1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
|
#include <torch/csrc/jit/python/python_sugared_value.h>
#include <ATen/core/interned_strings.h>
#include <c10/core/ScalarType.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/utils/pybind.h>
#include <climits>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>
#include <vector>
#include <Python.h>
namespace torch {
namespace jit {
std::string typeString(py::handle h) {
return py::str(h.get_type().attr("__name__"));
}
c10::optional<StrongFunctionPtr> as_function(const py::object& obj) {
if (py::isinstance<StrongFunctionPtr>(obj)) {
return py::cast<StrongFunctionPtr>(obj);
}
return c10::nullopt;
}
FunctionSchema PythonValue::getSchema(
const size_t n_args,
const size_t n_binders,
const SourceRange& loc) {
auto annotations = py::module::import("torch.jit.annotations");
const auto callable = moduleSelf_ ? py::getattr(self, "original_fn") : self;
// Make sure the function is not a class instantiation (e.g. `Exception()`)
annotations.attr("check_fn")(callable, loc);
auto is_vararg = py::cast<bool>(annotations.attr("is_vararg")(callable));
auto signature = annotations.attr("get_signature")(
callable, rcb ? *rcb : py::none(), loc, bool(moduleSelf_));
std::vector<Argument> args, rets;
auto py_param_names = annotations.attr("get_param_names")(callable, n_args);
auto param_names = py::cast<std::vector<std::string>>(py_param_names);
auto names_it = param_names.begin();
if (moduleSelf_) {
if (param_names.size() == 0) {
throw ErrorReport(loc)
<< "Non-static method does not have a self argument";
}
// If there is a `self` parameter on the callable, skip it on the names list
args.emplace_back(Argument(*names_it, moduleSelf_->type(), {}, {}, false));
++names_it;
}
if (signature.is_none()) {
// No type signature was provided on the callable, so make a default
// signature where each argument is typed as a Tensor
for (; names_it != param_names.end(); ++names_it) {
args.emplace_back(Argument(
/*name=*/*names_it,
/*type=*/TensorType::get(),
/*N=*/c10::nullopt,
/*default_value=*/c10::nullopt,
/*kwarg_only=*/false));
}
// Use as many outputs as are requested to make the return type
TypePtr ret_type = TensorType::get();
if (n_binders == 0) {
ret_type = NoneType::get();
} else if (n_binders > 1) {
std::vector<TypePtr> tuple_values(n_binders, ret_type);
ret_type = TupleType::create(std::move(tuple_values));
}
rets.emplace_back(Argument("0", ret_type, {}, {}, false));
} else {
// Use the provided type signature
std::vector<TypePtr> arg_types;
TypePtr ret_type;
std::tie(arg_types, ret_type) =
py::cast<std::pair<std::vector<TypePtr>, TypePtr>>(signature);
// arg_types does not include self but param_names does, so adjust for that
// if needed
TORCH_INTERNAL_ASSERT(
arg_types.size() == param_names.size() - (moduleSelf_ ? 1 : 0));
auto types_it = arg_types.begin();
for (; types_it != arg_types.end(); ++types_it, ++names_it) {
args.emplace_back(
/*name=*/*names_it,
/*type=*/std::move(*types_it),
/*N=*/c10::nullopt,
/*default_value=*/c10::nullopt,
/*kwarg_only=*/false);
}
rets.push_back(Argument("0", std::move(ret_type), {}, {}, false));
}
std::string name;
if (py::hasattr(self, "__qualname__")) {
// Use the qualified name if possible
name = py::str(py::getattr(self, "__qualname__"));
} else if (py::hasattr(self, "__name__")) {
name = py::str(py::getattr(self, "__name__"));
}
return FunctionSchema(name, "", std::move(args), std::move(rets), is_vararg);
}
std::shared_ptr<SugaredValue> PythonValue::call(
const SourceRange& loc,
GraphFunction& m,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) {
std::vector<NamedValue> argsWithSelf;
if (moduleSelf_) {
argsWithSelf.emplace_back(NamedValue("self", moduleSelf_));
}
argsWithSelf.insert(argsWithSelf.end(), args.begin(), args.end());
auto schema = getSchema(argsWithSelf.size(), n_binders, loc);
auto inputs = toValues(*m.graph(), argsWithSelf);
MatchedSchema matched_schema =
matchSchema(schema, loc, *m.graph(), argsWithSelf, kwargs);
// If if a function is marked as dropped,
// we throw an exception if it is invoked.
if (py::cast<bool>(py::module::import("torch._jit_internal")
.attr("should_drop")(self))) {
auto g = m.graph();
auto err_msg = insertConstant(
*g,
IValue(
"This Python function is annotated to be ignored and cannot be run"));
g->insert(prim::RaiseException, {err_msg}, {}, loc);
return std::make_shared<SimpleValue>(
g->insertNode(g->createUninitialized(matched_schema.return_types.at(0)))
->output());
}
// Release the function object so we can wrap it in a PythonOp
py::object func = self;
std::string cconv(inputs.size(), 'd');
Node* new_node = m.graph()->insertNode(
m.graph()->createPythonOp(THPObjectPtr(func.release().ptr()), cconv, {}));
new_node->setSourceRange(loc);
for (auto& i : matched_schema.inputs)
new_node->addInput(i);
Value* output =
new_node->addOutput()->setType(matched_schema.return_types.at(0));
return std::make_shared<SimpleValue>(output);
}
std::string PythonValue::kind() const {
std::stringstream ss;
ss << "python value of type '" << typeString(self) << "'";
return ss.str();
}
std::vector<std::shared_ptr<SugaredValue>> PythonValue::asTuple(
const SourceRange& loc,
GraphFunction& m,
const c10::optional<size_t>& size_hint) {
const std::string type_str = typeString(self);
std::stringstream ss;
ss << kind() << " cannot be used as a tuple";
checkForAddToConstantsError(ss);
throw ErrorReport(loc) << ss.str();
}
std::shared_ptr<SugaredValue> PythonValue::attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
const std::string type_str = typeString(self);
std::stringstream ss;
ss << "attribute lookup is not defined on " << kind();
checkForAddToConstantsError(ss);
throw ErrorReport(loc) << ss.str();
}
py::object PythonValue::getattr(
const SourceRange& loc,
const std::string& name) {
try {
return py::getattr(self, name.c_str());
} catch (py::error_already_set& e) {
throw ErrorReport(loc) << "object has no attribute " << name;
}
}
void PythonValue::checkForAddToConstantsError(std::stringstream& ss) {
auto nn = py::module::import("torch.nn");
if (py::isinstance(self, nn.attr("ModuleList")) ||
py::isinstance(self, nn.attr("Sequential"))) {
ss << ". Did you forget to add it to __constants__? ";
}
}
std::shared_ptr<SugaredValue> PythonModuleValue::attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
py::object member = getattr(loc, field);
// note: is_constant = true because we consider that global properties
// on modules like math.pi or torch.float to be constants
// even though it is possible, though rare, for someone to mutate them
return toSugaredValue(member, m, loc, /*is_constant=*/true);
}
std::shared_ptr<SugaredValue> CUDAPythonModuleValue::attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
// List of all the cuda operators which are supported in JIT
const std::unordered_set<std::string> cuda_ops = {
"current_stream",
"default_stream",
"current_device",
"set_device",
"device_index",
"device_count",
"set_stream",
"synchronize"};
if (cuda_ops.find(field) != cuda_ops.end()) {
// Both current_device and set_device API's are a part of c10::cuda
// namespace. Hence, to resolve the conflict for jit, we append _ to both
// these APIs.
if (field == "current_device" || field == "set_device") {
return std::make_shared<BuiltinFunction>(
Symbol::cuda("_" + field), c10::nullopt);
} else {
return std::make_shared<BuiltinFunction>(
Symbol::cuda(field), c10::nullopt);
}
}
if (field == "Stream" || field == "Event") {
auto class_type = getCustomClass("__torch__.torch.classes.cuda." + field);
return std::make_shared<ClassValue>(class_type);
}
py::object member = getattr(loc, field);
// note: is_constant = true because we consider that global properties
// on modules like math.pi or torch.float to be constants
// even though it is possible, though rare, for someone to mutate them
return toSugaredValue(member, m, loc, /*is_constant=*/true);
}
Value* ModuleValue::asValue(const SourceRange& loc, GraphFunction& m) {
return self_;
}
SugaredValuePtr ModuleValue::asTupleValue(
const SourceRange& loc,
GraphFunction& m) {
if (concreteType_->getIterableModuleKind() == IterableModuleKind::LIST) {
auto dict = getSugaredDict(loc, m);
auto mods = dict->getModules();
return mods;
}
throw ErrorReport(loc)
<< "Only ModuleList or Sequential modules can be used as tuple";
}
bool ModuleValue::areAllSubmodulesSubtypeOf(
const TypePtr& ty,
std::ostream* why_not) const {
const auto& self_type = concreteType_->getJitType()->expect<ClassType>();
for (size_t i = 0; i < self_type->numAttributes(); ++i) {
const auto& attr_type = self_type->getAttribute(i);
if (attr_type->is_module()) {
std::stringstream ss;
if (!attr_type->isSubtypeOfExt(ty, &ss)) {
if (why_not) {
*why_not << "Attribute " << self_type->getAttributeName(i)
<< " is not of annotated type " << ty->annotation_str()
<< ": " << ss.str();
}
return false;
}
}
}
return true;
}
SugaredValuePtr ModuleValue::getitem(
const SourceRange& loc,
GraphFunction& m,
Value* idx,
TypePtr type_hint) {
if (concreteType_->getIterableModuleKind() == IterableModuleKind::LIST) {
if (type_hint) {
// Check that all submodules comply with the type hint.
std::stringstream ss;
if (!areAllSubmodulesSubtypeOf(type_hint, &ss)) {
throw ErrorReport(loc) << ss.str();
}
// Emit a prim::ModuleContainerIndex operator. This is needed because
// it's difficult to construct a list in the graph representing the
// ModuleList and use aten::__getitem__ ops to index into it because
// any call to ModuleList.setitem would invalidate that emitted list.
auto graph = m.graph();
auto* getitem_node = graph->insertNode(
graph->create(prim::ModuleContainerIndex, {self_, idx}));
getitem_node->output(0)->setType(type_hint);
return std::make_shared<SimpleValue>(getitem_node->output(0));
} else {
return getSugaredDict(loc, m)->getModules()->getitem(
loc, m, idx, type_hint);
}
} else if (
concreteType_->getIterableModuleKind() == IterableModuleKind::PARAMLIST) {
return getSugaredNamedParameterList(loc, m)->getModules()->getitem(
loc, m, idx, type_hint);
} else if (
concreteType_->getIterableModuleKind() == IterableModuleKind::DICT ||
concreteType_->getIterableModuleKind() == IterableModuleKind::PARAMDICT) {
if (auto ivalue = toIValue(idx)) {
std::shared_ptr<SugaredDict> sd;
if (concreteType_->getIterableModuleKind() == IterableModuleKind::DICT) {
sd = getSugaredDict(loc, m);
} else if (
concreteType_->getIterableModuleKind() ==
IterableModuleKind::PARAMDICT) {
sd = getSugaredNamedParameterDict(loc, m);
}
auto idx_str = ivalue->toStringRef();
auto keys_iter = sd->keys_;
auto module_values_iter = sd->modules_;
for (size_t i = 0; i < keys_iter->tup_.size(); ++i) {
auto key = keys_iter->tup_.at(i);
auto key_str = toIValue(key->asValue(loc, m))->toStringRef();
if (key_str == idx_str) {
return module_values_iter->tup_.at(i);
}
}
throw ErrorReport(loc) << "Key Error, " << idx_str;
} else if (type_hint) {
// Check that all submodules comply with the type hint.
std::stringstream ss;
if (!areAllSubmodulesSubtypeOf(type_hint, &ss)) {
throw ErrorReport(loc) << ss.str();
}
// Emit a prim::ModuleContainerIndex operator. This is needed because
// it's difficult to construct a dict in the graph representing the
// ModuleDict and use aten::__getitem__ ops to index into it because
// any call to ModuleDict.setAttr would invalidate that emitted dict.
auto graph = m.graph();
auto* getitem_node = graph->insertNode(
graph->create(prim::ModuleContainerIndex, {self_, idx}));
getitem_node->output(0)->setType(type_hint);
return std::make_shared<SimpleValue>(getitem_node->output(0));
}
throw ErrorReport(loc)
<< "Unable to extract string literal index. "
<< "ModuleDict indexing is only supported with string literals. "
<< "Enumeration of ModuleDict is supported, e.g. 'for k, v in self.items(): ...'";
}
throw ErrorReport(loc)
<< "Only ModuleList, Sequential, ModuleDict, "
<< "ParameterList, and ParameterDict modules are subscriptable";
}
void checkInterface(
const SourceRange& loc,
GraphFunction& m,
const std::shared_ptr<ModuleValue>& self,
const std::string& field) {
if (self->asValue(loc, m)->type()->cast<InterfaceType>()) {
throw ErrorReport(loc)
<< "Could not compile " << field
<< "() because module is an interface type. Please file issue.";
}
}
void recurseThroughNestedModules(
const SourceRange& loc,
GraphFunction& m,
std::vector<SugaredValuePtr>& keys,
std::vector<SugaredValuePtr>& values,
std::shared_ptr<ModuleValue>& self,
const std::string& prefix,
const std::string& field) {
auto prefix_value =
std::make_shared<SimpleValue>(insertConstant(*m.graph(), prefix));
keys.push_back(prefix_value);
values.push_back(self);
checkInterface(loc, m, self, field);
auto module_dict = self->getSugaredDict(loc, m);
auto keys_iter = module_dict->keys_;
auto module_values_iter = module_dict->modules_;
for (size_t i = 0; i < keys_iter->tup_.size(); ++i) {
std::shared_ptr<SugaredValue> module_sugared_value =
module_values_iter->tup_.at(i);
auto module_value =
std::dynamic_pointer_cast<ModuleValue>(module_sugared_value);
auto keys_value = keys_iter->tup_.at(i);
auto key_string = toIValue(keys_value->asValue(loc, m))->toStringRef();
std::string submodule_prefix = prefix;
if (prefix != "") {
submodule_prefix = prefix + ".";
}
submodule_prefix += key_string;
recurseThroughNestedModules(
loc, m, keys, values, module_value, submodule_prefix, field);
};
}
std::shared_ptr<SugaredDict> ModuleValue::getSugaredNamedBufferDict(
const SourceRange& loc,
GraphFunction& m) {
std::vector<std::string> paramNames;
std::vector<SugaredValuePtr> values;
const auto& selfType = concreteType_->getJitType()->expect<ClassType>();
for (size_t i = 0; i < selfType->numAttributes(); ++i) {
if (selfType->is_buffer(i)) {
paramNames.push_back(selfType->getAttributeName(i));
}
}
std::vector<SugaredValuePtr> keys;
for (const auto& name : paramNames) {
auto name_v =
std::make_shared<SimpleValue>(insertConstant(*m.graph(), name));
m.graph()->insertGetAttr(self_, name);
values.push_back(tryGetAttr(loc, m, name));
keys.push_back(name_v);
}
return std::make_shared<SugaredDict>(
std::make_shared<ModuleValue>(self_, concreteType_),
std::make_shared<SugaredTupleValue>(keys),
std::make_shared<SugaredTupleValue>(values));
}
std::shared_ptr<SugaredDict> ModuleValue::getSugaredNamedParameterList(
const SourceRange& loc,
GraphFunction& m) {
std::vector<std::string> paramNames;
std::vector<SugaredValuePtr> values;
const auto& selfType = concreteType_->getJitType()->expect<ClassType>();
for (size_t i = 0; i < selfType->numAttributes(); ++i) {
if (selfType->is_parameter(i)) {
paramNames.push_back(selfType->getAttributeName(i));
}
}
std::vector<SugaredValuePtr> keys;
for (const auto& name : paramNames) {
auto name_v =
std::make_shared<SimpleValue>(insertConstant(*m.graph(), name));
m.graph()->insertGetAttr(self_, name);
values.push_back(tryGetAttr(loc, m, name));
keys.push_back(name_v);
}
return std::make_shared<SugaredDict>(
std::make_shared<ModuleValue>(self_, concreteType_),
std::make_shared<SugaredTupleValue>(keys),
std::make_shared<SugaredTupleValue>(values));
}
std::shared_ptr<SugaredDict> ModuleValue::getSugaredDict(
const SourceRange& loc,
GraphFunction& m) {
std::vector<std::string> submoduleNames;
const auto& selfType = concreteType_->getJitType()->expect<ClassType>();
for (size_t i = 0; i < selfType->numAttributes(); ++i) {
const auto& attrType = selfType->getAttribute(i);
if (attrType->is_module()) {
submoduleNames.push_back(selfType->getAttributeName(i));
}
}
std::vector<SugaredValuePtr> keys;
std::vector<SugaredValuePtr> values;
for (const auto& name : submoduleNames) {
auto name_v =
std::make_shared<SimpleValue>(insertConstant(*m.graph(), name));
Value* module_v = m.graph()->insertGetAttr(self_, name);
auto mod_v = std::make_shared<ModuleValue>(
module_v, concreteType_->findSubmoduleConcreteType(name));
keys.push_back(name_v);
values.push_back(mod_v);
}
return std::make_shared<SugaredDict>(
std::make_shared<ModuleValue>(self_, concreteType_),
std::make_shared<SugaredTupleValue>(keys),
std::make_shared<SugaredTupleValue>(values));
}
std::shared_ptr<SugaredDict> ModuleValue::getSugaredNamedParameterDict(
const SourceRange& loc,
GraphFunction& m) {
std::vector<std::string> paramNames;
const auto& selfType = concreteType_->getJitType()->expect<ClassType>();
for (size_t i = 0; i < selfType->numAttributes(); ++i) {
if (selfType->is_parameter(i)) {
paramNames.push_back(selfType->getAttributeName(i));
}
}
std::vector<SugaredValuePtr> keys;
std::vector<SugaredValuePtr> values;
for (const auto& name : paramNames) {
auto name_v =
std::make_shared<SimpleValue>(insertConstant(*m.graph(), name));
m.graph()->insertGetAttr(self_, name);
auto val = tryGetAttr(loc, m, name);
TORCH_INTERNAL_ASSERT(val != nullptr, "Could not find attribute ", name);
values.push_back(val);
keys.push_back(name_v);
}
return std::make_shared<SugaredDict>(
std::make_shared<ModuleValue>(self_, concreteType_),
std::make_shared<SugaredTupleValue>(keys),
std::make_shared<SugaredTupleValue>(values));
}
std::shared_ptr<SugaredValue> SugaredDict::attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
// Recursive compilation does not maintain module aliasing,
// so we do not add uniqueness checks on
// "children"/"named_children"/"modules"/"named_modules"
checkInterface(loc, m, self_, field);
if (field == "keys") {
return std::make_shared<ModuleDictMethod>(keys_, "keys");
} else if (field == "values" || field == "children") {
return std::make_shared<ModuleDictMethod>(modules_, field);
} else if (
field == "items" || field == "named_children" ||
field == "named_buffers") {
auto iterator = std::make_shared<IterableTree>();
iterator->addChild(loc, m, keys_);
iterator->addChild(loc, m, modules_);
return std::make_shared<ModuleDictMethod>(iterator, field);
} else if (field == "named_modules" || field == "modules") {
std::vector<SugaredValuePtr> keys;
std::vector<SugaredValuePtr> values;
recurseThroughNestedModules(loc, m, keys, values, self_, "", field);
if (field == "modules") {
return std::make_shared<ModuleDictMethod>(
std::make_shared<SugaredTupleValue>(values), field);
} else {
auto iterator = std::make_shared<IterableTree>();
iterator->addChild(loc, m, std::make_shared<SugaredTupleValue>(keys));
iterator->addChild(loc, m, std::make_shared<SugaredTupleValue>(values));
return std::make_shared<ModuleDictMethod>(iterator, field);
}
}
TORCH_INTERNAL_ASSERT(false);
}
std::shared_ptr<SugaredEnumClass> createSugaredEnumClassFromObj(
const py::object& obj,
GraphFunction& m,
const SourceRange& loc) {
auto annotation_type = py::module::import("torch.jit.annotations")
.attr("try_ann_to_type")(obj, loc);
TORCH_INTERNAL_ASSERT(!annotation_type.is_none());
auto type = py::cast<TypePtr>(annotation_type);
auto enum_type = type->expect<EnumType>();
return std::make_shared<SugaredEnumClass>(enum_type);
}
// helper function for instantiating a SugaredValue from an IValue
std::shared_ptr<SugaredValue> toSugaredValue(
const IValue& v,
GraphFunction& m,
const SourceRange& loc) {
if (v.isTuple()) {
auto tp = v.toTuple();
std::vector<Value*> values;
values.reserve(tp->elements().size());
for (const auto& e : tp->elements()) {
values.push_back(toSugaredValue(e, m, loc)->asValue(loc, m));
}
return toSimple(
m.graph()->insertNode(m.graph()->createTuple(values))->output());
} else {
return toSimple(m.graph()->insertConstant(v, loc));
}
}
// This method controls how we desugar attribute lookups on ScriptModules
std::shared_ptr<SugaredValue> ModuleValue::tryGetAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
// 1. Look inside Module object for the field.
const auto& selfType_ = concreteType_->getJitType();
if (selfType_->cast<InterfaceType>()) {
return std::make_shared<SimpleValue>(self_)->attr(loc, m, field);
}
const auto& selfType = selfType_->expect<ClassType>();
if (selfType->hasAttribute(field) &&
selfType->getAttribute(field)->is_module()) {
// ...if it's a submodule, return it as a new ModuleValue.
if (const auto submoduleConcreteType =
concreteType_->findSubmoduleConcreteType(field)) {
return std::make_shared<ModuleValue>(
m.graph()->insertGetAttr(self_, field), submoduleConcreteType);
}
return std::make_shared<ModuleValue>(
m.graph()->insertGetAttr(self_, field),
ConcreteModuleType::fromJitType(selfType->getAttribute(field)));
} else if (selfType->hasAttribute(field) || selfType->findMethod(field)) {
// ...otherwise, methods, parameters, attributes, and buffers are all
// first class so they get returned as SimpleValues
return std::make_shared<SimpleValue>(self_)->attr(loc, m, field);
} else if (selfType->hasConstant(field)) {
auto v = selfType->getConstant(field);
return toSugaredValue(v, m, loc);
}
// 2. Special case: for module dicts we manually desugar items(), keys(),
// values() calls into the appropriate method.
if (concreteType_->getIterableModuleKind() == IterableModuleKind::DICT) {
if (field == "items" || field == "keys" || field == "values") {
return getSugaredDict(loc, m)->attr(loc, m, field);
}
}
if (field == "named_modules" || field == "modules" || field == "children" ||
field == "named_children") {
return getSugaredDict(loc, m)->attr(loc, m, field);
}
if (field == "named_buffers") {
return getSugaredNamedBufferDict(loc, m)->attr(loc, m, field);
}
// 3. Check if this is the name of an overloaded method.
// This can also be a call to a non-script module, or a plain
// python method. If so return this as a python value.
if (const auto overloads = concreteType_->findOverloads(field)) {
return std::make_shared<MethodValue>(self_, *overloads);
}
// 4. Check if it's a function attribute.
if (const auto fnAttr = concreteType_->findFunctionAttribute(field)) {
return std::make_shared<FunctionValue>(*fnAttr);
} else if (const auto builtin = concreteType_->findBuiltinFunction(field)) {
return std::make_shared<BuiltinFunction>(*builtin, /*self=*/c10::nullopt);
}
// 5. Check if it's an attribute of the original Python class that this
// ScriptModule was derived from. The only class attributes we handle are
// methods.
const auto maybePyClass = concreteType_->getPyClass();
if (!maybePyClass) {
// ConcreteType doesn't always have an originating Python class, e.g. if it
// was derived from a serialized ScriptModule. In this case, we've exhausted
// our options for attr lookup.
return nullptr;
}
py::object unboundMethod = py::getattr(
*maybePyClass, field.c_str(), pybind11::cast<pybind11::none>(Py_None));
if (py::isinstance<py::function>(unboundMethod)) {
bool isStaticFn =
py::cast<bool>(py::module::import("torch._jit_internal")
.attr("is_static_fn")(*maybePyClass, field.c_str()));
if (isStaticFn) {
// Functions within the module annotated with @staticmethod do not need
// binding.
py::object staticFn =
py::module::import("torch._jit_internal")
.attr("get_static_fn")(*maybePyClass, field.c_str());
return toSugaredValue(staticFn, m, loc);
}
// For Python methods that we're trying to call directly, we need to bind
// the method to a self. (see the documentation for lazy_bind in Python for
// more info).
bool isIgnoredFn =
py::cast<bool>(py::module::import("torch._jit_internal")
.attr("is_ignored_fn")(unboundMethod));
if (isIgnoredFn) {
// Create a generated ScriptModule type with module_ set as cpp_module
auto boundMethod = py::module::import("torch.jit._recursive")
.attr("lazy_bind")(concreteType_, unboundMethod);
TORCH_CHECK(py::isinstance<py::function>(boundMethod));
auto rcb =
py::module::import("torch._jit_internal")
.attr("createResolutionCallbackFromClosure")(unboundMethod);
return std::make_shared<PythonValue>(boundMethod, rcb, self_);
}
// If we reach here, it's because this is a "normal" method that just hasn't
// been compiled yet (directly exported methods would have been returned by
// step 1). Just compile it.
auto stub =
py::module::import("torch.jit._recursive")
.attr("compile_unbound_method")(concreteType_, unboundMethod);
TORCH_INTERNAL_ASSERT(!stub.is_none());
// Look up the attribute again, it will be available as a compiled method.
return attr(loc, m, field);
}
return nullptr;
}
bool ModuleValue::hasAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
return tryGetAttr(loc, m, field) != nullptr;
}
std::shared_ptr<SugaredValue> ModuleValue::call(
const SourceRange& loc,
GraphFunction& caller,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) {
c10::ClassTypePtr class_type = concreteType_->getJitType()->cast<ClassType>();
bool have_pre_hooks =
class_type && class_type->getForwardPreHooks().size() != 0;
bool have_hooks = class_type && class_type->getForwardHooks().size() != 0;
std::vector<Value*> arg_values;
std::vector<NamedValue> pre_hook_result;
Value* forward_input = nullptr;
std::shared_ptr<Graph> calling_graph = caller.graph();
if (have_pre_hooks || have_hooks) {
// convert forward args into tuple for forward hooks
// (the input of eager hooks are always tuples)
for (const auto& sv : args) {
arg_values.push_back(sv.value(*calling_graph));
}
forward_input =
calling_graph->insertNode(calling_graph->createTuple(arg_values))
->output();
}
// call pre_hooks
if (have_pre_hooks) {
for (const auto& hook : class_type->getForwardPreHooks()) {
TORCH_INTERNAL_ASSERT(forward_input != nullptr);
Value* pre_hook_output =
FunctionValue(hook)
.call(
loc,
caller,
{NamedValue(self_), NamedValue(forward_input)},
kwargs,
n_binders)
->asValue(loc, caller);
if (pre_hook_output->type() != NoneType::get()) {
if (pre_hook_output->type()->kind() != TypeKind::TupleType) {
pre_hook_output =
calling_graph
->insertNode(calling_graph->createTuple({pre_hook_output}))
->output();
}
forward_input = pre_hook_output;
}
}
// de-tuple pre_hook output for forward
at::ArrayRef<Value*> output_nodes =
calling_graph
->insertNode(calling_graph->createTupleUnpack(forward_input))
->outputs();
for (auto& output_node : output_nodes) {
pre_hook_result.emplace_back(NamedValue(output_node));
}
if (args.size() != 0) { // only replace input if it existed
args = pre_hook_result;
}
}
// call forward
std::shared_ptr<SugaredValue> forwardSV =
attr(loc, caller, "forward")->call(loc, caller, args, kwargs, n_binders);
Value* forward_output = forwardSV->asValue(loc, caller);
// call hooks
if (have_hooks) {
for (const auto& hook : class_type->getForwardHooks()) {
Value* forward_hook_output = FunctionValue(hook)
.call(
loc,
caller,
{NamedValue(self_),
NamedValue(forward_input),
NamedValue(forward_output)},
kwargs,
n_binders)
->asValue(loc, caller);
if (forward_hook_output->type() != NoneType::get()) {
forward_output = forward_hook_output;
}
}
}
return std::make_shared<SimpleValue>(forward_output);
}
// This method controls how we desugar attribute lookups on ScriptModules.
std::shared_ptr<SugaredValue> ModuleValue::attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
if (auto attr = tryGetAttr(loc, m, field)) {
return attr;
}
// Check if it's a property.
auto prop =
concreteType_->getJitType()->expectRef<ClassType>().getProperty(field);
if (prop) {
return MethodValue(self_, prop->getter->name())
.call(loc, m, {}, {}, /*n_binders=*/1);
}
// We don't define this attr. Bailout with a hint to the user.
std::string hint;
if (auto failureReason = concreteType_->findFailedAttribute(field)) {
hint = *failureReason;
} else if (concreteType_->isIgnoredAttribute(field)) {
hint = "attribute was ignored during compilation";
}
throw ErrorReport(loc)
<< "Module '"
<< concreteType_->getJitType()->expectRef<ClassType>().name()->name()
<< "'"
<< " has no attribute '" << field << "' " << hint;
}
SugaredValuePtr ModuleValue::iter(const SourceRange& loc, GraphFunction& m) {
const auto iterableModuleKind = concreteType_->getIterableModuleKind();
if (iterableModuleKind == IterableModuleKind::NONE) {
throw ErrorReport(loc)
<< "Only constant Sequential, ModuleList, ModuleDict, or "
<< "ParameterList can be used as an iterable";
}
if (iterableModuleKind == IterableModuleKind::DICT) {
auto module_dict = getSugaredDict(loc, m);
return module_dict->keys_;
} else if (iterableModuleKind == IterableModuleKind::LIST) {
auto module_dict = getSugaredDict(loc, m);
return module_dict->modules_;
} else if (iterableModuleKind == IterableModuleKind::PARAMLIST) {
auto module_dict = getSugaredNamedParameterList(loc, m);
return module_dict->modules_;
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
std::shared_ptr<SugaredValue> PythonClassValue::attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
// Resolve values from the Python object first (e.g. for static methods on
// this type, resolve them as functions)
if (auto* fn = type_->findStaticMethod(field)) {
return std::make_shared<FunctionValue>(fn);
}
auto py_attr = py::getattr(py_type_, field.c_str(), py::none());
if (!py_attr.is_none()) {
return toSugaredValue(py_attr, m, loc);
}
return ClassValue::attr(loc, m, field);
}
bool PythonClassValue::hasAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field) {
try {
py::getattr(py_type_, field.c_str());
return true;
} catch (py::error_already_set& e) {
return false;
}
}
void ModuleValue::setAttr(
const SourceRange& loc,
GraphFunction& m,
const std::string& field,
Value* newValue) {
// Forward to SimpleValue::setAttr
SimpleValue simple(self_);
simple.setAttr(loc, m, field, newValue);
}
std::shared_ptr<SugaredValue> BooleanDispatchValue::call(
const SourceRange& loc,
GraphFunction& caller,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t n_binders) {
c10::optional<bool> result;
Graph& graph = *(caller.graph());
auto index = py::cast<size_t>(dispatched_fn_["index"]);
auto arg_name = py::str(dispatched_fn_["arg_name"]);
ErrorReport error(loc);
if (index < args.size()) {
// Dispatch flag is in arg list
result = constant_as<bool>(args.at(index).value(graph));
error << "Argument for boolean dispatch at position " << index
<< " was not constant";
} else if (auto i = findInputWithName(arg_name, kwargs)) {
// Dispatch flag is in kwargs
result = constant_as<bool>(kwargs[*i].value(graph));
error << "Keyword argument '" << arg_name
<< "' for boolean dispatch at position was not constant";
} else {
// Didn't find dispatch flag, so use default value
result = py::cast<bool>(dispatched_fn_["default"]);
TORCH_INTERNAL_ASSERT(result);
}
if (!result.has_value()) {
throw error;
}
std::shared_ptr<SugaredValue> value;
if (*result) {
value = toSugaredValue(dispatched_fn_["if_true"], caller, loc);
} else {
value = toSugaredValue(dispatched_fn_["if_false"], caller, loc);
}
return value->call(loc, caller, args, kwargs, n_binders);
}
std::shared_ptr<SugaredValue> PythonExceptionValue::call(
const SourceRange& loc,
GraphFunction& caller,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t /*n_binders*/) {
Value* error_message = nullptr;
if (args.size() == 0) {
error_message = insertConstant(*caller.graph(), "", loc);
} else if (args.size() == 1) {
error_message = args.at(0).value(*caller.graph());
} else {
std::vector<Value*> message_values;
message_values.reserve(args.size() + kwargs.size());
for (const auto& inp : args) {
message_values.push_back(inp.value(*caller.graph()));
}
for (const auto& kwarg_inp : kwargs) {
message_values.push_back(kwarg_inp.value(*caller.graph()));
}
error_message =
caller.graph()
->insertNode(caller.graph()->createTuple(message_values))
->output();
}
Value* qualified_class_name =
insertConstant(*caller.graph(), exception_class_qualified_name_, loc);
return std::make_shared<ExceptionMessageValue>(
error_message, qualified_class_name);
}
bool isNamedTupleClass(const py::object& obj) {
auto tuple_type = reinterpret_cast<PyObject*>(&PyTuple_Type);
int is_tuple_class = PyObject_IsSubclass(obj.ptr(), tuple_type);
if (is_tuple_class == -1) {
PyErr_Clear();
return false;
}
return is_tuple_class == 1 && py::hasattr(obj, "_fields");
}
TypePtr registerNamedTuple(const py::object& obj, const SourceRange& loc) {
TORCH_INTERNAL_ASSERT(isNamedTupleClass(obj));
auto qualifiedName = c10::QualifiedName(py::cast<std::string>(
py::module::import("torch._jit_internal").attr("_qualified_name")(obj)));
py::object props = py::module::import("torch._jit_internal")
.attr("_get_named_tuple_properties")(obj);
std::string unqualName;
std::vector<std::string> field_names;
std::vector<TypePtr> field_types;
std::vector<py::object> objects;
std::tie(unqualName, field_names, field_types, objects) = py::cast<std::tuple<
std::string,
std::vector<std::string>,
std::vector<TypePtr>,
std::vector<py::object>>>(props);
std::vector<IValue> field_defaults;
auto min_default_idx = field_names.size() - objects.size();
for (size_t i = min_default_idx, j = 0; i < field_names.size(); ++i, ++j) {
py::object o = objects[j];
auto type = tryToInferType(objects[j]);
IValue ival = toIValue(objects[j], type.type());
TORCH_CHECK(
ival.tagKind() != "Tensor",
"Tensors are"
" not supported as default NamedTuple fields. Their "
"mutability could lead to potential memory aliasing "
"problems");
field_defaults.emplace_back(ival);
}
auto tt = TupleType::createNamed(
qualifiedName, field_names, field_types, field_defaults);
if (auto type = get_python_cu()->get_type(qualifiedName)) {
TORCH_CHECK(
type->isSubtypeOf(tt), "Can't redefine NamedTuple: ", tt->repr_str());
return type;
}
get_python_cu()->register_type(tt);
return tt;
}
bool isEnumClass(py::object obj) {
auto enum_type_obj =
py::cast<py::object>(py::module::import("enum").attr("Enum"));
int ret = PyObject_IsSubclass(obj.ptr(), enum_type_obj.ptr());
if (ret == -1) {
PyErr_Clear();
return false;
}
return ret == 1;
}
std::shared_ptr<SugaredValue> createSimpleEnumValue(
const py::object& obj,
GraphFunction& m,
const SourceRange& loc) {
auto enum_class = obj.attr("__class__");
auto enum_type =
py::cast<TypePtr>(py::module::import("torch.jit.annotations")
.attr("try_ann_to_type")(enum_class, loc));
auto enum_ivalue = toIValue(obj, enum_type);
return toSimple(m.graph()->insertConstant(enum_ivalue, loc));
}
std::shared_ptr<SugaredValue> PythonSliceClass::call(
const SourceRange& loc,
GraphFunction& caller,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs,
size_t /*n_binders*/) {
if (!kwargs.empty()) {
throw ErrorReport(loc) << "Slice does not accept any keyword arguments";
}
static constexpr int64_t default_start = 0;
static constexpr int64_t default_stop = std::numeric_limits<int64_t>::max();
static constexpr int64_t default_step = 1;
Graph& graph = *(caller.graph());
auto ValOr = [&](Value* given, int64_t default_val) {
if (!given || given->type()->isSubtypeOf(*NoneType::get())) {
return graph.insertConstant(default_val, loc);
}
return given;
};
Value* start = nullptr;
Value* stop = nullptr;
Value* step = nullptr;
size_t n = args.size();
// Slice's constructor signature is Slice(start=None, stop, step=None)
if (n == 1) {
// Case where only `stop` is specified.
start = ValOr(nullptr, default_start);
stop = ValOr(args[0].value(graph), default_stop);
step = ValOr(nullptr, default_step);
} else if (n == 2) {
// Case where `start` and `stop` are specified.
start = ValOr(args[0].value(graph), default_start);
stop = ValOr(args[1].value(graph), default_stop);
step = ValOr(nullptr, default_step);
} else if (n == 3) {
// Case where `start`, `stop` and `step` are all specified.
start = ValOr(args[0].value(graph), default_start);
stop = ValOr(args[1].value(graph), default_stop);
step = ValOr(args[2].value(graph), default_step);
} else {
throw ErrorReport(loc) << "slice accepts exactly 1, 2 or 3 arguments, got: "
<< n;
}
return std::make_shared<SliceValue>(start, stop, step);
}
std::shared_ptr<SugaredValue> toSugaredValue(
py::object obj,
GraphFunction& m,
const SourceRange& loc,
bool is_constant) {
// directly create SimpleValues when possible, because they are first-class
// and can be re-assigned. Otherwise, this would be invalid:
// f = python_constant
// while ...
// f = f + 1
auto& g = *m.graph();
if (is_constant) {
if (py::isinstance<py::bool_>(obj)) {
return toSimple(g.insertConstant(py::cast<bool>(obj), loc));
} else if (py::isinstance<py::int_>(obj)) {
return toSimple(g.insertConstant(py::cast<int64_t>(obj), loc));
} else if (py::isinstance<py::float_>(obj)) {
return toSimple(g.insertConstant(py::cast<double>(obj), loc));
} else if (PyComplex_CheckExact(obj.ptr())) {
auto c_obj = py::cast<std::complex<double>>(obj.ptr());
return toSimple(
g.insertConstant(static_cast<c10::complex<double>>(c_obj), loc));
} else if (py::isinstance<py::str>(obj)) {
return toSimple(g.insertConstant(py::cast<std::string>(obj), loc));
} else if (obj.is(py::none())) {
return toSimple(g.insertConstant(IValue(), loc));
} else if (THPDevice_Check(obj.ptr())) {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return toSimple(g.insertConstant(device->device));
} else if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
const auto v = static_cast<int64_t>(layout->layout);
return toSimple(g.insertConstant(v, loc));
} else if (THPMemoryFormat_Check(obj.ptr())) {
auto memory_format = reinterpret_cast<THPMemoryFormat*>(obj.ptr());
const auto v = static_cast<int64_t>(memory_format->memory_format);
return toSimple(g.insertConstant(v, loc));
} else if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
const auto v = static_cast<int64_t>(dtype->scalar_type);
return toSimple(g.insertConstant(v, loc));
} else if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
const auto v = static_cast<uint8_t>(qscheme->qscheme);
return toSimple(g.insertConstant(v, loc));
} else if (py::isinstance<py::tuple>(obj)) {
py::tuple tup = obj;
std::vector<Value*> values;
values.reserve(tup.size());
for (py::handle t : tup) {
py::object obj = py::reinterpret_borrow<py::object>(t);
values.push_back(toSugaredValue(obj, m, loc, true)->asValue(loc, m));
}
return toSimple(
m.graph()->insertNode(m.graph()->createTuple(values))->output());
}
}
auto opoverloadpacket_type =
py::module::import("torch").attr("_ops").attr("OpOverloadPacket");
py::bool_ is_overloadpacket = py::isinstance(obj, opoverloadpacket_type);
if (is_overloadpacket) {
obj = py::getattr(obj, "op");
}
#ifdef USE_RPC
bool isRpcAvailable = py::cast<bool>(
py::module::import("torch.distributed.rpc").attr("is_available")());
#endif
if (auto callee = as_function(obj)) {
return std::make_shared<FunctionValue>(callee->function_);
} else if (py::isinstance<py::module>(obj)) {
std::string obj_name = py::cast<py::str>(py::getattr(obj, "__name__"));
if (obj_name.compare("torch.cuda") == 0) {
return std::make_shared<CUDAPythonModuleValue>(obj);
}
return std::make_shared<PythonModuleValue>(obj);
} else if (
obj.ptr() == py::module::import("torch.jit").attr("_fork").ptr() ||
obj.ptr() == py::module::import("torch.jit").attr("fork").ptr()) {
return SpecialFormValue::create(prim::fork);
} else if (
obj.ptr() == py::module::import("torch.jit").attr("annotate").ptr()) {
return SpecialFormValue::create(prim::annotate);
} else if (
obj.ptr() == py::module::import("torch.jit").attr("isinstance").ptr()) {
return SpecialFormValue::create(prim::isinstance);
#ifdef USE_RPC
// RPC module is only avaialble when build flag "USE_DISTRIBUTED" is on.
} else if (
isRpcAvailable &&
obj.ptr() ==
py::module::import("torch.distributed.rpc").attr("rpc_async").ptr()) {
return SpecialFormValue::create(prim::rpc_async);
} else if (
isRpcAvailable &&
obj.ptr() ==
py::module::import("torch.distributed.rpc").attr("rpc_sync").ptr()) {
return SpecialFormValue::create(prim::rpc_sync);
} else if (
isRpcAvailable &&
// RPC module is only avaialble when build flag "USE_DISTRIBUTED" is on.
obj.ptr() ==
py::module::import("torch.distributed.rpc").attr("remote").ptr()) {
return SpecialFormValue::create(prim::rpc_remote);
#endif
} else if (auto callee = as_module(obj)) {
throw ErrorReport(loc) << "Cannot call a ScriptModule that is not"
<< " a submodule of the caller";
}
std::vector<std::pair<const char*, at::ScalarType>> tensor_names = {
{"BoolTensor", at::ScalarType::Bool},
{"LongTensor", at::ScalarType::Long},
{"ByteTensor", at::ScalarType::Byte},
{"CharTensor", at::ScalarType::Char},
{"DoubleTensor", at::ScalarType::Double},
{"FloatTensor", at::ScalarType::Float},
{"IntTensor", at::ScalarType::Int},
{"ShortTensor", at::ScalarType::Short},
{"HalfTensor", at::ScalarType::Half},
};
for (const auto& name : tensor_names) {
if (obj.ptr() == py::module::import("torch").attr(name.first).ptr()) {
// torch.LongTensor and other related functions create on cpu,
// TODO: add support for torch.cuda.LongTensor for gpu
return LegacyTensorConstructor::create(
prim::LegacyTypedConstructor, name.second, at::kCPU);
}
}
py::object builtin_name =
py::module::import("torch.jit._builtins").attr("_find_builtin")(obj);
if (!builtin_name.is_none()) {
return std::make_shared<BuiltinFunction>(
Symbol::fromQualString(py::str(builtin_name)), c10::nullopt);
}
if (py::cast<bool>(py::module::import("torch._jit_internal")
.attr("_is_exception")(obj))) {
return std::make_shared<PythonExceptionValue>(obj);
}
if (py::isinstance<py::function>(obj)) {
if (typeString(obj) == "builtin_function_or_method") {
throw ErrorReport(loc) << "Python builtin " << py::str(obj)
<< " is currently not supported in Torchscript";
}
}
py::object dispatched_fn = py::module::import("torch._jit_internal")
.attr("_try_get_dispatched_fn")(obj);
if (!dispatched_fn.is_none()) {
return std::make_shared<BooleanDispatchValue>(std::move(dispatched_fn));
}
if (py::isinstance<ScriptClass>(obj)) {
auto script_class = py::cast<ScriptClass>(obj);
return std::make_shared<PythonClassValue>(
script_class.class_type_.type_->expect<ClassType>(), obj);
}
if (isNamedTupleClass(obj)) {
auto tuple_type = registerNamedTuple(obj, loc)->expect<TupleType>();
return std::make_shared<NamedTupleConstructor>(tuple_type);
}
if (isEnumClass(obj)) {
return createSugaredEnumClassFromObj(obj, m, loc);
}
auto enum_type = py::module::import("enum").attr("Enum");
py::bool_ is_enum_value = py::isinstance(obj, enum_type);
if (py::cast<bool>(is_enum_value)) {
return createSimpleEnumValue(obj, m, loc);
}
py::bool_ is_class = py::module::import("inspect").attr("isclass")(obj);
if (py::cast<bool>(is_class)) {
py::str qualifiedName =
py::module::import("torch._jit_internal").attr("_qualified_name")(obj);
auto pyCu = get_python_cu();
auto qualname = c10::QualifiedName(qualifiedName);
if (auto classType = pyCu->get_class(qualname)) {
return std::make_shared<PythonClassValue>(classType, obj);
} else {
// If we can't get the source code for the type, it's implemented in C and
// probably part of the standard library, so give up and leave it as a
// call to Python
bool can_compile_class =
py::cast<bool>(py::module::import("torch._jit_internal")
.attr("can_compile_class")(obj));
if (can_compile_class) {
// Register class
auto rcb = py::module::import("torch._jit_internal")
.attr("createResolutionCallbackForClassMethods")(obj);
py::module::import("torch.jit._script")
.attr("_recursive_compile_class")(obj, loc);
// Return class
auto newClassType = pyCu->get_class(qualname);
AT_ASSERT(
newClassType,
"Class '",
qualifiedName,
"' should have been compiled but was not");
return std::make_shared<PythonClassValue>(newClassType, obj);
}
}
}
py::bool_ isFunction = py::module::import("inspect").attr("isfunction")(obj);
if (py::cast<bool>(isFunction)) {
auto overloads =
py::module::import("torch.jit._script").attr("_get_overloads")(obj);
if (!overloads.is_none()) {
auto compiled_fns = py::cast<std::vector<StrongFunctionPtr>>(overloads);
return std::make_shared<FunctionValue>(std::move(compiled_fns));
}
auto compiled_fn = py::module::import("torch.jit._recursive")
.attr("try_compile_fn")(obj, loc);
if (auto callee = as_function(compiled_fn)) {
return std::make_shared<FunctionValue>(*callee);
}
}
if (obj.ptr() == py::module::import("math").attr("inf").ptr()) {
return toSimple(
g.insertConstant(std::numeric_limits<double>::infinity(), loc));
}
py::bool_ isMethod = py::module::import("inspect").attr("ismethod")(obj);
// methods here have been explicitly annotated to not be compiled,
// so they do not have the same overload and compile checks as for functions
if (isFunction || isMethod) {
auto rcb = py::module::import("torch._jit_internal")
.attr("createResolutionCallbackFromClosure")(obj);
return std::make_shared<PythonValue>(obj, rcb);
}
if (obj.is(py::module::import("builtins").attr("slice"))) {
return std::make_shared<PythonSliceClass>();
}
return std::make_shared<PythonValue>(obj);
}
} // namespace jit
} // namespace torch
|