File: symbolic_shape_cache.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (208 lines) | stat: -rw-r--r-- 6,818 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_cache.h>
#include <torch/csrc/lazy/core/cache.h>

// SHAPE CACHINHG CODE
namespace torch {
namespace jit {
namespace {
using CanonicalArg = c10::variant<CanonicalizedSymbolicShape, IValue>;
using CanonicalArgVec = std::vector<CanonicalArg>;
using CanonicalRet = std::vector<CanonicalizedSymbolicShape>;
using ShapeCacheKey = std::tuple<c10::OperatorName, CanonicalArgVec>;

CanonicalArgVec cannonicalizeVec(
    const std::vector<SSAInput>& arg_vec,
    std::unordered_map<int64_t, int64_t>& ss_map,
    bool deep_copy = true) {
  CanonicalArgVec canonical_args;
  canonical_args.reserve(arg_vec.size());
  for (auto& arg : arg_vec) {
    if (const IValue* iv = c10::get_if<IValue>(&arg)) {
      if (deep_copy) {
        canonical_args.push_back(iv->deepcopy());
      } else {
        canonical_args.push_back(*iv);
      }
    } else {
      auto& ss = c10::get<at::SymbolicShape>(arg);
      canonical_args.emplace_back(CanonicalizedSymbolicShape(ss, ss_map));
    }
  }
  return canonical_args;
}

std::vector<CanonicalizedSymbolicShape> cannonicalizeVec(
    const std::vector<at::SymbolicShape>& ret_vec,
    std::unordered_map<int64_t, int64_t>& ss_map) {
  std::vector<CanonicalizedSymbolicShape> canonical_rets;
  canonical_rets.reserve(ret_vec.size());
  for (auto& ss : ret_vec) {
    canonical_rets.emplace_back(CanonicalizedSymbolicShape(ss, ss_map));
  }
  return canonical_rets;
}

struct ArgumentsHasher {
  size_t operator()(const ShapeCacheKey& cacheKey) const {
    // TODO: ignore arguments that are not used in shape function (not needed
    // initially)
    auto& op_name = std::get<0>(cacheKey);
    auto& arg_vec = std::get<1>(cacheKey);

    size_t hash_val = c10::hash<c10::OperatorName>()(op_name);

    hash_val = at::hash_combine(std::hash<size_t>{}(arg_vec.size()), hash_val);
    for (const CanonicalArg& arg : arg_vec) {
      size_t cur_arg = 0;
      if (const IValue* ival = c10::get_if<IValue>(&arg)) {
        // IValue doesn't hash List (as Python doesn't), so we will do a custom
        // list hash
        if (ival->isList()) {
          TORCH_INTERNAL_ASSERT(ival->isIntList(), "Unexpected Args in List");
          cur_arg = ival->toListRef().size();
          for (const IValue& elem_ival : ival->toListRef()) {
            cur_arg = at::hash_combine(cur_arg, IValue::hash(elem_ival));
          }
        } else {
          cur_arg = IValue::hash(ival);
        }
      } else {
        cur_arg = c10::get<CanonicalizedSymbolicShape>(arg).hash();
      }
      hash_val = at::hash_combine(hash_val, cur_arg);
    }
    return hash_val;
  }
};

using ShapeCache = lazy::Cache<
    ShapeCacheKey,
    std::vector<CanonicalizedSymbolicShape>,
    ArgumentsHasher>;

constexpr size_t kShapeCacheSize = 1024;
ShapeCache shapeCache(kShapeCacheSize);

ShapeCacheKey get_cache_key(
    const FunctionSchema* schema,
    const std::vector<SSAInput>& arg_vec,
    std::unordered_map<int64_t, int64_t>& ss_map,
    bool deep_copy = true) {
  CanonicalArgVec canonical_args = cannonicalizeVec(arg_vec, ss_map, deep_copy);
  return std::make_tuple(schema->operator_name(), canonical_args);
}

} // namespace

TORCH_API void cache_shape_function(
    const FunctionSchema* schema,
    const std::vector<SSAInput>& arg_vec,
    const std::vector<at::SymbolicShape>& ret_vec) {
  // TODO: compare perf using std::vector<std::tuple<int64_t, int64_t>>
  auto ss_map = std::unordered_map<int64_t, int64_t>();
  auto cache_key = get_cache_key(schema, arg_vec, ss_map, /* deep_copy */ true);
  auto can_ret_vec = std::make_shared<std::vector<CanonicalizedSymbolicShape>>(
      cannonicalizeVec(ret_vec, ss_map));
  shapeCache.Add(cache_key, can_ret_vec);
}

TORCH_API c10::optional<std::vector<at::SymbolicShape>>
get_cached_shape_function(
    const FunctionSchema* schema,
    const std::vector<SSAInput>& arg_vec) {
  // TODO: compare perf using std::vector<std::tuple<int64_t, int64_t>> for both
  // ss_map and inverse_ss_map
  auto ss_map = std::unordered_map<int64_t, int64_t>();
  auto cache_key =
      get_cache_key(schema, arg_vec, ss_map, /* deep_copy */ false);
  auto cached_ret_vec = shapeCache.Get(cache_key);
  if (cached_ret_vec == nullptr) {
    return c10::nullopt;
  }
  // Decanonicalize the return values
  auto inverse_ss_map = std::unordered_map<int64_t, int64_t>();
  for (auto& ss_val : ss_map) {
    inverse_ss_map[ss_val.second] = ss_val.first;
  }
  std::vector<at::SymbolicShape> ret_vec;
  for (auto& css : *cached_ret_vec) {
    ret_vec.emplace_back(css.toSymbolicShape(inverse_ss_map));
  }
  return ret_vec;
}

// Function only to access the cache, used for testing
TORCH_API void clear_shape_cache() {
  shapeCache.Clear();
}

TORCH_API size_t get_shape_cache_size() {
  return shapeCache.Numel();
}

void CanonicalizedSymbolicShape::init(
    const c10::SymbolicShape& orig_shape,
    std::unordered_map<int64_t, int64_t>& ss_map) {
  auto sizes = orig_shape.sizes();
  if (!sizes) {
    values_ = c10::nullopt;
    return;
  }
  values_ = std::vector<int64_t>();
  int64_t cur_symbolic_index = -static_cast<int64_t>(ss_map.size()) - 1;
  for (auto& cur_shape : *sizes) {
    if (cur_shape.is_static()) {
      values_->push_back(cur_shape.static_size());
    } else {
      // Check for aliasing
      auto it = ss_map.find(cur_shape.value());

      if (it == ss_map.end()) {
        values_->push_back(cur_symbolic_index);
        ss_map.insert({cur_shape.value(), cur_symbolic_index});
        cur_symbolic_index--;
      } else {
        values_->push_back(it->second);
      }
    }
  }
}

c10::SymbolicShape CanonicalizedSymbolicShape::toSymbolicShape(
    std::unordered_map<int64_t, int64_t>& inverse_ss_map) const {
  if (!values_.has_value()) {
    return c10::SymbolicShape();
  }
  std::vector<at::ShapeSymbol> sizes;
  for (long long cur_val : *values_) {
    if (cur_val >= 0) {
      sizes.push_back(at::ShapeSymbol::fromStaticSize(cur_val));
      continue;
    }
    auto res = inverse_ss_map.find(cur_val);
    if (res != inverse_ss_map.end()) {
      sizes.push_back(at::ShapeSymbol::fromStaticSize(res->second));
    } else {
      auto new_symbol = at::ShapeSymbol::newSymbol();
      inverse_ss_map.insert({cur_val, new_symbol.value()});
      sizes.push_back(new_symbol);
    }
  }
  return c10::SymbolicShape(std::move(sizes));
}

size_t CanonicalizedSymbolicShape::hash() const {
  if (!values_.has_value()) {
    return 0x8cc80c80; // random value to prevent hash collisions
  }
  return c10::hash<std::vector<int64_t>>()(values_.value());
}

bool operator==(
    const CanonicalizedSymbolicShape& a,
    const CanonicalizedSymbolicShape& b) {
  return a.values_ == b.values_;
};
} // namespace jit
} // namespace torch