File: subgraph_utils.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (637 lines) | stat: -rw-r--r-- 20,828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>

#include <torch/csrc/jit/passes/canonicalize.h>

#include <ATen/core/symbol.h>
#include <c10/util/StringUtil.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/jit_log.h>

namespace torch {
namespace jit {
namespace SubgraphUtils {
namespace {

bool hasSubgraph(Node* n) {
  return n->hasAttribute(attr::Subgraph);
}

std::vector<c10::optional<const Use>> gatherLastUses(
    at::ArrayRef<Value*> values) {
  return fmap(values, [&](Value* v) -> c10::optional<const Use> {
    return firstOrLastUse(v, /*find_first*/ false);
  });
}

// When merging a node into a subgraph, we wish to preserve all of the
// aliasing properties of the node's outputs. It is difficult to track
// the node or its contained nodes through all of the ir manipulation
// involved in merging; it is pretty easy to uniquely identify the value
// based on its uses. We can identify the value by its last use in the graph.
// Values which do not have uses or which do not have a last use
// outside of the subgraph to be merged into we do not need to track.
struct ValueMapper {
  // `to_merge` is the node we're merginginto a subgraph, `existing_subgraph` is
  // the subgraph node that we're merging into if it exists
  ValueMapper(
      Node* to_merge,
      AliasDb& db,
      c10::optional<Node*> existing_subgraph) {
    last_uses_ = gatherLastUses(to_merge->outputs());
    if (existing_subgraph) {
      existing_last_uses_ = gatherLastUses((*existing_subgraph)->outputs());
    }
    WithInsertPoint guard(to_merge);
    auto g = to_merge->owningGraph();
    // temporary node to put the aliasing properties of the node before its
    // merged and destroyed
    placeholder_node_ = g->insertNode(g->create(prim::Uninitialized, 0));
    for (size_t i = 0; i < to_merge->outputs().size(); ++i) {
      Value* existing = to_merge->outputs().at(i);
      Value* new_value = placeholder_node_->insertOutput(i)->copyMetadata(
          to_merge->outputs().at(i));
      db.replaceWithNewValue(existing, new_value);
    }
  }

  bool usesEqual(const Use& a, const Use& b) {
    return a.user == b.user && a.offset == b.offset;
  }

  void copyAliasing(Node* merged_node, AliasDb& db) {
    auto new_outputs = merged_node->outputs();
    for (Value* v : new_outputs) {
      auto maybe_last_use = firstOrLastUse(v, /*find_first*/ false);
      // if it doesnt have a use it shouldnt have been added as output
      TORCH_INTERNAL_ASSERT(maybe_last_use);
      const Use last_use = *maybe_last_use;

      // existing outputs of the subgraph do not need to have alias db mappings
      // updated
      bool is_existing_value = false;
      for (size_t i = 0; i < existing_last_uses_.size() && !is_existing_value;
           ++i) {
        is_existing_value = existing_last_uses_[i].has_value() &&
            usesEqual(*existing_last_uses_[i], last_use);
      }
      if (is_existing_value) {
        continue;
      }

      size_t i = 0;
      while (i < last_uses_.size() && last_uses_.at(i).has_value() &&
             !usesEqual(*last_uses_.at(i), last_use)) {
        ++i;
      }
      TORCH_INTERNAL_ASSERT(i != last_uses_.size());
      db.replaceWithNewValue(placeholder_node_->outputs().at(i), v);
    }
    placeholder_node_->destroy();
  }

  std::vector<c10::optional<const Use>> last_uses_;
  std::vector<c10::optional<const Use>> existing_last_uses_;
  Node* placeholder_node_;
};

Node* executeSubgraphMergeAndUpdateAliasing(
    Node* to_merge,
    c10::optional<Node*> existing,
    AliasDb& db,
    const std::function<Node*(void)>& merge_fn) {
  // When we merge a node into a subgraph, the new subgraph outputs
  // have the same aliasing properties as the original node's outputs.
  // Here we create a placeholder node, transfer the aliasing properties
  // to the placeholder, execute the merge, and transfer the aliasing
  // properties to the appropriate fusion group outputs
  ValueMapper vm(to_merge, db, existing);
  Node* fusion_group = merge_fn();
  vm.copyAliasing(fusion_group, db);
  return fusion_group;
}

// Combine the nodes in two subgraph together. The nodes will end up in
// `mergeTo`, and `mergeFrom` is destroyed.
void mergeSubgraph(Node* mergeTo, Node* mergeFrom) {
  bool merge_from_is_after = mergeFrom->isAfter(mergeTo);
  Node* nodeBeforeMergeFrom = mergeFrom->prev();
  Node* nodeAfterMergeFrom = mergeFrom->next();

  unmergeSubgraph(mergeFrom);

  graph_node_list_iterator end_it;
  graph_node_list_iterator it;

  if (merge_from_is_after) {
    it = nodeBeforeMergeFrom->iterator();
    end_it = nodeAfterMergeFrom->iterator();
  } else {
    end_it = nodeBeforeMergeFrom->reverseIterator();
    it = nodeAfterMergeFrom->reverseIterator();
  }
  ++it;

  std::vector<Node*> merged_nodes;
  while (it != end_it) {
    Node* node = *it;
    ++it;
    mergeNodeIntoSubgraph(node, mergeTo);
  }
}

struct topo_cmp_value {
  bool operator()(Value* a, Value* b) const {
    if (a->node() == b->node()) {
      return a->unique() < b->unique();
    }
    return a->node()->isBefore(b->node());
  }
};

struct topo_cmp_node {
  bool operator()(Node* a, Node* b) const {
    return a->isBefore(b);
  }
};

void collectNodesToUnfuse(Node* start, std::set<Node*, topo_cmp_node>& s) {
  if (start->kind() == prim::Return || start->kind() == prim::Param) {
    GRAPH_DEBUG("reached the param or return node", getHeader(start));
    return;
  }

  if (s.count(start) != 0) {
    // already visited, no need to visit descendants
    return;
  }

  GRAPH_DEBUG("collectNodesToUnfuse: inserting node ", getHeader(start));
  s.insert(start);

  for (auto o : start->outputs()) {
    for (auto use : o->uses()) {
      collectNodesToUnfuse(use.user, s);
    }
  }
}

std::vector<std::set<Value*, topo_cmp_value>> buildAliasedSets(
    std::shared_ptr<Graph> subgraph) {
  auto outputs = subgraph->outputs();
  AliasDb alias_db(subgraph);
  TORCH_INTERNAL_ASSERT(outputs.size() > 1);
  std::vector<std::set<Value*, topo_cmp_value>> res;
  for (auto o : outputs) {
    auto grouped = false;
    for (auto& s : res) {
      auto os = *s.begin();
      auto aliased = alias_db.mayContainAlias(os, o);
      GRAPH_DEBUG(
          "comparing %",
          o->debugName(),
          " with %",
          os->debugName(),
          " result ",
          aliased);
      if (aliased) {
        s.insert(o);
        GRAPH_DEBUG("Grouping %", o->debugName(), " with %", os->debugName());
        grouped = true;
      }
    }
    if (!grouped) {
      res.push_back({o});
    }
  }
  return res;
}

} // namespace

std::shared_ptr<Graph> getSubgraph(Node* n) {
  return n->g(attr::Subgraph);
}

void unmergeSubgraph(Node* subgraphNode) {
  // Inline the graph, replace uses of node outputs and destroy the node
  auto outerGraph = subgraphNode->owningGraph();
  WithInsertPoint guard(subgraphNode);
  const auto subgraphOutputs = insertGraph(
      *outerGraph, *getSubgraph(subgraphNode), subgraphNode->inputs());
  AT_ASSERT(subgraphOutputs.size() >= subgraphNode->outputs().size());
  for (size_t i = 0; i < subgraphNode->outputs().size(); ++i) {
    subgraphNode->outputs()[i]->replaceAllUsesWith(subgraphOutputs[i]);
  }
  subgraphNode->destroy();
}

void collectNestedUses(
    std::unordered_set<Value*>& closed_over_values,
    std::unordered_set<Value*>& new_values,
    std::unordered_map<Value*, Value*>& externalValuesMap,
    Node* input_node) {
  for (auto input : input_node->inputs()) {
    if (externalValuesMap.count(input) == 0 && new_values.count(input) == 0) {
      closed_over_values.insert(input);
    }
  }
  if (input_node->kind() == prim::If) {
    for (Block* block : input_node->blocks()) {
      for (Node* node : block->nodes()) {
        collectNestedUses(
            closed_over_values, new_values, externalValuesMap, node);
      }
      for (Value* v : block->outputs()) {
        if (externalValuesMap.count(v) == 0 && new_values.count(v) == 0) {
          closed_over_values.insert(v);
        }
      }
    }
  } else if (input_node->kind() == prim::Loop) {
    for (Value* v : input_node->inputs()) {
      if (externalValuesMap.count(v) == 0 && new_values.count(v) == 0) {
        closed_over_values.insert(v);
      }
    }
    Block* block = input_node->blocks().at(0);
    for (Value* v : block->inputs()) {
      new_values.insert(v);
    }
    for (Node* node : block->nodes()) {
      collectNestedUses(
          closed_over_values, new_values, externalValuesMap, node);
    }
  } else if (input_node->blocks().size() != 0) {
    TORCH_INTERNAL_ASSERT(false, input_node, " kind not handled yet");
  }
  for (Value* output : input_node->outputs()) {
    new_values.insert(output);
  }
}

std::unordered_set<Value*> closedOverValues(
    Node* toMerge,
    std::unordered_map<Value*, Value*>& externalValuesMap) {
  std::unordered_set<Value*> closed_over_values;
  std::unordered_set<Value*> new_values;
  collectNestedUses(closed_over_values, new_values, externalValuesMap, toMerge);
  return closed_over_values;
}

void mergeNodeIntoSubgraph(
    Node* toMerge,
    Node* subgraphNode,
    bool destroyNode) {
  AT_ASSERT(hasSubgraph(subgraphNode) && toMerge != subgraphNode);
  if (hasSubgraph(toMerge)) {
    return mergeSubgraph(subgraphNode, toMerge);
  }

  auto subgraph = getSubgraph(subgraphNode);

  // Map from values in the surrounding graph to inputs/outputs in the subgraph
  std::unordered_map<Value*, Value*> externalValuesMap;

  AT_ASSERT(subgraphNode->inputs().size() == subgraph->inputs().size());
  size_t idx = 0;
  for (auto input : subgraphNode->inputs()) {
    externalValuesMap[input] = subgraph->inputs()[idx];
    idx++;
  }

  for (size_t i = 0; i < subgraphNode->outputs().size(); ++i) {
    externalValuesMap[subgraphNode->outputs().at(i)] =
        subgraph->outputs().at(i);
  }

  // Add n's inputs to the group's input list if we don't already have them

  bool merging_node_after_subgraph = toMerge->isAfter(subgraphNode);
  Node* guard_node = merging_node_after_subgraph ? *subgraph->nodes().end()
                                                 : *subgraph->nodes().begin();
  WithInsertPoint guard(guard_node);

  std::unordered_set<Value*> closedValues =
      closedOverValues(toMerge, externalValuesMap);

  // There are currently downstream usage that relies on a fixed ordering
  // of graph inputs. TODO: remove
  std::vector<Value*> orderedClosedValues;
  std::unordered_set<Value*> orderedSeenValues;
  for (Value* input : toMerge->inputs()) {
    orderedClosedValues.push_back(input);
    orderedSeenValues.insert(input);
  }
  for (Value* closedValue : closedValues) {
    if (!orderedSeenValues.count(closedValue)) {
      orderedClosedValues.push_back(closedValue);
      orderedSeenValues.insert(closedValue);
    }
  }

  for (auto input : orderedClosedValues) {
    if (externalValuesMap.count(input) == 0) {
      // Clone constants inside the subgraph instead of referencing them, to
      // enable more optimizations
      if (auto value = toIValue(input)) {
        auto nv = subgraph->insertConstant(*value);
        nv->copyMetadata(input);
        externalValuesMap[input] = nv;
      } else {
        // The common case: this is a regular input, so just register it with
        // the group node and inner subgraph
        subgraphNode->addInput(input);
        auto inputToGraph = subgraph->addInput();
        inputToGraph->copyMetadata(input);
        externalValuesMap[input] = inputToGraph;
      }
    }
  }

  // Merge the node into the graph
  auto mergedNode = subgraph->insertNode(subgraph->createClone(
      toMerge, [&](Value* v) { return externalValuesMap[v]; }));

  if (!merging_node_after_subgraph) {
    // If n's outputs were inputs to `group`, remove them since we just merged
    // n in.
    //
    // i.e.,
    // x = f(w); group(x, y, z) becomes group(w, y, z).
    // x, y, z = f(w); group(x, y, z) becomes group(w).
    auto inputs = subgraphNode->inputs();
    for (size_t i = 0; i < toMerge->outputs().size(); ++i) {
      auto it = std::find(inputs.begin(), inputs.end(), toMerge->outputs()[i]);
      if (it != inputs.end()) {
        size_t p = it - inputs.begin();
        subgraphNode->removeInput(p);
        subgraph->inputs()[p]->replaceAllUsesWith(mergedNode->outputs()[i]);
        subgraph->eraseInput(p);
      }
    }
  }

  // Add n's outputs to the group node and inner subgraph outputs.
  for (const auto i : c10::irange(toMerge->outputs().size())) {
    auto oldOutput = toMerge->outputs()[i];
    auto newOutput = mergedNode->outputs()[i];
    subgraph->registerOutput(newOutput);
    auto groupOutput = subgraphNode->addOutput();
    groupOutput->copyMetadata(oldOutput);
    oldOutput->replaceAllUsesWith(groupOutput);
  }
  // Remove the original node now that the merge is complete
  if (destroyNode) {
    toMerge->destroy();
  }

  // We wait till destroying `toMerge` before pruning subgraph outputs,
  // since destroying `toMerge` could cause a subgraph output to no longer
  // have any uses
  const auto hasUsesOutsideSubgraph = [&](Value* v) {
    return std::any_of(
        v->uses().cbegin(), v->uses().cend(), [&](const Use& use) {
          return use.user->isAfter(subgraphNode);
        });
  };

  for (int64_t i = subgraphNode->outputs().size() - 1; i >= 0; i--) {
    if (!hasUsesOutsideSubgraph(subgraphNode->outputs().at(i))) {
      subgraphNode->eraseOutput(i);
      subgraph->eraseOutput(i);
    }
  }
}

Node* createSingletonSubgraph(Node* n, Symbol subgraphKind) {
  auto graph = n->owningGraph();
  auto subgraph = graph->create(subgraphKind, 0);
  subgraph->g_(attr::Subgraph, std::make_shared<Graph>(graph->current_scope()));
  subgraph->insertBefore(n);
  mergeNodeIntoSubgraph(n, subgraph);
  return subgraph;
}

void mergeNodeIntoSubgraphAndUpdateAliasing(
    Node* to_merge,
    Node* subgraphNode,
    AliasDb& db) {
  executeSubgraphMergeAndUpdateAliasing(to_merge, subgraphNode, db, [&]() {
    mergeNodeIntoSubgraph(to_merge, subgraphNode);
    return subgraphNode;
  });
}

Node* createSingletonSubgraphAndUpdateAliasing(
    Node* to_merge,
    Symbol subgraphKind,
    AliasDb& db) {
  return executeSubgraphMergeAndUpdateAliasing(
      to_merge, c10::nullopt, db, [&]() {
        return createSingletonSubgraph(to_merge, subgraphKind);
      });
}

bool unmergeOutputsAlisingInputs(Node* subgraphNode) {
  GRAPH_DEBUG("unfuseOutputsAlisingInputs on ", getHeader(subgraphNode));
  auto subgraph = subgraphNode->g(attr::Subgraph);
  AliasDb alias_db(subgraph);

  std::set<Node*, topo_cmp_node> nodes;
  for (auto o : subgraph->outputs()) {
    if (alias_db.mayContainAlias(o, subgraph->inputs())) {
      collectNodesToUnfuse(o->node(), nodes);
    }
  }

  // unfuse in the reverse topo order
  for (auto it = nodes.rbegin(); it != nodes.rend(); it++) {
    SubgraphUtils::unmergeNode(*it, subgraphNode);
  }

  return !nodes.empty();
}

bool unmergeAliasedOutputs(Node* subgraphNode) {
  GRAPH_DEBUG("unfuseAliasedOutputs on ", getHeader(subgraphNode));
  if (subgraphNode->outputs().size() < 2) {
    return false;
  }

  auto subgraph = subgraphNode->g(attr::Subgraph);
  GRAPH_DUMP("unfuseAliasedOutputs Subgraph ", subgraph);
  auto sets = buildAliasedSets(subgraph);
  GRAPH_DEBUG("buildAliasedSets sets.size() = ", sets.size());

  std::set<Node*, topo_cmp_node> nodes;

  for (auto i : c10::irange(sets.size())) {
    if (sets[i].size() <= 1) {
      GRAPH_DEBUG(
          "Set ",
          i,
          " with leader ",
          (*(sets[i].begin()))->debugName(),
          " size = ",
          sets[i].size());
      continue;
    }

    // we have at least two aliased outputs
    // we skip the earliest node w.r.t. the topo order
    // NB. after some nodes are unfused, the outputs of some other nodes
    // may become the outputs of the subgraph and alias the remaining ones
    // so we have to re-run this function until there are no more changes
    auto it = ++sets[i].begin();
    while (it != sets[i].end()) {
      GRAPH_DEBUG(
          "root aliased value ", (*it)->debugName(), " node ", *(*it)->node());
      collectNodesToUnfuse((*it)->node(), nodes);
      it++;
    }
  }

  // unfuse in the reverse topo order
  for (auto it = nodes.rbegin(); it != nodes.rend(); it++) {
    unmergeNode(*it, subgraphNode);
  }

  return !nodes.empty();
}

void unmergeNode(Node* n, Node* subgraphNode) {
  // collect output indices
  GRAPH_DEBUG("unfuseNode node ", getHeader(n));
  auto subgraph = n->owningGraph();

  std::set<Value*> node_outputs(n->outputs().begin(), n->outputs().end());
  std::set<size_t> output_indices;
  std::set<Value*> node_inputs(n->inputs().begin(), n->inputs().end());

  std::unordered_map<Value*, Value*> local_map;
  auto env = [&](Value* v) {
    auto it = local_map.find(v);
    if (it != local_map.end()) {
      return it->second;
    }
    TORCH_INTERNAL_ASSERT(
        false,
        "all inputs should've been mapped. Couldn't map %",
        v->debugName());
    return v;
  };

  for (auto i : c10::irange(subgraph->outputs().size())) {
    if (node_outputs.count(subgraph->outputs().at(i)) != 0) {
      output_indices.insert(i);
    }

    if (node_inputs.count(subgraph->outputs().at(i)) != 0) {
      GRAPH_DEBUG(
          "output %",
          subgraph->outputs().at(i)->debugName(),
          " is already subgraph's output");
      GRAPH_DEBUG(
          "Mapping %",
          subgraph->outputs().at(i)->debugName(),
          " to %",
          subgraphNode->outputs().at(i)->debugName());
      local_map[subgraph->outputs().at(i)] = subgraphNode->outputs().at(i);
      node_inputs.erase(subgraph->outputs().at(i));
    }
  }

  WithInsertPoint wip(subgraphNode->next());

  // these node inputs need to be added to subgraph's outputs
  // put them in vmap
  for (auto ni : node_inputs) {
    if (local_map.count(ni) != 0) {
      // this could happen if `n` uses two or more outputs
      // of a constant node and we already cloned the constant
      // into the outer graph and mapped its outputs
      continue;
    }

    Value* sno = nullptr;
    if (ni->node()->kind() == prim::Constant) {
      auto copy = subgraphNode->owningGraph()->createClone(ni->node(), env);
      subgraphNode->owningGraph()->insertNode(copy);
      // in case we have a multi-output const, map the rest of the outputs
      // so when we get to clone `n`, `n`'s clone will use the outputs of this
      // constant clone
      for (auto i : c10::irange(n->outputs().size())) {
        GRAPH_DEBUG(
            "Mapping %",
            ni->node()->output(i)->debugName(),
            " to %",
            copy->output(i)->debugName());
        local_map[ni->node()->output(i)] = copy->output(i);
      }
    } else {
      subgraph->registerOutput(ni);
      sno = subgraphNode->addOutput();
      sno->setType(ni->type());
      GRAPH_DEBUG("Mapping %", ni->debugName(), " to %", sno->debugName());
      local_map[ni] = sno;
    }
  }

  auto copy = subgraphNode->owningGraph()->createClone(n, env);
  GRAPH_DEBUG("copy ", *copy);

  for (auto i : c10::irange(n->outputs().size())) {
    auto oo = n->outputs()[i];
    auto no = copy->outputs()[i];
    no->copyMetadata(oo);
    GRAPH_DEBUG("Mapping %", oo->debugName(), " to %", no->debugName());
    local_map[oo] = no;
  }

  subgraphNode->owningGraph()->insertNode(copy);

  for (auto it = output_indices.rbegin(); it != output_indices.rend(); it++) {
    auto replace_val = local_map[subgraph->outputs().at(*it)];
    subgraphNode->outputs().at(*it)->replaceAllUsesWith(replace_val);
    subgraphNode->eraseOutput(*it);
    subgraph->eraseOutput(*it);
  }

  n->destroy();
}

std::string truncateStrWithHash(const std::string& s, size_t maxlen) {
  if (s.size() <= maxlen) {
    return s;
  }
  std::string hash_str = c10::to_string(c10::hash<std::string>{}(s));
  // If hash-string plus '_' can fit into maxlen, then truncate the original
  // string correspondingly so that the final string with the hash included fits
  // into maxlen. If that's not possible, at least truncate the original string
  // to maxlen (and appen the hash to it).
  size_t trunc_len =
      (maxlen > hash_str.size() + 1) ? (maxlen - hash_str.size() - 1) : maxlen;
  std::stringstream truncated;
  truncated << s.substr(0, trunc_len);
  truncated << "_" << hash_str;
  return truncated.str();
}

std::string generateNameForGraph(
    const std::shared_ptr<Graph>& graph,
    size_t maxlen,
    const std::string& prefix) {
  std::stringstream graph_name;
  graph_name << prefix;
  for (Node* node : graph->nodes()) {
    if (!node->kind().is_aten()) {
      continue;
    }
    graph_name << "_" << node->kind().toUnqualString();
  }
  return truncateStrWithHash(graph_name.str(), maxlen);
}

} // namespace SubgraphUtils
} // namespace jit
} // namespace torch