File: value_refinement_utils.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (242 lines) | stat: -rw-r--r-- 9,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#include <c10/util/irange.h>
#include <torch/csrc/jit/passes/value_refinement_utils.h>

namespace torch {
namespace jit {

// [value refinement algorithm]

// When a comparison like `cond = len(x) == 4` or `cond = len(x) != 4` is made,
// `cond` value carries information (refinements) about the len of `x`.
// When `cond` is used as the conditional of an if statement, the information
// it carries for its true value can be inserted into the true block
// and the same for its false value.
// For something like `y = len(x) if len(x) == 1 else 1`, in the true branch
// we can replace len(x) with 1 because the true refinements from `len(x) == 1`
// will be present in the true block.
// Additionally, we can optimize something like:
// if len(x) != 4:
//    raise Exception(...)
// return len(x)
// Because the true block always throws, whatever refinements exist in the false
// block become present in the owning block of the if node. We can also merge
// refinements carried by two different booleans across an if node join by
// taking the intersections of their refinements.
// if cond:
//    z = len(x) == 4 and len(y) == 5
// else:
//    z = len(x) == 4
// Here, z's true value will refine the len(x) to 4, but not len(y).
// If the code was written as:
// if cond:
//    z = len(x) == 4 and len(y) == 5
// else:
//    z = False
//
// Then z's true value would refine x and y, because if z is true it had to have
// come from the true block. Code that is written with `and` or `or` will
// desugar to something similar. Additionally, any True refinements that were
// present on `cond` can also be associated with the if node True output value.

// The intersection of the refinements is the Value* which are in both
// refinements and are refined to the same length
// in an example like:
// if cond:
//    x = len(a) == 4 and len(b) == 5
// else:
//    x = len(a) == 4
// For the x output of the node we take the intersection between
// the refinements stored on each block output, which will result
// in only the refinement of len(a) == 4
ListRefinement intersectRefinements(
    const ListRefinement& ref1,
    const ListRefinement& ref2) {
  ListRefinement out;
  for (const auto& pair : ref1) {
    auto val2 = ref2.find(pair.first);
    if (val2 != ref2.end() && val2->second == pair.second) {
      out[pair.first] = pair.second;
    }
  }
  return out;
}

// To union, just take all refinements from both inputs. We do not need to worry
// about len refinements disagreeing because a path like `if len(x) == 4 and
// len(x) == 5` will never be taken
// in an example like:
// if len(a) == 5:
//     x = len(b) == 4
// else:
//     x = False
// For the output x Value, if is true then the refinements present in the true
// block must also be true, so we take the union of `len(a) == 5` and len(b) ==
// 4` and assign them to true refinements of the output x value. This is a very
// common pattern in desugaring of `and` or `or` boolean expressions
ListRefinement unionRefinements(
    const ListRefinement& ref1,
    const ListRefinement& ref2) {
  ListRefinement out = ref1;
  out.insert(ref2.begin(), ref2.end());
  return out;
}

void joinIfRefinements(
    Node* if_node,
    std::unordered_set<Block*>& throwing_blocks,
    ListRefinement& curr_block_refinements,
    ListRefinement& true_block_refinements,
    ListRefinement& false_block_refinements,
    std::unordered_map<Value*, BooleanRefinementMapping>&
        boolean_value_refinements) {
  IfView if_n(if_node);
  Block* b = if_node->owningBlock();

  bool true_block_throws = throwing_blocks.count(if_n.thenBlock());
  bool false_block_throws = throwing_blocks.count(if_n.elseBlock());

  // if one block throws, the refinements for the other block
  // become present in the current block, and all bool outputs
  // of the if node take their refinements from non throwing block
  // output

  if (true_block_throws || false_block_throws) {
    if (true_block_throws && false_block_throws) {
      throwing_blocks.insert(b);
      return;
    }
    if (true_block_throws) {
      curr_block_refinements.insert(
          false_block_refinements.begin(), false_block_refinements.end());
    } else {
      curr_block_refinements.insert(
          true_block_refinements.begin(), true_block_refinements.end());
    }
    Block* non_throwing_block =
        true_block_throws ? if_node->blocks().at(1) : if_node->blocks().at(0);
    for (const auto i : c10::irange(if_n.outputs().size())) {
      if (boolean_value_refinements.count(
              non_throwing_block->outputs().at(i))) {
        boolean_value_refinements[if_node->outputs().at(i)] =
            boolean_value_refinements[non_throwing_block->outputs().at(i)];
      }
    }
    return;
  }

  for (const auto i : c10::irange(if_n.outputs().size())) {
    if (!(if_n.outputs().at(i)->type() == BoolType::get())) {
      return;
    }
    Value* true_v = if_n.thenOutputs().at(i);
    Value* false_v = if_n.elseOutputs().at(i);

    if (!boolean_value_refinements.count(true_v) &&
        !boolean_value_refinements.count(false_v) &&
        !constant_as<bool>(true_v) && !constant_as<bool>(false_v)) {
      return;
    }

    // if either block has a constant bool output, e.g. `true` on the
    // true block, then for the `false` value we can take the false
    // refinements present on the false block and from the other block
    // output value bc if the output is false it had to have come from the
    // false block. if len(a) == 5:
    //     x = len(b) == 4
    // else:
    //     x = False
    // if x is true, then we know both len(a) == 5 and len(b) == 4
    //
    // if neither block has a constant bool value, we just take the
    // intersection of the refinements from boolean outputs.
    // if cond:
    //    x = len(a) == 4 and len(b) == 5
    // else:
    //    x = len(a) == 4
    // here, we know if x is true, then len(a) == 4, but not len(b)
    // == 5, because that refinement is not present in the true block.
    // TODO: could also take intersection of refinements present in
    // both blocks, but it's not a real use case.

    // boolean_value_refinements[value] is safe to access because
    // BooleanRefinementMapping has a default constructor

    BooleanRefinementMapping out;
    if (auto maybe_bool = constant_as<bool>(true_v)) {
      if (*maybe_bool) {
        out = BooleanRefinementMapping::FalseRefinements(unionRefinements(
            boolean_value_refinements[false_v].false_refine(),
            false_block_refinements));
      } else {
        out = BooleanRefinementMapping::TrueRefinements(unionRefinements(
            boolean_value_refinements[false_v].true_refine(),
            false_block_refinements));
      }
    } else if (auto maybe_bool = constant_as<bool>(false_v)) {
      if (*maybe_bool) {
        out = BooleanRefinementMapping::FalseRefinements(unionRefinements(
            boolean_value_refinements[true_v].false_refine(),
            true_block_refinements));
      } else {
        out = BooleanRefinementMapping::TrueRefinements(unionRefinements(
            boolean_value_refinements[true_v].true_refine(),
            true_block_refinements));
      }
    } else if (
        boolean_value_refinements.count(true_v) &&
        boolean_value_refinements.count(false_v)) {
      out = boolean_value_refinements[true_v].intersectBooleanRefinementMapping(
          boolean_value_refinements[false_v]);
    }
    boolean_value_refinements[if_n.outputs().at(i)] = out;
  }
}

bool handleCommonRefinentOperators(
    Node* n,
    std::unordered_set<Block*>& throwing_blocks,
    std::unordered_map<Value*, BooleanRefinementMapping>& info) {
  if (n->kind() == prim::RaiseException) {
    throwing_blocks.insert(n->owningBlock());
    return true;
  }
  if (n->kind() == aten::__not__ &&
      n->inputs().at(0)->type()->cast<BoolType>()) {
    // __not__(inp) -> reverse refinements
    if (info.count(n->input())) {
      auto& input_ref = info[n->input()];
      info[n->output()] = BooleanRefinementMapping(
          input_ref.false_refine(), input_ref.true_refine());
    }
    return true;
  }
  if (n->matches("aten::eq(bool a, bool b) -> bool") ||
      (n->matches("aten::ne(bool a, bool b) -> bool"))) {
    for (size_t const_index : {0, 1}) {
      if (n->input(const_index)->node()->kind() != prim::Constant) {
        continue;
      }
      auto const_input = constant_as<bool>(n->input(const_index)).value();
      auto non_const_input = n->input(1 - const_index);
      if (!info.count(non_const_input)) {
        continue;
      }
      // value == False / value != True -> equivalent to __not__ value
      // value == True / value != False -> equivalent to value
      auto& input_ref = info[non_const_input];
      if ((!const_input && n->kind() == aten::eq) ||
          (const_input && n->kind() == aten::ne)) {
        info[n->output()] = BooleanRefinementMapping(
            input_ref.false_refine(), input_ref.true_refine());
      } else {
        info[n->output()] = BooleanRefinementMapping(
            input_ref.true_refine(), input_ref.false_refine());
      }
    }
    return true;
  }
  return false;
}

} // namespace jit
} // namespace torch