1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
|
#include <torch/csrc/jit/runtime/autodiff.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/update_differentiable_graph_requires_grad.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/symbolic_script.h>
#include <algorithm>
#include <memory>
namespace torch {
namespace jit {
using value_map = std::unordered_map<Value*, Value*>;
using value_set = std::unordered_set<Value*>;
void wrapDim(int64_t& dim, const std::vector<int64_t>& sizes) {
if (dim < 0) {
dim += sizes.size();
}
}
// need_trim_grad_ops contains functions that return multiple outputs in
// forward, but only the first one requires grad.
// Example:
// kthvalue returns (kthvalue, index of kthvalue), currently autodiff only
// supports at most one output that requires grad. Thus we need to remove
// the grad for index that doesn't require grad.
bool needTrimGrad(Node* n) {
static OperatorSet need_trim_grad_ops = {
"aten::kthvalue(Tensor self, int k, int dim, bool keepdim) -> (Tensor, Tensor)",
"aten::topk(Tensor self, int k, int dim, bool largest, bool sorted) -> (Tensor, Tensor)",
"aten::max_pool2d(Tensor self, int[] kernel_size, int[] stride, int[] padding, int[] dilation, bool ceil_mode) -> Tensor",
"aten::max_pool2d_with_indices(Tensor self, int[] kernel_size, int[] stride, int[] padding, int[] dilation, bool ceil_mode) -> (Tensor, Tensor)"};
if (n->isMemberOf(need_trim_grad_ops)) {
return true;
}
return false;
}
bool isDifferentiable(const Node* n) {
// TODO: scalar-tensor ops should be canonicalized
static OperatorSet differentiable_ops = {
"aten::_slow_conv2d_forward(Tensor self, Tensor weight, int[] kernel_size, Tensor? bias, int[] stride, int[] padding) -> Tensor",
"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)",
};
// TODO: add support for the following fusible operators.
// They're a little tricky to implement; max/min require mutability for best
// perf "aten::atan2(Tensor self) -> Tensor", "aten::max(Tensor self) ->
// Tensor", "aten::min(Tensor self) -> Tensor"
if (n->kind() == prim::Constant || n->kind() == prim::AutogradZero ||
n->kind() == prim::AutogradAdd || n->kind() == prim::ConstantChunk ||
n->kind() == prim::profile || n->kind() == prim::profile_ivalue)
return true;
if (n->isMemberOf(differentiable_ops))
return true;
if (n->matches(
"aten::dropout(Tensor input, float p, bool train) -> Tensor",
attr::train)) {
return n->get<bool>(attr::train).value();
}
if (n->matches(
"aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor")) {
return n->get<c10::List<int64_t>>(attr::size) &&
n->is_constant(attr::implicit);
}
auto schema = n->maybeSchema();
if (schema && hasGradientInfoForSchema(*schema)) {
return true;
}
// linear blocks may appear as inputs to graph executors, but they are removed
// before differentiation occurs
if (n->kind() == prim::GradOf) {
auto body = n->blocks().at(0);
return std::all_of(
body->nodes().begin(),
body->nodes().end(),
static_cast<bool (*)(const Node*)>(isDifferentiable));
}
// formulas are only defined with floating point scalars,
// so we fallback to autograd for other cases.
for (const Value* input : n->inputs()) {
if (input->type() == NumberType::get()) {
return false;
}
}
return false;
}
bool isDifferentiable(Graph& g) {
return std::all_of(
g.nodes().begin(),
g.nodes().end(),
static_cast<bool (*)(const Node*)>(isDifferentiable));
}
// NB: Write gradient using torchscript
// For example, node aten::mul() should be defined as follows
// def forward(x, y):
// return x*y, (x, y)
// def backward(ctx, grad_output):
// x, y = ctx
// return (y * grad_output).sum_to_size(x), (x * grad_output).sum_to_size(y)
//
// Here ctx is a tuple that carries all input/intermediate results needed in
// backward from forward pass.
//
// This python code is compiled into a GradientPair which includes a forward
// graph and a backward graph. Forward graph will be used to replace the node in
// grad_desc.f, and backward graph will be used to construct GradOf(node) in
// reverse_block. Grad_values(a.k.a gradOutputs) propagated through
// node->owningGraph() in **reversed** order, thus GradientPair.forward should
// be inserted **after** the node being replaced, so that we don't traverse the
// graph infinite times.
//
// The output of compiled forward graph is [real_outputs, ctx]
// The input of compiled backward graph is [ctx, grad_values]
// We run LowerSimpleTuples afterwards to elmininate all tuples generated in
// this process. The original node and TupleConstruct nodes in forward graph
// will be cleaned up later using EliminateDeadCode(block). TupleUnPack node in
// backward graph will be removed in eliminateDeadcode(ReverseDetails) defined
// in this file.
static c10::optional<std::vector<Value*>> build_script_grad(
Node* node,
const ArrayRef<Value*>& grads) {
auto graph = node->owningGraph();
auto maybe_schema = node->maybeSchema();
if (!maybe_schema) {
return c10::nullopt;
}
auto compiled_graphs = gradientInfoForSchema(*maybe_schema);
if (!compiled_graphs) {
return c10::nullopt;
}
// Use forward graph to replace node in grad_desc.f
value_list new_outputs;
{
WithInsertPoint guard(node->next());
auto fw_graph = compiled_graphs->forward;
new_outputs = insertGraph(*graph, *fw_graph, node->inputs());
new_outputs = unpackOutputs(new_outputs);
auto outputs = node->outputs();
AT_ASSERT(new_outputs.size() == outputs.size() + 1);
for (const auto i : c10::irange(outputs.size())) {
new_outputs.at(i)->setType(outputs[i]->type());
outputs[i]->replaceAllUsesWith(new_outputs.at(i));
}
}
// Use backward graph to construct reverse_block
auto bw_graph = compiled_graphs->backward;
auto grad_vec = grads.vec();
if (needTrimGrad(node)) {
grad_vec.erase(grad_vec.begin() + 1, grad_vec.end());
}
auto it = grad_vec.begin();
grad_vec.insert(it, new_outputs.back());
ArrayRef<Value*> grad(grad_vec);
auto grad_inputs = insertGraph(*graph, *bw_graph, grad);
grad_inputs = unpackOutputs(grad_inputs);
return grad_inputs;
};
namespace {
class GradientHelper {
public:
GradientHelper(Node* n) : node(n) {}
std::vector<Value*> gradient(ArrayRef<Value*> grad_values) {
if (!isDifferentiable(node)) {
throw std::runtime_error(
std::string("differentiation of ") + node->kind().toDisplayString() +
" is not supported, or it is missing necessary type information");
}
// If AD is defined using torchscript, use it instead of symbolic
auto script_grads = build_script_grad(node, grad_values);
if (script_grads)
return *script_grads;
// Definition not found in torchscript, look up in the buildSymbolicGradient
// TODO: migrate all to using torchscript
return buildSymbolicGradient(grad_values);
}
private:
Node* node;
std::vector<Value*> buildSymbolicGradient(
const ArrayRef<Value*>& grad_values) {
auto inputs = node->inputs();
auto outputs = node->outputs();
if (node->kind() == prim::AutogradAdd) {
// NB: AutogradAdds don't broadcast
return {grad_values.at(0), grad_values.at(0)};
} else if (node->kind() == prim::profile) {
return {grad_values.at(0)};
} else if (node->kind() == prim::ConstantChunk) {
auto* g = node->owningGraph();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Value* input_list;
if (grad_values.size() == 1 &&
grad_values[0]->type()->isSubtypeOf(*ListType::ofTensors())) {
input_list = grad_values[0];
} else {
input_list =
g->insertNode(g->createList(TensorType::get(), grad_values))
->output();
}
auto* cDim = g->insertConstant(node->i(attr::dim));
auto* cat_node = g->insertNode(g->create(aten::cat, 1));
cat_node->addInput(input_list);
cat_node->addInput(cDim);
return {cat_node->output()};
} else if (
node->kind() == prim::Constant || node->kind() == prim::AutogradZero) {
return {};
} else if (
node->matches(
"aten::_slow_conv2d_forward(Tensor self, Tensor weight, int[] kernel_size, Tensor? bias, int[] stride, int[] padding) -> Tensor")) {
auto graph = node->owningGraph();
auto backward_value = graph->insert(
aten::_slow_conv2d_backward,
{grad_values.at(0),
inputs.at(0),
inputs.at(1),
node->namedInput(attr::kernel_size),
node->namedInput(attr::stride),
node->namedInput(attr::padding),
graph->insertConstant(c10::List<bool>({true, true, true}))});
// graph->insert returns a tuple automatically if multiple outputs are
// returned. So unpack them again.
Node* tuple_unpack_node =
graph->insertNode(graph->createTupleUnpack(backward_value));
auto tuple_outputs = tuple_unpack_node->outputs();
AT_ASSERT(tuple_outputs.size() == size_t(3));
return {
tuple_outputs[0],
tuple_outputs[1],
nullptr,
tuple_outputs[2],
nullptr,
nullptr};
} else if (
node->matches(
"aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)")) {
auto graph = node->owningGraph();
auto backward_value = graph->insert(
aten::native_batch_norm_backward,
{grad_values.at(0),
inputs.at(0),
inputs.at(1),
inputs.at(3),
inputs.at(4),
outputs.at(1),
outputs.at(2),
inputs.at(5),
inputs.at(7),
graph->insertConstant(c10::List<bool>({true, true, true}))});
// graph->insert returns a tuple automatically if multiple outputs are
// returned. So unpack them again.
Node* tuple_unpack_node =
graph->insertNode(graph->createTupleUnpack(backward_value));
auto tuple_outputs = tuple_unpack_node->outputs();
AT_ASSERT(tuple_outputs.size() == size_t(3));
return {
tuple_outputs[0],
tuple_outputs[1],
tuple_outputs[2],
nullptr,
nullptr,
nullptr,
nullptr,
nullptr};
}
throw std::runtime_error(
std::string("failed to differentiate `") +
node->kind().toDisplayString() + "`");
}
};
} // namespace
// If we have a function y = f(x) with jacobian J, the backwards of f is dx =
// J^t dy. Note that because the backwards always implements this matrix
// multiply, we know that it maps an input vector of zeros to an output vector
// of zero regardless of what operations it choses to do inside to actually
// implement the matrix multiply (most use some optimized form and never
// generate J^t). More generally, we know that all of the backward computations
// are linear and can use this property to do more aggressive optimizations
// later. It is ok to replace any backward function with known-zero inputs with
// something that produces known-zero outputs. This function encloses each
// know-linear backward function in a 'GradOf' sub-block so that we can perform
// optimizations using this information. In particular, specializeAutogradZero
// will observe if all the inputs to the linear block are AutogradZeroTensor,
// which the autograd uses to represent zeros, and then propagate the zeros to
// the outputs of the block.
static std::vector<Value*> linearGradientForNode(
Node* node,
ArrayRef<Value*> grad_values) {
auto& graph = *node->owningGraph();
// FIXME: In case forward has multi outputs, we only support one requires grad
if (needTrimGrad(node)) {
grad_values = grad_values.at(0);
}
auto linear = graph.insertNode(graph.create(prim::GradOf, {grad_values}, 0));
// to make reading gradient graphs easier, remember the name of the forward op
linear->s_(attr::name, node->kind().toDisplayString());
auto block = linear->addBlock();
WithInsertPoint guard(block);
auto results = GradientHelper(node).gradient(grad_values);
return fmap(results, [block, linear](Value* grad) -> Value* {
if (!grad || grad->mustBeNone())
return nullptr;
block->registerOutput(grad);
return linear->addOutput()->copyMetadata(grad);
});
}
struct ReverseDetails {
ReverseDetails(value_map&& grad_map, Block* reverse_block)
: grad_map(std::move(grad_map)), reverse_block(reverse_block) {}
value_map grad_map;
Block* reverse_block;
};
// AutogradAdd is a special addition function that handles Undef
// AutogradAdd(a, b) == a + b if defined(a) and defined(b)
// AutogradAdd(Undef, b) == b
// AutogradAdd(a, Undef) == a
// AutogradAdd(Undef, Undef) == Undef
static Value* createAutogradAdd(Value* a, Value* b) {
auto graph = a->owningGraph();
return graph->insertNode(graph->create(prim::AutogradAdd, {a, b}))->output();
}
namespace {
bool outputRequiresGrad(Value* output) {
if (output->type()->castRaw<TensorType>() == nullptr) {
return output->requires_grad();
}
c10::optional<bool> requiresGrad =
output->type()->expectRef<TensorType>().requiresGrad();
if (requiresGrad.has_value()) {
return *requiresGrad;
}
Node* n = output->node();
if (n->kind() != prim::profile) {
return true;
}
if (!n->hasAttribute(attr::profiled_type)) {
return true;
}
return n->ty(attr::profiled_type)->requires_grad();
}
} // namespace
// Before:
// - grad_desc has field f initialized to the original 0-stage graph
// After:
// - the last node of f (f->nodes().reverse()[0]) is a gradient node
// whose block has vjp inputs for all outputs that require_grad
// and vjp outputs for all primal inputs that require_grad
// - grad_desc has df_input_vjps and df_output_vjps set
// (but df_input_vjps will be modified later as well)
static ReverseDetails addReverseInline(Gradient& grad_desc) {
auto& graph = *grad_desc.f;
// note: reverse_node is intentionally not inserted to avoid
// accidentally acting on it (e.g. in eliminate dead code),
// std::cout << *reverse_node << to view its state.
auto reverse_node = graph.create(prim::Reverse, 0);
auto reverse_block = reverse_node->addBlock();
WithInsertPoint guard(reverse_block);
value_map grad_map; // x -> dx mapping
const auto get_grad = [&](Value* v) -> Value* {
auto it = grad_map.find(v);
if (it == grad_map.end()) {
auto autograd_zero = graph.insertNode(graph.createAutogradZero());
std::tie(it, std::ignore) = grad_map.emplace(v, autograd_zero->output());
}
return it->second;
};
const auto set_grad = [&](Value* x, Value* dx) {
if (Value* prev_grad = grad_map[x]) {
GRAPH_DEBUG("grad_map[", x->debugName(), "] = ", *grad_map[x]->node());
grad_map[x] = createAutogradAdd(prev_grad, dx);
} else {
GRAPH_DEBUG("grad_map[", x->debugName(), "] = ", dx->debugName());
grad_map[x] = dx;
}
};
auto outputs = graph.outputs();
for (size_t i = 0, num_outputs = outputs.size(); i < num_outputs; ++i) {
Value* output = outputs[i];
if (!outputRequiresGrad(output))
continue;
Value* output_grad = reverse_block->addInput()->setType(output->type());
GRAPH_DEBUG(
"Adding output_grad ",
output_grad->debugName(),
" for ",
output->debugName());
set_grad(output, output_grad);
grad_desc.df_input_vjps.push_back(i);
}
for (auto it = graph.nodes().rbegin(), end = graph.nodes().rend(); it != end;
++it) {
Node* node = *it;
auto inputs = node->inputs();
auto outputs = node->outputs();
if (std::all_of(outputs.begin(), outputs.end(), [](Value* v) {
return !v->requires_grad();
})) {
continue;
}
value_list grad_inputs =
linearGradientForNode(node, fmap(node->outputs(), get_grad));
LowerSimpleTuples(reverse_block);
AT_ASSERT(grad_inputs.size() == node->inputs().size());
for (size_t i = 0, num_inputs = grad_inputs.size(); i < num_inputs; ++i) {
if (!inputs[i]->requires_grad())
continue;
// NB: Not returning a gradient w.r.t. a value that requires grad is
// normal if the input is non-differentiable. This happens e.g. in the
// aten::type_as case.
if (!grad_inputs[i])
continue;
set_grad(inputs[i], grad_inputs[i]);
}
}
auto inputs = graph.inputs();
for (size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) {
Value* input = inputs[i];
if (!input->requires_grad())
continue;
// NB: Not having a gradient defined w.r.t. an input to the graph which
// requires grad can happen and is not an error. It might have been used
// only in non-differentiable contexts (e.g. as second input to
// aten::type_as). In that case we simply ignore it as an output, because it
// won't ever produce any meaningful values.
if (grad_map.count(input) == 0)
continue;
reverse_block->registerOutput(get_grad(input));
grad_desc.df_output_vjps.push_back(i);
}
Inline(graph);
return ReverseDetails(std::move(grad_map), reverse_block);
}
// Returns a topologically-sorted list of values produced in f, and used in its
// reverse program.
static value_list getReverseCaptures(Gradient& grad_desc) {
auto& graph = *grad_desc.f;
auto primal_block = graph.block();
value_set reverse_captures_set;
value_list reverse_captures; // Invariant: topo sorted
auto check_uses = [&](Value* v) {
for (auto use : v->uses()) {
if (use.user->owningBlock() == primal_block)
continue;
if (/* bool unseen = */ reverse_captures_set.emplace(v).second) {
reverse_captures.push_back(v);
}
}
};
for (Value* input : graph.inputs()) {
check_uses(input);
}
for (Node* node : graph.nodes()) {
for (Value* output : node->outputs())
check_uses(output);
}
return reverse_captures;
}
// Any temporary value from the primal graphs needs to be captured for later use
// in the reverse graph, to avoid costly recomputations. However, a lot of the
// nodes we have in our graphs are simply constants, which are cheap to execute
// and replicate, and so it's better to just copy them into the reverse graph,
// without polluting the output lists unnecessarily.
static void liftConstants(Block* block, Block* move_to_this_block);
// is node defined inside container?
static bool inBlock(Node* node, Block* container) {
Block* b = node->owningBlock();
while (b) {
if (b == container) {
return true;
}
b = b->owningNode() ? b->owningNode()->owningBlock() : nullptr;
}
return false;
}
static void liftConstants(Node* node, Block* move_to_this_block) {
static const auto err = [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
};
auto& graph = *node->owningGraph();
for (Value* input : node->inputs()) {
if (input->node()->kind() != prim::Constant)
continue;
// if this constant is _already_ defined in the backward pass
// block, we do not need to duplicate and move it because
// it already won't be part of the capture set
if (inBlock(input->node(), move_to_this_block))
continue;
Node* lifted_constant = graph.createClone(input->node(), err);
move_to_this_block->prependNode(lifted_constant);
GRAPH_DEBUG(
"Lifting constant ",
input->debugName(),
" from GradOf's block and adding ",
lifted_constant->output()->debugName(),
" to the backprop block");
node->replaceInputWith(input, lifted_constant->output());
}
for (Block* sub : node->blocks()) {
liftConstants(sub, move_to_this_block);
}
}
static void liftConstants(Block* block, Block* move_to_this_block) {
for (Node* node : block->nodes()) {
liftConstants(node, move_to_this_block);
}
liftConstants(block->return_node(), move_to_this_block);
}
// we need to fold aten::_size_if_not_equal at the differentiation time
// while we know the shapes of aten::_size_if_not_equal's arguments
// Otherwise, they will become inputs to a reverse Graph, and we will
// lose this information and we don't profile Scalars, or Lists yet.
static void foldSizeIfNotEqual(Block* node);
static void foldSizeIfNotEqual(Node* node) {
for (Value* input : node->inputs()) {
if (input->node()->kind() != aten::_size_if_not_equal) {
continue;
}
auto ptt_input =
input->node()->input(0)->node()->input()->type()->expect<TensorType>();
auto ptt_output =
input->node()->input(1)->node()->input()->type()->expect<TensorType>();
auto input_size = ptt_input->sizes().concrete_sizes();
auto output_size = ptt_output->sizes().concrete_sizes();
if (!input_size || !output_size) {
continue;
}
// insert in front of _grad_sum_to_size
WithInsertPoint guard(node);
IValue ival{};
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Value* size;
if (input_size != output_size) {
size = node->owningGraph()->insertConstant(*input_size);
} else {
size = node->owningGraph()->insertConstant(IValue());
}
node->replaceInputWith(input, size);
}
for (auto ib : node->blocks()) {
foldSizeIfNotEqual(ib);
}
}
// we need to fold aten::_size_if_not_equal at the differentiation time
// while we know the shapes of aten::_size_if_not_equal's arguments
// Otherwise, they will become inputs to a reverse Graph, and we will
// lose this information and we don't profile Scalars, or Lists yet.
static void foldSizeIfNotEqual(Block* reverse_block) {
for (auto n : reverse_block->nodes()) {
foldSizeIfNotEqual(n);
}
foldSizeIfNotEqual(reverse_block->return_node());
}
static void deduplicateSizeCaptures(
Gradient& grad_desc,
ReverseDetails& rev_info) {
Block* primal_block = grad_desc.f->block();
const auto usedOnlyInReverse = [primal_block](Value* v) {
const auto& uses = v->uses();
return std::all_of(uses.begin(), uses.end(), [primal_block](const Use& u) {
return u.user->owningBlock() != primal_block;
});
};
auto captures = getReverseCaptures(grad_desc);
value_set capture_set(captures.begin(), captures.end());
for (Value* capture : captures) {
Node* node = capture->node();
if (!node->matches("aten::size(Tensor self) -> int[]")) {
continue;
}
if (usedOnlyInReverse(capture) && capture_set.count(node->input())) {
WithInsertPoint insert_guard{*rev_info.reverse_block->nodes().begin()};
auto* size =
node->input()->owningGraph()->insert(aten::size, {node->input()});
GRAPH_DEBUG(
"deduplicateSizeCaptures: Replacing ",
capture->debugName(),
" with ",
size->debugName());
capture->replaceAllUsesWith(size);
node->destroy();
}
}
}
static void eliminateDeadCode(ReverseDetails& rev_info) {
// addReverseInline has to call gradientForNode if *any* of the inputs
// require grad, but it will emit vjps for *all* inputs. Use DCE to remove
// unnecessary nodes. Additionally, requires_grad() on intermediates is an
// overapproximation of the real state, so we might have emitted some
// gradients, only to realize that they were unnecessary once we reach a
// point that doesn't require grad.
// Of course, we need to filter out corresponding entries of grad_map, because
// we don't want to accidentally access freed pointers later.
std::function<void(const std::unordered_set<const Value*>&)> cb =
[&](const std::unordered_set<const Value*>& live_values) {
std::vector<Value*> to_erase;
for (auto& entry : rev_info.grad_map) {
if (!live_values.count(entry.second)) {
to_erase.push_back(entry.first);
}
}
for (Value* v : to_erase) {
GRAPH_DEBUG(
"Erasing unused value ", v->debugName(), " from grad_map");
rev_info.grad_map.erase(v);
}
};
EliminateDeadCode(rev_info.reverse_block, std::move(cb));
}
static void Optimize(Gradient& grad_desc, ReverseDetails& rev_info) {
// TODO: we are sometimes emitting expressions like
// _grad_sum_to_size(_grad_sum_so_size(x, s1), s2), which are equivalent to
// _grad_sum_to_size(x, s2), and could save us some
// captures, but I'm not 100% sure how to optimize this at this stage, since
// we don't know which GradOf blocks will be stitched together to form the
// derivative. I guess a smart analysis could implement this, but I didn't
// have time before the 1.0 release, so I put this only as a peephole
// optimization.
liftConstants(rev_info.reverse_block, rev_info.reverse_block);
// TODO: see if this pass can be replaced with peephole pass
foldSizeIfNotEqual(rev_info.reverse_block);
// We generally add a lot of aten::size calls (for derivatives of broadcasting
// operators), and they often end up duplicated, and would get captured
// multiple times. Make sure we deduplicate them before lifting.
EliminateCommonSubexpression(grad_desc.f);
deduplicateSizeCaptures(grad_desc, rev_info);
eliminateDeadCode(rev_info);
}
// Takes a grad_desc.f returned from `addReverseInline` and splits off the
// reverse_block into its own graph, storing it in df.
// All intermediates needed in the second stage are added to
// outputs of f, and taken as inputs in df. For a more
// detailed description see Note [Gradient graphs] in autodiff.h.
// This function also initializes the fields in grad_desc that were undefined
// after `addReverseInline` (and extends `df_input_vjps` with vjps for captured
// temporaries).
static void lambdaLiftReverse(Gradient& grad_desc, ReverseDetails& rev_info) {
auto& graph = *grad_desc.f;
auto reverse_block = rev_info.reverse_block;
// --------------------------------------------------------------------------
// 1. Find values of f that need to be captured.
// --------------------------------------------------------------------------
// First, we need to find all values that are produced in f,
// and used in df. They will need to be added as inputs of the df
// and some of them may also need to be appended as outputs of f if
// they are not already an input or an output of f
// Invariant: topo sorted
value_list reverse_captures = getReverseCaptures(grad_desc);
// --------------------------------------------------------------------------
// 2. Prepare input/outputs lists for f and df
// --------------------------------------------------------------------------
// It's simple to construct primal_inputs/reverse_outputs,
// but primal_outputs/reverse_inputs are much more subtle.
// Here's a summary of how they are supposed to look like:
//
// Primal outputs:
// [original outputs], [temporaries]
//
// Reverse inputs:
// [output vjps (aka grad_outputs)], [temporary vjps]
// [captured primal values, in topological order],
// -- Construct primal_outputs, df_input_captures, f_real_outputs ----
grad_desc.f_real_outputs = graph.outputs().size();
std::unordered_map<Value*, size_t> orig_primal_outputs_idx;
std::unordered_map<Value*, size_t> orig_primal_inputs_idx;
// NOTE: we use emplace to avoid replacing an existing index if an output is
// repeated
for (size_t i = 0, num_outputs = graph.outputs().size(); i < num_outputs; ++i)
orig_primal_outputs_idx.emplace(graph.outputs()[i], i);
for (size_t i = 0, num_inputs = graph.inputs().size(); i < num_inputs; ++i)
orig_primal_inputs_idx[graph.inputs()[i]] = i;
// NB: reverse_captures are already deduplicated, and in topo order
for (Value* capture_val : reverse_captures) {
// If it's already an output we don't have to add anything,
// but register the fact that it needs to be captured.
if (orig_primal_outputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_outputs.push_back(
orig_primal_outputs_idx[capture_val]);
// If it's an input, we could add it as an output but in fact it's
// more efficient to use a special kind of capture.
} else if (orig_primal_inputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_inputs.push_back(
orig_primal_inputs_idx.at(capture_val));
// Otherwise it's just a regular intermediate value that we need to add as
// an output
} else {
// we need to create a new temporary output for this capture because it
// wasn't availiable.
auto out_index = graph.registerOutput(capture_val);
GRAPH_DEBUG(
"Capturing a temporary ",
capture_val->debugName(),
" as ",
graph.outputs()[out_index]->debugName(),
" for forward graph");
grad_desc.df_input_captured_outputs.emplace_back(
graph.outputs().size() - 1);
}
}
// -- Add VJPs for temporaries, adjust df_input_vjps -------------------------
// NB [possible optimization]: use the newly added vjp input as soon as the
// first vjp for that value is generated, to reduce the lifespan of this input
// (currently we add it to the final vjp after all adds).
for (size_t i = grad_desc.f_real_outputs; i < graph.outputs().size(); ++i) {
Value* tmp = graph.outputs().at(i);
// Add VJP inputs only for intermediates that actually required grad.
// Note that we check the contents of the grad_map instead of
// tmp->requires_grad(), because it's actually a more faithful source.
// tmp->requires_grad() is really an overapproximation (i.e. it can have
// false positives), while the gradients we will emit for this value can get
// DCE-d in the optimization pass (because it has no influence on the real
// f's outputs that we differentiate).
if (rev_info.grad_map.count(tmp) == 0)
continue;
Value* tmp_vjp_in = reverse_block->addInput()->setType(tmp->type());
Value* tmp_vjp_prev = rev_info.grad_map.at(tmp);
// This is quite weird because we can't first make a sum and then replace
// all uses of tmp_vjp_prev (that would replace its use in the sum too!), so
// we create an incorrect sum that doesn't use prev vjp, replace uses, and
// fix the sum.
Value* new_vjp = createAutogradAdd(tmp_vjp_in, tmp_vjp_in);
if (tmp_vjp_prev->node()->kind() == prim::Param) {
// can't move a node after a block param node
new_vjp->node()->moveBefore(
*tmp_vjp_prev->node()->owningBlock()->nodes().begin());
} else {
new_vjp->node()->moveAfter(tmp_vjp_prev->node());
}
tmp_vjp_prev->replaceAllUsesWith(new_vjp);
new_vjp->node()->replaceInput(1, tmp_vjp_prev);
GRAPH_DEBUG("grad_map[", tmp->debugName(), "] = ", *new_vjp->node());
grad_desc.df_input_vjps.emplace_back(i);
}
// add the captures as formal arguments to the reverse_block
// afterward inputs: [output vjps][temporary vjps][captures]
// construct a map from captured 'value' to the index in the input list
// used to extract this block into its own function
std::unordered_map<Value*, size_t> capture_to_formal_index;
const auto& add_capture = [&](Value* captured) {
capture_to_formal_index[captured] = reverse_block->inputs().size();
auto new_input = reverse_block->addInput()->copyMetadata(captured);
GRAPH_DEBUG(
"Capturing ",
captured->debugName(),
" as ",
new_input->debugName(),
" for an embedded backward block");
};
for (auto& offset : grad_desc.df_input_captured_inputs)
add_capture(graph.inputs()[offset]);
for (auto& offset : grad_desc.df_input_captured_outputs)
add_capture(graph.outputs()[offset]);
grad_desc.df = std::make_shared<Graph>();
grad_desc.df->block()->cloneFrom(reverse_block, [&](Value* v) {
return grad_desc.df->inputs()[capture_to_formal_index.at(v)];
});
GRAPH_DUMP(" forward graph: ", &graph);
GRAPH_DEBUG(" backward graph: ", *(reverse_block->owningNode()));
// reverse_node was just to hold onto reverse_block in a debuggable way
// we can remove it now.
reverse_block->owningNode()->destroy();
}
void packReturnValuesIntoTuple(const std::shared_ptr<Graph>& graph) {
auto returnNode = graph->block()->return_node();
WithInsertPoint wip(returnNode);
auto tuple = graph->insertNode(graph->createTuple(returnNode->inputs()));
returnNode->removeAllInputs();
returnNode->addInput(tuple->output());
}
Gradient differentiate(std::shared_ptr<Graph>& graph) {
Gradient grad_desc;
// Take ownership of the graph
TORCH_CHECK(
graph.use_count() == 1,
"differentiate will mutate and destroy the graph, so it requires "
"graph.use_count() == 1, but found %d",
graph.use_count());
std::swap(graph, grad_desc.f);
// XXX: Take care when handling outputs - they can be duplicated!
GRAPH_DUMP("grad_desc.f: ", grad_desc.f);
WithInsertPoint guard(grad_desc.f->block());
// Fills in df_input_vjps and df_output_vjps
auto rev_info = addReverseInline(grad_desc);
Optimize(grad_desc, rev_info);
// Clean up old nodes which has been replaced by forward graphs in torchscript
EliminateDeadCode(grad_desc.f->block());
// Fills in f, df, f_real_outputs, df_input_captures,
// modifies df_input_vjps (new vjps are added for temporaries)
lambdaLiftReverse(grad_desc, rev_info);
packReturnValuesIntoTuple(grad_desc.df);
// we have created a differentiable forward graph
// which will be run with tensors that have their gradients detached,
// so profiled types will have outdated requires_grad=True, update the
// requires_grad property
UpdateDifferentiableGraphRequiresGrad(grad_desc.f, false);
return grad_desc;
}
} // namespace jit
} // namespace torch
|