1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <ATen/core/symbol.h>
#include <c10/util/StringUtil.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/jit_log.h>
namespace torch {
namespace jit {
namespace SubgraphUtils {
namespace {
bool hasSubgraph(Node* n) {
return n->hasAttribute(attr::Subgraph);
}
std::vector<c10::optional<const Use>> gatherLastUses(
at::ArrayRef<Value*> values) {
return fmap(values, [&](Value* v) -> c10::optional<const Use> {
return firstOrLastUse(v, /*find_first*/ false);
});
}
// When merging a node into a subgraph, we wish to preserve all of the
// aliasing properties of the node's outputs. It is difficult to track
// the node or its contained nodes through all of the ir manipulation
// involved in merging; it is pretty easy to uniquely identify the value
// based on its uses. We can identify the value by its last use in the graph.
// Values which do not have uses or which do not have a last use
// outside of the subgraph to be merged into we do not need to track.
struct ValueMapper {
// `to_merge` is the node we're merginginto a subgraph, `existing_subgraph` is
// the subgraph node that we're merging into if it exists
ValueMapper(
Node* to_merge,
AliasDb& db,
c10::optional<Node*> existing_subgraph) {
last_uses_ = gatherLastUses(to_merge->outputs());
if (existing_subgraph) {
existing_last_uses_ = gatherLastUses((*existing_subgraph)->outputs());
}
WithInsertPoint guard(to_merge);
auto g = to_merge->owningGraph();
// temporary node to put the aliasing properties of the node before its
// merged and destroyed
placeholder_node_ = g->insertNode(g->create(prim::Uninitialized, 0));
for (size_t i = 0; i < to_merge->outputs().size(); ++i) {
Value* existing = to_merge->outputs().at(i);
Value* new_value = placeholder_node_->insertOutput(i)->copyMetadata(
to_merge->outputs().at(i));
db.replaceWithNewValue(existing, new_value);
}
}
bool usesEqual(const Use& a, const Use& b) {
return a.user == b.user && a.offset == b.offset;
}
void copyAliasing(Node* merged_node, AliasDb& db) {
auto new_outputs = merged_node->outputs();
for (Value* v : new_outputs) {
auto maybe_last_use = firstOrLastUse(v, /*find_first*/ false);
// if it doesnt have a use it shouldnt have been added as output
TORCH_INTERNAL_ASSERT(maybe_last_use);
const Use last_use = *maybe_last_use;
// existing outputs of the subgraph do not need to have alias db mappings
// updated
bool is_existing_value = false;
for (size_t i = 0; i < existing_last_uses_.size() && !is_existing_value;
++i) {
is_existing_value = existing_last_uses_[i].has_value() &&
usesEqual(*existing_last_uses_[i], last_use);
}
if (is_existing_value) {
continue;
}
size_t i = 0;
while (i < last_uses_.size() && last_uses_.at(i).has_value() &&
!usesEqual(*last_uses_.at(i), last_use)) {
++i;
}
TORCH_INTERNAL_ASSERT(i != last_uses_.size());
db.replaceWithNewValue(placeholder_node_->outputs().at(i), v);
}
placeholder_node_->destroy();
}
std::vector<c10::optional<const Use>> last_uses_;
std::vector<c10::optional<const Use>> existing_last_uses_;
Node* placeholder_node_;
};
Node* executeSubgraphMergeAndUpdateAliasing(
Node* to_merge,
c10::optional<Node*> existing,
AliasDb& db,
const std::function<Node*(void)>& merge_fn) {
// When we merge a node into a subgraph, the new subgraph outputs
// have the same aliasing properties as the original node's outputs.
// Here we create a placeholder node, transfer the aliasing properties
// to the placeholder, execute the merge, and transfer the aliasing
// properties to the appropriate fusion group outputs
ValueMapper vm(to_merge, db, existing);
Node* fusion_group = merge_fn();
vm.copyAliasing(fusion_group, db);
return fusion_group;
}
// Combine the nodes in two subgraph together. The nodes will end up in
// `mergeTo`, and `mergeFrom` is destroyed.
void mergeSubgraph(Node* mergeTo, Node* mergeFrom) {
bool merge_from_is_after = mergeFrom->isAfter(mergeTo);
Node* nodeBeforeMergeFrom = mergeFrom->prev();
Node* nodeAfterMergeFrom = mergeFrom->next();
unmergeSubgraph(mergeFrom);
graph_node_list_iterator end_it;
graph_node_list_iterator it;
if (merge_from_is_after) {
it = nodeBeforeMergeFrom->iterator();
end_it = nodeAfterMergeFrom->iterator();
} else {
end_it = nodeBeforeMergeFrom->reverseIterator();
it = nodeAfterMergeFrom->reverseIterator();
}
++it;
std::vector<Node*> merged_nodes;
while (it != end_it) {
Node* node = *it;
++it;
mergeNodeIntoSubgraph(node, mergeTo);
}
}
struct topo_cmp_value {
bool operator()(Value* a, Value* b) const {
if (a->node() == b->node()) {
return a->unique() < b->unique();
}
return a->node()->isBefore(b->node());
}
};
struct topo_cmp_node {
bool operator()(Node* a, Node* b) const {
return a->isBefore(b);
}
};
void collectNodesToUnfuse(Node* start, std::set<Node*, topo_cmp_node>& s) {
if (start->kind() == prim::Return || start->kind() == prim::Param) {
GRAPH_DEBUG("reached the param or return node", getHeader(start));
return;
}
if (s.count(start) != 0) {
// already visited, no need to visit descendants
return;
}
GRAPH_DEBUG("collectNodesToUnfuse: inserting node ", getHeader(start));
s.insert(start);
for (auto o : start->outputs()) {
for (auto use : o->uses()) {
collectNodesToUnfuse(use.user, s);
}
}
}
std::vector<std::set<Value*, topo_cmp_value>> buildAliasedSets(
std::shared_ptr<Graph> subgraph) {
auto outputs = subgraph->outputs();
AliasDb alias_db(subgraph);
TORCH_INTERNAL_ASSERT(outputs.size() > 1);
std::vector<std::set<Value*, topo_cmp_value>> res;
for (auto o : outputs) {
auto grouped = false;
for (auto& s : res) {
auto os = *s.begin();
auto aliased = alias_db.mayContainAlias(os, o);
GRAPH_DEBUG(
"comparing %",
o->debugName(),
" with %",
os->debugName(),
" result ",
aliased);
if (aliased) {
s.insert(o);
GRAPH_DEBUG("Grouping %", o->debugName(), " with %", os->debugName());
grouped = true;
}
}
if (!grouped) {
res.push_back({o});
}
}
return res;
}
} // namespace
std::shared_ptr<Graph> getSubgraph(Node* n) {
return n->g(attr::Subgraph);
}
void unmergeSubgraph(Node* subgraphNode) {
// Inline the graph, replace uses of node outputs and destroy the node
auto outerGraph = subgraphNode->owningGraph();
WithInsertPoint guard(subgraphNode);
const auto subgraphOutputs = insertGraph(
*outerGraph, *getSubgraph(subgraphNode), subgraphNode->inputs());
AT_ASSERT(subgraphOutputs.size() >= subgraphNode->outputs().size());
for (size_t i = 0; i < subgraphNode->outputs().size(); ++i) {
subgraphNode->outputs()[i]->replaceAllUsesWith(subgraphOutputs[i]);
}
subgraphNode->destroy();
}
void collectNestedUses(
std::unordered_set<Value*>& closed_over_values,
std::unordered_set<Value*>& new_values,
std::unordered_map<Value*, Value*>& externalValuesMap,
Node* input_node) {
for (auto input : input_node->inputs()) {
if (externalValuesMap.count(input) == 0 && new_values.count(input) == 0) {
closed_over_values.insert(input);
}
}
if (input_node->kind() == prim::If) {
for (Block* block : input_node->blocks()) {
for (Node* node : block->nodes()) {
collectNestedUses(
closed_over_values, new_values, externalValuesMap, node);
}
for (Value* v : block->outputs()) {
if (externalValuesMap.count(v) == 0 && new_values.count(v) == 0) {
closed_over_values.insert(v);
}
}
}
} else if (input_node->kind() == prim::Loop) {
for (Value* v : input_node->inputs()) {
if (externalValuesMap.count(v) == 0 && new_values.count(v) == 0) {
closed_over_values.insert(v);
}
}
Block* block = input_node->blocks().at(0);
for (Value* v : block->inputs()) {
new_values.insert(v);
}
for (Node* node : block->nodes()) {
collectNestedUses(
closed_over_values, new_values, externalValuesMap, node);
}
} else if (input_node->blocks().size() != 0) {
TORCH_INTERNAL_ASSERT(false, input_node, " kind not handled yet");
}
for (Value* output : input_node->outputs()) {
new_values.insert(output);
}
}
std::unordered_set<Value*> closedOverValues(
Node* toMerge,
std::unordered_map<Value*, Value*>& externalValuesMap) {
std::unordered_set<Value*> closed_over_values;
std::unordered_set<Value*> new_values;
collectNestedUses(closed_over_values, new_values, externalValuesMap, toMerge);
return closed_over_values;
}
void mergeNodeIntoSubgraph(
Node* toMerge,
Node* subgraphNode,
bool destroyNode) {
AT_ASSERT(hasSubgraph(subgraphNode) && toMerge != subgraphNode);
if (hasSubgraph(toMerge)) {
return mergeSubgraph(subgraphNode, toMerge);
}
auto subgraph = getSubgraph(subgraphNode);
// Map from values in the surrounding graph to inputs/outputs in the subgraph
std::unordered_map<Value*, Value*> externalValuesMap;
AT_ASSERT(subgraphNode->inputs().size() == subgraph->inputs().size());
size_t idx = 0;
for (auto input : subgraphNode->inputs()) {
externalValuesMap[input] = subgraph->inputs()[idx];
idx++;
}
for (size_t i = 0; i < subgraphNode->outputs().size(); ++i) {
externalValuesMap[subgraphNode->outputs().at(i)] =
subgraph->outputs().at(i);
}
// Add n's inputs to the group's input list if we don't already have them
bool merging_node_after_subgraph = toMerge->isAfter(subgraphNode);
Node* guard_node = merging_node_after_subgraph ? *subgraph->nodes().end()
: *subgraph->nodes().begin();
WithInsertPoint guard(guard_node);
std::unordered_set<Value*> closedValues =
closedOverValues(toMerge, externalValuesMap);
// There are currently downstream usage that relies on a fixed ordering
// of graph inputs. TODO: remove
std::vector<Value*> orderedClosedValues;
std::unordered_set<Value*> orderedSeenValues;
for (Value* input : toMerge->inputs()) {
orderedClosedValues.push_back(input);
orderedSeenValues.insert(input);
}
for (Value* closedValue : closedValues) {
if (!orderedSeenValues.count(closedValue)) {
orderedClosedValues.push_back(closedValue);
orderedSeenValues.insert(closedValue);
}
}
for (auto input : orderedClosedValues) {
if (externalValuesMap.count(input) == 0) {
// Clone constants inside the subgraph instead of referencing them, to
// enable more optimizations
if (auto value = toIValue(input)) {
auto nv = subgraph->insertConstant(*value);
nv->copyMetadata(input);
externalValuesMap[input] = nv;
} else {
// The common case: this is a regular input, so just register it with
// the group node and inner subgraph
subgraphNode->addInput(input);
auto inputToGraph = subgraph->addInput();
inputToGraph->copyMetadata(input);
externalValuesMap[input] = inputToGraph;
}
}
}
// Merge the node into the graph
auto mergedNode = subgraph->insertNode(subgraph->createClone(
toMerge, [&](Value* v) { return externalValuesMap[v]; }));
if (!merging_node_after_subgraph) {
// If n's outputs were inputs to `group`, remove them since we just merged
// n in.
//
// i.e.,
// x = f(w); group(x, y, z) becomes group(w, y, z).
// x, y, z = f(w); group(x, y, z) becomes group(w).
auto inputs = subgraphNode->inputs();
for (size_t i = 0; i < toMerge->outputs().size(); ++i) {
auto it = std::find(inputs.begin(), inputs.end(), toMerge->outputs()[i]);
if (it != inputs.end()) {
size_t p = it - inputs.begin();
subgraphNode->removeInput(p);
subgraph->inputs()[p]->replaceAllUsesWith(mergedNode->outputs()[i]);
subgraph->eraseInput(p);
}
}
}
// Add n's outputs to the group node and inner subgraph outputs.
for (const auto i : c10::irange(toMerge->outputs().size())) {
auto oldOutput = toMerge->outputs()[i];
auto newOutput = mergedNode->outputs()[i];
subgraph->registerOutput(newOutput);
auto groupOutput = subgraphNode->addOutput();
groupOutput->copyMetadata(oldOutput);
oldOutput->replaceAllUsesWith(groupOutput);
}
// Remove the original node now that the merge is complete
if (destroyNode) {
toMerge->destroy();
}
// We wait till destroying `toMerge` before pruning subgraph outputs,
// since destroying `toMerge` could cause a subgraph output to no longer
// have any uses
const auto hasUsesOutsideSubgraph = [&](Value* v) {
return std::any_of(
v->uses().cbegin(), v->uses().cend(), [&](const Use& use) {
return use.user->isAfter(subgraphNode);
});
};
for (int64_t i = subgraphNode->outputs().size() - 1; i >= 0; i--) {
if (!hasUsesOutsideSubgraph(subgraphNode->outputs().at(i))) {
subgraphNode->eraseOutput(i);
subgraph->eraseOutput(i);
}
}
}
Node* createSingletonSubgraph(Node* n, Symbol subgraphKind) {
auto graph = n->owningGraph();
auto subgraph = graph->create(subgraphKind, 0);
subgraph->g_(attr::Subgraph, std::make_shared<Graph>(graph->current_scope()));
subgraph->insertBefore(n);
mergeNodeIntoSubgraph(n, subgraph);
return subgraph;
}
void mergeNodeIntoSubgraphAndUpdateAliasing(
Node* to_merge,
Node* subgraphNode,
AliasDb& db) {
executeSubgraphMergeAndUpdateAliasing(to_merge, subgraphNode, db, [&]() {
mergeNodeIntoSubgraph(to_merge, subgraphNode);
return subgraphNode;
});
}
Node* createSingletonSubgraphAndUpdateAliasing(
Node* to_merge,
Symbol subgraphKind,
AliasDb& db) {
return executeSubgraphMergeAndUpdateAliasing(
to_merge, c10::nullopt, db, [&]() {
return createSingletonSubgraph(to_merge, subgraphKind);
});
}
bool unmergeOutputsAlisingInputs(Node* subgraphNode) {
GRAPH_DEBUG("unfuseOutputsAlisingInputs on ", getHeader(subgraphNode));
auto subgraph = subgraphNode->g(attr::Subgraph);
AliasDb alias_db(subgraph);
std::set<Node*, topo_cmp_node> nodes;
for (auto o : subgraph->outputs()) {
if (alias_db.mayContainAlias(o, subgraph->inputs())) {
collectNodesToUnfuse(o->node(), nodes);
}
}
// unfuse in the reverse topo order
for (auto it = nodes.rbegin(); it != nodes.rend(); it++) {
SubgraphUtils::unmergeNode(*it, subgraphNode);
}
return !nodes.empty();
}
bool unmergeAliasedOutputs(Node* subgraphNode) {
GRAPH_DEBUG("unfuseAliasedOutputs on ", getHeader(subgraphNode));
if (subgraphNode->outputs().size() < 2) {
return false;
}
auto subgraph = subgraphNode->g(attr::Subgraph);
GRAPH_DUMP("unfuseAliasedOutputs Subgraph ", subgraph);
auto sets = buildAliasedSets(subgraph);
GRAPH_DEBUG("buildAliasedSets sets.size() = ", sets.size());
std::set<Node*, topo_cmp_node> nodes;
for (auto i : c10::irange(sets.size())) {
if (sets[i].size() <= 1) {
GRAPH_DEBUG(
"Set ",
i,
" with leader ",
(*(sets[i].begin()))->debugName(),
" size = ",
sets[i].size());
continue;
}
// we have at least two aliased outputs
// we skip the earliest node w.r.t. the topo order
// NB. after some nodes are unfused, the outputs of some other nodes
// may become the outputs of the subgraph and alias the remaining ones
// so we have to re-run this function until there are no more changes
auto it = ++sets[i].begin();
while (it != sets[i].end()) {
GRAPH_DEBUG(
"root aliased value ", (*it)->debugName(), " node ", *(*it)->node());
collectNodesToUnfuse((*it)->node(), nodes);
it++;
}
}
// unfuse in the reverse topo order
for (auto it = nodes.rbegin(); it != nodes.rend(); it++) {
unmergeNode(*it, subgraphNode);
}
return !nodes.empty();
}
void unmergeNode(Node* n, Node* subgraphNode) {
// collect output indices
GRAPH_DEBUG("unfuseNode node ", getHeader(n));
auto subgraph = n->owningGraph();
std::set<Value*> node_outputs(n->outputs().begin(), n->outputs().end());
std::set<size_t> output_indices;
std::set<Value*> node_inputs(n->inputs().begin(), n->inputs().end());
std::unordered_map<Value*, Value*> local_map;
auto env = [&](Value* v) {
auto it = local_map.find(v);
if (it != local_map.end()) {
return it->second;
}
TORCH_INTERNAL_ASSERT(
false,
"all inputs should've been mapped. Couldn't map %",
v->debugName());
return v;
};
for (auto i : c10::irange(subgraph->outputs().size())) {
if (node_outputs.count(subgraph->outputs().at(i)) != 0) {
output_indices.insert(i);
}
if (node_inputs.count(subgraph->outputs().at(i)) != 0) {
GRAPH_DEBUG(
"output %",
subgraph->outputs().at(i)->debugName(),
" is already subgraph's output");
GRAPH_DEBUG(
"Mapping %",
subgraph->outputs().at(i)->debugName(),
" to %",
subgraphNode->outputs().at(i)->debugName());
local_map[subgraph->outputs().at(i)] = subgraphNode->outputs().at(i);
node_inputs.erase(subgraph->outputs().at(i));
}
}
WithInsertPoint wip(subgraphNode->next());
// these node inputs need to be added to subgraph's outputs
// put them in vmap
for (auto ni : node_inputs) {
if (local_map.count(ni) != 0) {
// this could happen if `n` uses two or more outputs
// of a constant node and we already cloned the constant
// into the outer graph and mapped its outputs
continue;
}
Value* sno = nullptr;
if (ni->node()->kind() == prim::Constant) {
auto copy = subgraphNode->owningGraph()->createClone(ni->node(), env);
subgraphNode->owningGraph()->insertNode(copy);
// in case we have a multi-output const, map the rest of the outputs
// so when we get to clone `n`, `n`'s clone will use the outputs of this
// constant clone
for (auto i : c10::irange(n->outputs().size())) {
GRAPH_DEBUG(
"Mapping %",
ni->node()->output(i)->debugName(),
" to %",
copy->output(i)->debugName());
local_map[ni->node()->output(i)] = copy->output(i);
}
} else {
subgraph->registerOutput(ni);
sno = subgraphNode->addOutput();
sno->setType(ni->type());
GRAPH_DEBUG("Mapping %", ni->debugName(), " to %", sno->debugName());
local_map[ni] = sno;
}
}
auto copy = subgraphNode->owningGraph()->createClone(n, env);
GRAPH_DEBUG("copy ", *copy);
for (auto i : c10::irange(n->outputs().size())) {
auto oo = n->outputs()[i];
auto no = copy->outputs()[i];
no->copyMetadata(oo);
GRAPH_DEBUG("Mapping %", oo->debugName(), " to %", no->debugName());
local_map[oo] = no;
}
subgraphNode->owningGraph()->insertNode(copy);
for (auto it = output_indices.rbegin(); it != output_indices.rend(); it++) {
auto replace_val = local_map[subgraph->outputs().at(*it)];
subgraphNode->outputs().at(*it)->replaceAllUsesWith(replace_val);
subgraphNode->eraseOutput(*it);
subgraph->eraseOutput(*it);
}
n->destroy();
}
std::string truncateStrWithHash(const std::string& s, size_t maxlen) {
if (s.size() <= maxlen) {
return s;
}
std::string hash_str = c10::to_string(c10::hash<std::string>{}(s));
// If hash-string plus '_' can fit into maxlen, then truncate the original
// string correspondingly so that the final string with the hash included fits
// into maxlen. If that's not possible, at least truncate the original string
// to maxlen (and appen the hash to it).
size_t trunc_len =
(maxlen > hash_str.size() + 1) ? (maxlen - hash_str.size() - 1) : maxlen;
std::stringstream truncated;
truncated << s.substr(0, trunc_len);
truncated << "_" << hash_str;
return truncated.str();
}
std::string generateNameForGraph(
const std::shared_ptr<Graph>& graph,
size_t maxlen,
const std::string& prefix) {
std::stringstream graph_name;
graph_name << prefix;
for (Node* node : graph->nodes()) {
if (!node->kind().is_aten()) {
continue;
}
graph_name << "_" << node->kind().toUnqualString();
}
return truncateStrWithHash(graph_name.str(), maxlen);
}
} // namespace SubgraphUtils
} // namespace jit
} // namespace torch
|