
        std::vector<at::ShapeSymbol> shape_vec = *tt->symbolic_sizes().sizes();
        auto new_sizes =
            c10::fmap(shape_vec, [&](const at::ShapeSymbol& shape) {
              auto value = shape.value();
              if (sym_shape_equalities.count(value)) {
                changed = true;
                return sym_shape_equalities[value];
              }
              return value;
            });
        if (changed) {
          output->setType(
              tt->withSymbolicShapes(c10::SymbolicShape(new_sizes)));
        }
      }
    }
  }

  void registerStitchedComputeOutput(
      std::shared_ptr<Graph> stitched_shape_compute_graph,
      Value* output,
      int64_t symbolic_shape) {
    stitched_shape_compute_graph->registerOutput(output);
    output_index_to_symbolic_shape_
        [stitched_shape_compute_graph->outputs().size() - 1] = symbolic_shape;
    symbolic_shape_value_to_graph_output_[symbolic_shape] =
        stitched_shape_compute_graph->outputs().at(
            stitched_shape_compute_graph->outputs().size() - 1);
  }

  void joinPartialEvaluatedShapeGraphToLargeShapeGraph(
      Node* curr,
      std::shared_ptr<Graph> partial_eval_graph,
      std::shared_ptr<Graph> stitched_shape_compute_graph) {
    // we are building up the large shape compute graph by iteratively
    // combining partially evaluated individual node shape graphs.

    // We need to maintain two mappings, one from non-Tensor inputs in the
    // enclosing graph to their equivalent mappings within the large shape
    // compute graph, and one from symbolic shape dimension to new node output

    // When we add a new tensor node, we do two things:
    // 1: record a mapping from the tensor node output to its shape in the
    // partial eval graph 2: add each symbolic shape dimension that we have
    // not already added as a output to the large shape compute graph

    // Once we are done stitching together all partial eval'd graphs, we can
    // cleanup the graph and remove the unneeded complete shapes as outputs,
    // leaving us only compute for calculating the runtime value of symbolic
    // dimensions
    // leaving us only compute for calculating the runtime value of symbolic
    // dimensions

    std::vector<Value*> node_inputs;
    // TODO: generalize logic
    if (curr->kind() == aten::cat) {
      TORCH_INTERNAL_ASSERT(
          curr->input(0)->node()->kind() == prim::ListConstruct);
      for (Value* v : curr->input(0)->node()->inputs()) {
        node_inputs.push_back(v);
      }
      node_inputs.push_back(curr->namedInput("dim"));
    } else {
      for (size_t i = 0; i < partial_eval_graph->inputs().size(); ++i) {
        node_inputs.push_back(curr->input(i));
      }
    }

    std::vector<Value*> partial_eval_inputs;
    for (size_t i = 0; i < node_inputs.size(); ++i) {
      auto node_input = node_inputs[i];
      auto existing_graph_mapping =
          enclosing_graph_value_to_shape_graph_input_.find(node_input);
      if (existing_graph_mapping !=
          enclosing_graph_value_to_shape_graph_input_.end()) {
        partial_eval_inputs.push_back(existing_graph_mapping->second);
      } else {
        Value* shape_graph_input =
            stitched_shape_compute_graph->addInput()->copyMetadata(
                partial_eval_graph->inputs().at(i));
        enclosing_graph_value_to_shape_graph_input_[node_input] =
            shape_graph_input;
        partial_eval_inputs.push_back(shape_graph_input);
      }
      // make sure all symbolic dimensions in the graph we are creating are
      // computed in the partial eval graph
      if (auto tt = node_input->type()->cast<TensorType>()) {
        if (!tt->symbolic_sizes().rank()) {
          continue;
        }
        auto rank = *tt->symbolic_sizes().rank();
        for (size_t j = 0; j < rank; ++j) {
          auto shape = tt->symbolic_sizes()[j];
          if (shape.is_static() ||
              symbolic_shape_value_to_graph_output_.count(shape.value())) {
            continue;
          }
          auto input = enclosing_graph_value_to_shape_graph_input_[node_input];
          WithInsertPoint guard(stitched_shape_compute_graph->block());
          auto index = stitched_shape_compute_graph->insertConstant(
              static_cast<int64_t>(j));
          auto li_index = stitched_shape_compute_graph->insert(
              aten::__getitem__, {input, index});
          registerStitchedComputeOutput(
              stitched_shape_compute_graph, li_index, shape.value());
        }
      }
    }

    WithInsertPoint guard(stitched_shape_compute_graph->block());
    std::unordered_map<Value*, Value*> value_map;
    insertGraph(
        *stitched_shape_compute_graph,
        *partial_eval_graph,
        partial_eval_inputs,
        value_map);

    for (size_t i = 0; i < curr->outputs().size(); ++i) {
      Value* new_list_output = value_map[partial_eval_graph->outputs().at(i)];
      enclosing_graph_value_to_shape_graph_input_[curr->output(i)] =
          new_list_output;

      TORCH_INTERNAL_ASSERT(
          new_list_output->node()->kind() == prim::ListConstruct ||
          new_list_output->node()->kind() == prim::Constant);
      TORCH_INTERNAL_ASSERT(!new_list_output->node()->hasUses());

      auto symbolic_sizes =
          curr->output(i)->type()->expect<TensorType>()->symbolic_sizes();
      TORCH_INTERNAL_ASSERT(symbolic_sizes.rank());

      for (size_t i = 0; i < *symbolic_sizes.rank(); i++) {
        if (symbolic_sizes[i].is_static()) {
          continue;
        }
        int64_t symbolic_shape = symbolic_sizes[i].value();
        if (symbolic_shape_value_to_graph_output_.count(symbolic_shape)) {
          continue;
        }
        registerStitchedComputeOutput(
            stitched_shape_compute_graph,
            new_list_output->node()->input(i),
            symbolic_shape);
      }
    }
  }

  std::unordered_map<Node*, std::shared_ptr<Graph>>
  propagateShapesAndGatherPartialEvalShapeGraphs(AliasDb& db) {
    std::unordered_map<Node*, std::shared_ptr<Graph>> partial_evaluated_graphs;
    for (auto it = beg_->iterator(); it != end_->iterator(); it++) {
      auto curr = *it;
      if (auto maybe_graph = PropagateShapesWithShapeFunction(curr, db)) {
        partial_evaluated_graphs[curr] = maybe_graph;
      }
    }
    return partial_evaluated_graphs;
  }

  std::unordered_map<Value*, Value*>
      enclosing_graph_value_to_shape_graph_input_;
  std::unordered_map<int64_t, Value*> symbolic_shape_value_to_graph_output_;
  std::unordered_map<size_t, int64_t> output_index_to_symbolic_shape_;

  std::shared_ptr<Graph>& graph_;
  Node* beg_;
  Node* end_;
};

void PropagateShapesOnBlock(Block* b, const AliasDb& db) {
  for (Node* n : b->nodes()) {
    // TODO: handle loop
    if (n->kind() == prim::If) {
      IfView if_v(n);
      PropagateShapesOnBlock(if_v.thenBlock(), db);
      PropagateShapesOnBlock(if_v.elseBlock(), db);
      mergeTypes(if_v.thenOutputs(), if_v.elseOutputs(), if_v.outputs());
    } else if (n->maybeSchema()) {
      PropagateShapesWithShapeFunction(n, db);
    } else if (n->kind() == prim::TupleConstruct) {
      auto orig_type = n->output()->type()->expect<TupleType>();
      auto new_types = fmap(n->inputs(), [](Value* v) { return v->type(); });
      n->output()->setType(
          orig_type->createWithContained(std::move(new_types)));
    }
  }
}
} // namespace

void PropagateShapesOnGraph(std::shared_ptr<Graph>& graph) {
  AliasDb db(graph);
  PropagateShapesOnBlock(graph->block(), db);
}

c10::optional<ShapeComputeGraphMapping>
PropagateShapesAndBuildLargeShapeComputeGraph(
    std::shared_ptr<Graph>& graph,
    Node* beg,
    Node* end) {
  return SymbolicShapeGraphAnalyzer(graph, beg, end).run();
}

TORCH_API c10::optional<std::vector<c10::SymbolicShape>>
calculateSymbolicShapesOnOp(
    const FunctionSchema* schema,
    const std::vector<SSAInput>& inputs) {
  auto bounded_graphs = boundedGraphsForSchema(*schema);
  auto has_shape_compute = shapeComputeGraphForSchema(*schema) != c10::nullopt;
  if (!has_shape_compute && bounded_graphs == c10::nullopt) {
    // Avoid doing all this work for functions that don't have a
    // supported schema
    return c10::nullopt;
  }

  if (auto cached_ret_vec = get_cached_shape_function(schema, inputs)) {
    return cached_ret_vec;
  }

  std::vector<SSArgument> ssa_args;
  for (auto& arg : inputs) {
    if (const IValue* ival = c10::get_if<IValue>(&arg)) {
      ssa_args.emplace_back(*ival);
    } else {
      const c10::SymbolicShape* ss = c10::get_if<c10::SymbolicShape>(&arg);
      ssa_args.emplace_back(ShapeArguments(*ss));
    }
  }
  // Handle bounded shape option
  if (bounded_graphs) {
    auto lower_bound =
        SymbolicShapeOpAnalyzer(schema, bounded_graphs->lower_bound);
    auto lower_bound_res = lower_bound.run(ssa_args);
    auto upper_bound =
        SymbolicShapeOpAnalyzer(schema, bounded_graphs->upper_bound);
    auto upper_bound_res = upper_bound.run(ssa_args);
    // Stitch together the values
    if (lower_bound_res.has_value() && upper_bound_res.has_value()) {
      TORCH_INTERNAL_ASSERT(lower_bound_res->size() == upper_bound_res->size());
      auto merged_res = std::vector<c10::SymbolicShape>();
      for (size_t i = 0; i < lower_bound_res->size(); i++) {
        merged_res.push_back(
            combine_bounds(lower_bound_res->at(i), upper_bound_res->at(i)));
      }
      cache_shape_function(schema, inputs, merged_res);
      return merged_res;
    }
    return c10::nullopt;
  }

  auto op_analyzer = SymbolicShapeOpAnalyzer(schema);
  auto res = op_analyzer.run(ssa_args);
  if (res.has_value()) {
    cache_shape_function(schema, inputs, res.value());
  }
  return res;
}

} // namespace jit
} // namespace torch