File: vulkan_rewrite.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (291 lines) | stat: -rw-r--r-- 12,877 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#include <ATen/core/jit_type.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/prepack_folding.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/vulkan_rewrite.h>
#include <torch/csrc/jit/runtime/graph_executor_impl.h>

namespace torch {
namespace jit {

namespace {

void insertPrePackedLinearOp(std::shared_ptr<Graph>& graph) {
  // fuse decomposed linear into aten::linear
  FuseLinear(graph);

  std::string linear_pattern = R"(
    graph(%input, %weight, %bias):
        %r = aten::linear(%input, %weight, %bias)
        return (%r))";
  std::string prepacked_ops_pattern = R"(
    graph(%input, %weight, %bias):
        %weight_t = aten::t(%weight)
        %packed_weight_bias = vulkan_prepack::create_linear_context(
            %weight_t, %bias)
        %res = vulkan_prepack::run_linear_context(%input, %packed_weight_bias)
        return (%res))";

  SubgraphRewriter linear_rewriter;
  linear_rewriter.RegisterRewritePattern(linear_pattern, prepacked_ops_pattern);
  linear_rewriter.runOnGraph(graph);
}

void insertPrePackedConv2dOp(std::shared_ptr<Graph>& graph) {
  graph_rewrite_helper::replaceConvolutionWithAtenConv(graph);

  std::string conv_2d_pattern = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int):
        %r = aten::conv2d(%input, %weight, %bias, %stride, %padding, %dilation, %groups)
        return (%r) )";

  std::string prepacked_ops_conv2d_pattern = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int):
        %output_min_max : None = prim::Constant()
        %packed_weight_bias = vulkan_prepack::create_conv2d_context(
            %weight, %bias, %stride, %padding, %dilation, %groups,
            %output_min_max, %output_min_max)
        %r = vulkan_prepack::run_conv2d_context(%input, %packed_weight_bias)
        return (%r) )";

  SubgraphRewriter rewriter;
  rewriter.RegisterRewritePattern(
      conv_2d_pattern, prepacked_ops_conv2d_pattern);
  rewriter.runOnGraph(graph);

  std::string conv_2d_transpose_pattern = R"(
      graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[],
          %output_padding:int[], %groups:int):
        %res = aten::conv_transpose2d(%input, %weight, %bias, %stride, %padding, %output_padding, %groups, %dilation)
        return (%res) )";

  std::string prepacked_ops_conv2d_transpose_pattern = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %output_padding:int[], %groups:int):
        %output_min_max : None = prim::Constant()
        %packed_weight_bias = vulkan_prepack::create_tconv2d_context(
            %weight, %bias, %stride, %padding, %output_padding, %dilation, %groups,
            %output_min_max, %output_min_max)
        %res = vulkan_prepack::run_tconv2d_context(%input, %packed_weight_bias)
        return (%res) )";

  SubgraphRewriter transpose_rewriter;
  transpose_rewriter.RegisterRewritePattern(
      conv_2d_transpose_pattern, prepacked_ops_conv2d_transpose_pattern);
  transpose_rewriter.runOnGraph(graph);
}

void insertPrePackedGruOp(std::shared_ptr<Graph>& graph) {
  std::string gru_pattern = R"(
      graph(%input.1, %hx.1, %params_cpu:Tensor[], %has_biases:bool, %num_layers:int, %dropout:float, %train:bool, %bidirectional:bool, %batch_first:bool):
        %y.1 : Tensor, %hn.1 : Tensor = aten::gru(%input.1, %hx.1, %params_cpu, %has_biases, %num_layers, %dropout, %train, %bidirectional, %batch_first)
        return (%y.1, %hn.1) )";
  std::string prepacked_ops_pattern = R"(
      graph(%input.1, %hx.1, %params_cpu:Tensor[], %has_biases:bool, %num_layers:int, %dropout:float, %train:bool, %bidirectional:bool, %batch_first:bool):
        %packed_weights_biases = vulkan_prepack::create_gru_context(
            %params_cpu, %has_biases, %num_layers, %dropout, %train, %bidirectional, %batch_first)
        %y.1 : Tensor, %hn.1 : Tensor = vulkan_prepack::run_gru_context(%input.1, %hx.1, %packed_weights_biases)
        return (%y.1, %hn.1) )";

  auto filter = [&](const Match& match,
                    const std::unordered_map<std::string, Value*>& vmap) {
    auto node = match.values_map.at(vmap.at("params_cpu"))->node();
    return node->output()->type()->str() == "Tensor[]";
  };

  SubgraphRewriter gru_rewriter;
  gru_rewriter.RegisterRewritePattern(gru_pattern, prepacked_ops_pattern);
  gru_rewriter.runOnGraph(graph, filter);
}

void insertPrePackedLstmOp(std::shared_ptr<Graph>& graph) {
  std::string lstm_pattern = R"(
      graph(%input.1, %hx:Tensor[], %params_cpu:Tensor[], %has_biases:bool, %num_layers:int, %dropout:float, %train:bool, %bidirectional:bool, %batch_first:bool):
        %y.1 : Tensor, %hn.1 : Tensor, %cn.1 : Tensor = aten::lstm(%input.1, %hx, %params_cpu, %has_biases, %num_layers, %dropout, %train, %bidirectional, %batch_first)
        return (%y.1, %hn.1, %cn.1) )";
  std::string prepacked_ops_pattern = R"(
      graph(%input.1, %hx:Tensor[], %params_cpu:Tensor[], %has_biases:bool, %num_layers:int, %dropout:float, %train:bool, %bidirectional:bool, %batch_first:bool):
        %packed_weights_biases = vulkan_prepack::create_lstm_context(
            %params_cpu, %has_biases, %num_layers, %dropout, %train, %bidirectional, %batch_first)
        %hx.1 : Tensor, %cx.1 : Tensor = prim::ListUnpack(%hx)
        %y.1 : Tensor, %hn.1 : Tensor, %cn.1 : Tensor = vulkan_prepack::run_lstm_context(%input.1, %hx.1, %cx.1, %packed_weights_biases)
        return (%y.1, %hn.1, %cn.1) )";

  auto filter = [&](const Match& match,
                    const std::unordered_map<std::string, Value*>& vmap) {
    auto node = match.values_map.at(vmap.at("hx"))->node();
    return node->output()->type()->str() == "Tensor[]";
  };

  SubgraphRewriter lstm_rewriter;
  lstm_rewriter.RegisterRewritePattern(lstm_pattern, prepacked_ops_pattern);
  lstm_rewriter.runOnGraph(graph, filter);
}

void fuseHardtanhWithPackedOps(std::shared_ptr<Graph>& graph) {
  SubgraphRewriter rewriter;

  std::string conv2d_prepack_run_hardtanh_fused = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[],
          %dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
        %packed_weight_bias : __torch__.torch.classes.vulkan.Conv2dPackedContext = vulkan_prepack::create_conv2d_context(
            %weight, %bias, %stride, %padding, %dilation, %groups,
            %output_min, %output_max)
        %r = vulkan_prepack::run_conv2d_context(%input, %packed_weight_bias)
        return (%r) )";

  std::string conv2d_prepack_run_hardtanh = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[],
          %dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
        %packed_weight_bias = vulkan_prepack::create_conv2d_context(
            %weight, %bias, %stride, %padding, %dilation, %groups,
            %dummy_min_max, %dummy_min_max)
        %conv2d_res = vulkan_prepack::run_conv2d_context(%input, %packed_weight_bias)
        %r = aten::hardtanh(%conv2d_res, %output_min, %output_max)
        return (%r) )";

  rewriter.RegisterRewritePattern(
      conv2d_prepack_run_hardtanh, conv2d_prepack_run_hardtanh_fused);

  std::string conv2d_prepack_run_hardtanh_inplace = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[],
          %dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
        %packed_weight_bias = vulkan_prepack::create_conv2d_context(
            %weight, %bias, %stride, %padding, %dilation, %groups,
            %dummy_min_max, %dummy_min_max)
        %conv2d_res = vulkan_prepack::run_conv2d_context(%input, %packed_weight_bias)
        %r = aten::hardtanh_(%conv2d_res, %output_min, %output_max)
        return (%r) )";

  rewriter.RegisterRewritePattern(
      conv2d_prepack_run_hardtanh_inplace, conv2d_prepack_run_hardtanh_fused);

  rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}

void fuseReluWithPackedOps(std::shared_ptr<Graph>& graph) {
  SubgraphRewriter rewriter;

  std::string conv2d_prepack_run_relu_fused = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[],
          %dilation:int[], %groups:int, %dummy_min_max):
        %output_min: float = prim::Constant[value=0.0]()
        %output_max: None = prim::Constant()
        %packed_weight_bias : __torch__.torch.classes.vulkan.Conv2dPackedContext = vulkan_prepack::create_conv2d_context(
            %weight, %bias, %stride, %padding, %dilation, %groups,
            %output_min, %output_max)
        %r = vulkan_prepack::run_conv2d_context(%input, %packed_weight_bias)
        return (%r) )";

  std::string conv2d_prepack_run_relu = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[],
          %dilation:int[], %groups:int, %dummy_min_max):
        %packed_weight_bias = vulkan_prepack::create_conv2d_context(
            %weight, %bias, %stride, %padding, %dilation, %groups,
            %dummy_min_max, %dummy_min_max)
        %conv2d_res = vulkan_prepack::run_conv2d_context(%input, %packed_weight_bias)
        %r = aten::relu(%conv2d_res)
        return (%r) )";

  rewriter.RegisterRewritePattern(
      conv2d_prepack_run_relu, conv2d_prepack_run_relu_fused);

  std::string conv2d_prepack_run_relu_inplace = R"(
    graph(%input, %weight, %bias, %stride:int[], %padding:int[],
          %dilation:int[], %groups:int, %dummy_min_max):
        %packed_weight_bias = vulkan_prepack::create_conv2d_context(
            %weight, %bias, %stride, %padding, %dilation, %groups,
            %dummy_min_max, %dummy_min_max)
        %conv2d_res = vulkan_prepack::run_conv2d_context(%input, %packed_weight_bias)
        %r = aten::relu_(%conv2d_res)
        return (%r) )";

  rewriter.RegisterRewritePattern(
      conv2d_prepack_run_relu_inplace, conv2d_prepack_run_relu_fused);
  rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}

} // namespace

void vulkanInsertPrePackedOps(std::shared_ptr<Graph>& graph) {
  insertPrePackedLinearOp(graph);
  insertPrePackedConv2dOp(graph);
  insertPrePackedGruOp(graph);
  insertPrePackedLstmOp(graph);
}

void vulkanInsertPrePackedOps(script::Module& module) {
  for (auto& method : module.get_methods()) {
    auto graph = method.graph();
    vulkanInsertPrePackedOps(graph);
  }
  for (script::Module m : module.children()) {
    vulkanInsertPrePackedOps(m);
  }
}

void vulkanFusePrePackedConvWithClamp(script::Module& module) {
  auto graph = module.get_method("forward").graph();
  fuseReluWithPackedOps(graph);
  fuseHardtanhWithPackedOps(graph);
}

void vulkanFoldPrePackingOps(script::Module& m) {
  PrePackingOpsFilterFn filter_fn = [](const Node* n) -> bool {
    return (
        (n->kind() ==
         Symbol::fromQualString("vulkan_prepack::create_conv2d_context")) ||
        (n->kind() ==
         Symbol::fromQualString("vulkan_prepack::create_tconv2d_context")) ||
        (n->kind() ==
         Symbol::fromQualString("vulkan_prepack::create_linear_context")) ||
        (n->kind() ==
         Symbol::fromQualString("vulkan_prepack::create_gru_context")) ||
        (n->kind() ==
         Symbol::fromQualString("vulkan_prepack::create_lstm_context")));
  };
  PrePackingOpsFolder(m, filter_fn, "prepack_folding");
}

void vulkanRemoveMutation(script::Module& module) {
  auto graph = module.get_method("forward").graph();
  RemoveTensorMutation(graph);
}

void vulkanRunCanonicalOptimizations(script::Module& module) {
  auto graph = module.get_method("forward").graph();
  for (const auto& method : module.get_methods()) {
    auto graph = method.graph();
    runOptimization(graph, false /* no loop unrolling */);
  }
}

script::Module vulkanOptimizeForMobile(
    const script::Module& m,
    const std::vector<std::string>& preserved_methods) {
  auto cloned_module = m.clone();
  cloned_module.eval();
  cloned_module = FoldConvBatchNorm(cloned_module);
  vulkanInsertPrePackedOps(cloned_module);
  cloned_module = freeze_module(cloned_module, preserved_methods);
  vulkanFusePrePackedConvWithClamp(cloned_module);
  vulkanFoldPrePackingOps(cloned_module);
  removeDropout(cloned_module);
  vulkanRemoveMutation(cloned_module);
  // remove duplicated constants
  vulkanRunCanonicalOptimizations(cloned_module);

  cloned_module.register_attribute(
      "optimized_for_vulkan", BoolType::get(), true);
  return cloned_module;
}

} // namespace jit
} // namespace torch