1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
#include <c10/util/irange.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
namespace torch {
namespace jit {
void ArgumentSpecCreator::scan(
const TypePtr& typ,
size_t depth,
const WrittenSlots& written_slots) {
auto finishAggregate = [&](size_t pos) {
// it is possible after all the work we did to scan this aggregate,
// we found no tensors or optionals to specialize. In this case, just
// generate a skip for the whole aggregate.
bool any_spec = std::any_of(
instructions_.begin() + pos, instructions_.end(), [](Inst i) {
return i == SPECIALIZE_TENSOR || i == SPECIALIZE_OPTIONAL ||
i == SPECIALIZE_OPTIONAL_TENSOR;
});
if (!any_spec) {
instructions_[pos] = SKIP;
instructions_.resize(pos + 1);
} else {
instructions_.emplace_back(LEAVE);
}
};
// the simple vm that scans instructions_ has a limited stack depth,
// this prevents going deeper than that.
if (depth >= ARG_SPEC_DEPTH_LIMIT) {
instructions_.emplace_back(SKIP);
}
if (typ->isSubtypeOf(*TensorType::get())) {
num_tensors_++;
instructions_.emplace_back(SPECIALIZE_TENSOR);
} else if (typ->isSubtypeOf(*OptionalType::ofTensor())) {
num_tensors_++;
num_optionals_++;
instructions_.emplace_back(SPECIALIZE_OPTIONAL_TENSOR);
} else if (typ->kind() == TypeKind::OptionalType) {
// note that Optional[Tuple] or Optional[Class] will just register
// as optional (previously they didn't at all, so it's not a regression).
num_optionals_++;
instructions_.emplace_back(SPECIALIZE_OPTIONAL);
} else if (auto tup = typ->cast<TupleType>()) {
size_t pos = instructions_.size();
instructions_.emplace_back(ENTER_TUPLE);
for (const auto& elem : tup->containedTypes()) {
scan(elem, depth + 1, written_slots);
}
finishAggregate(pos);
} else if (auto cls = typ->cast<ClassType>()) {
size_t pos = instructions_.size();
instructions_.emplace_back(ENTER_OBJECT);
for (size_t i = 0; i < cls->numAttributes(); ++i) {
auto key =
cls->name()->qualifiedName() + cls->getAttributes().at(i).getName();
// it is only safe to specialize because someone might have written to it
if (!written_slots.count(key)) {
scan(cls->containedTypes().at(i), depth + 1, written_slots);
} else {
instructions_.emplace_back(SKIP);
}
}
finishAggregate(pos);
} else {
instructions_.emplace_back(SKIP);
}
};
// this is a coarse-grained guarantee that the slots of a class will not be
// modified by the function. It works fine for things that used be read-only
// modules, but will be overly conservative when some classes are written to.
// Doing alias analysis and looking for writes to the class would be more
// accurate.
static void scanWrittenSlots(
Block* block,
ArgumentSpecCreator::WrittenSlots& written_slots) {
for (Node* n : block->nodes()) {
if (n->kind() == prim::SetAttr) {
if (auto cls = n->inputs().at(0)->type()->cast<ClassType>()) {
written_slots.insert(cls->name()->qualifiedName() + n->s(attr::name));
}
}
for (Block* subblock : n->blocks()) {
scanWrittenSlots(subblock, written_slots);
}
if (n->hasAttribute(attr::Subgraph)) {
scanWrittenSlots(n->g(attr::Subgraph)->block(), written_slots);
}
}
}
ArgumentSpecCreator::ArgumentSpecCreator(Graph& graph)
: num_inputs_(graph.inputs().size()) {
WrittenSlots written_slots;
scanWrittenSlots(graph.block(), written_slots);
for (Value* input : graph.inputs()) {
scan(input->type(), 0, written_slots);
}
}
void ArgumentSpecCreator::dump() const {
for (Inst inst : instructions_) {
switch (inst) {
case LEAVE:
std::cout << "] ";
break;
case ENTER_TUPLE:
std::cout << "Tuple[";
break;
case ENTER_OBJECT:
std::cout << "Object[";
break;
case SKIP:
std::cout << "Skip ";
break;
case SPECIALIZE_TENSOR:
std::cout << "SpecializeTensor ";
break;
case SPECIALIZE_OPTIONAL_TENSOR:
std::cout << "SpecializeOptionalTensor ";
break;
case SPECIALIZE_OPTIONAL:
std::cout << "SpecializeOptional ";
break;
}
}
std::cout << "\n";
}
ArgumentSpec ArgumentSpecCreator::create(bool with_grad, const Stack& input)
const {
ArgumentSpec spec(num_tensors_, num_optionals_);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
const IValue* stack[ARG_SPEC_DEPTH_LIMIT]; // The stack of IValue lists
// The stack gets initialized with the input list
stack[0] = last(input, num_inputs_).begin();
size_t stack_top = 0; // offset to the top of the stack
for (Inst inst : instructions_) {
switch (inst) {
case SPECIALIZE_OPTIONAL_TENSOR: {
// consume a tensor optional and add to the argspec
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
auto& arg = *stack[stack_top]++;
spec.addOptional(arg);
if (!arg.isNone()) {
spec.addTensor(arg, with_grad);
}
} break;
case SPECIALIZE_TENSOR:
// consume a tensor and add to the argspec
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
spec.addTensor(*stack[stack_top]++, with_grad);
break;
case SPECIALIZE_OPTIONAL:
// consume a non-tensor optional and add to the argspec
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
spec.addOptional(*stack[stack_top]++);
break;
case ENTER_TUPLE: {
// consume tuple
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
const IValue* iv = stack[stack_top]++;
AT_ASSERT(iv->isTuple(), "Expected Tuple but got ", iv->tagKind());
auto p = *reinterpret_cast<const at::ivalue::Tuple* const*>(iv);
auto tup_ptr = &p->elements()[0];
// push list of tuple elements to the stack
stack[++stack_top] = tup_ptr;
} break;
case ENTER_OBJECT: {
// consume object
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
const IValue* iv = stack[stack_top]++;
AT_ASSERT(iv->isObject(), "Expected Object but got ", iv->tagKind());
auto obj_ptr = &iv->toObjectRef().slots()[0];
// push list of object elements to the stack
stack[++stack_top] = obj_ptr;
} break;
case SKIP:
// consume and skip an element
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
stack[stack_top]++;
break;
case LEAVE:
--stack_top;
break;
}
}
return spec;
}
// For every input of a given graph, returns a most detailed type that can be
// inferred for it based on this ArgumentSpec.
void ArgumentSpecCreator::specializeTypes(
Graph& graph,
const ArgumentSpec& spec) const {
auto input_types =
fmap(graph.inputs(), [](Value* input) { return input->type(); });
std::vector<std::vector<TypePtr>> result_stack;
result_stack.emplace_back();
std::vector<const TypePtr*> input_stack = {input_types.data()};
std::vector<std::function<TypePtr()>> aggregate_creators;
size_t tensor_arg_spec_offset =
0; // number of specialized tensors seen so far
size_t optional_arg_spec_offset =
0; // number of specialized optionals seen so far
for (Inst inst : instructions_) {
switch (inst) {
case SPECIALIZE_OPTIONAL_TENSOR: {
auto& input_type = *input_stack.back()++;
auto is_present = spec.isPresent(optional_arg_spec_offset++);
if (!is_present) {
result_stack.back().emplace_back(input_type);
break;
}
auto& arg = spec.tensorAt(tensor_arg_spec_offset++);
AT_ASSERT(arg.defined());
result_stack.back().emplace_back(arg.toType());
} break;
case SPECIALIZE_TENSOR: {
input_stack.back()++;
auto& arg = spec.tensorAt(tensor_arg_spec_offset++);
if (!arg.defined()) {
result_stack.back().emplace_back(TensorType::get()->withUndefined());
} else {
result_stack.back().emplace_back(arg.toType());
}
} break;
case SPECIALIZE_OPTIONAL: {
auto is_present = spec.isPresent(optional_arg_spec_offset++);
auto ot = (*input_stack.back()++)->expect<OptionalType>();
if (!is_present) {
result_stack.back().emplace_back(ot);
} else {
result_stack.back().emplace_back(ot->getElementType());
}
} break;
case ENTER_TUPLE: {
auto tup = (*input_stack.back()++)->expect<TupleType>();
input_stack.emplace_back(tup->elements().data());
result_stack.emplace_back();
aggregate_creators.emplace_back(
[&] { return TupleType::create(result_stack.back()); });
} break;
case ENTER_OBJECT: {
auto cls = (*input_stack.back()++)->expect<ClassType>();
input_stack.emplace_back(cls->containedTypes().data());
result_stack.emplace_back();
aggregate_creators.emplace_back(
[&result_stack, cls] { return cls->refine(result_stack.back()); });
} break;
case SKIP:
result_stack.back().emplace_back(*input_stack.back()++);
break;
case LEAVE:
TypePtr result = aggregate_creators.back()();
result_stack.pop_back();
aggregate_creators.pop_back();
input_stack.pop_back();
result_stack.back().emplace_back(std::move(result));
break;
}
}
AT_ASSERT(result_stack.size() == 1);
// FIXME: by doing this only on the inputs, we only capture graph inputs and
// not
// optionals in tuples or objects. For that to work, we would have
// to investigate the uses of the inputs in detail to change the
// accesses/ unwrapping
auto inputs = graph.inputs();
for (const auto i : c10::irange(inputs.size())) {
auto t = result_stack.back()[i];
if (auto ot = t->cast<OptionalType>()) {
// if an optional input hasn't been specialized above, it is None
// so we disconnect the input here and replace its uses with
// a constant
WithInsertPoint guard(*graph.nodes().begin());
auto c = graph.insertConstant({});
inputs[i]->replaceAllUsesWith(c);
} else {
inputs[i]->setType(t);
}
}
}
} // namespace jit
} // namespace torch
|