1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
#include <torch/csrc/jit/runtime/profiling_graph_executor_impl.h>
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/add_if_then_else.h>
#include <torch/csrc/jit/passes/bailout_graph.h>
#include <torch/csrc/jit/passes/batch_mm.h>
#include <torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h>
#include <torch/csrc/jit/passes/check_strict_fusion.h>
#include <torch/csrc/jit/passes/clear_profiling.h>
#include <torch/csrc/jit/passes/clear_undefinedness.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/guard_elimination.h>
#include <torch/csrc/jit/passes/inline_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/inplace_check.h>
#include <torch/csrc/jit/passes/insert_guards.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_grad_of.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/pass_manager.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/requires_grad_analysis.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/update_differentiable_graph_requires_grad.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <mutex>
C10_DEFINE_bool(
torch_jit_enable_new_executor,
true,
"If this flag is set to false TorchScript will be using the legacy/original executor");
C10_DEFINE_bool(
torch_jit_disable_warning_prints,
false,
"Disables warning.warn prints in TorchScript graph");
C10_DEFINE_bool(
torch_jit_static_then_dynamic,
false,
"fuse on two static compilations then 10 dynamic");
C10_DEFINE_bool(
torch_jit_always_dynamic,
false,
"fuse on 12 dynamic compilations");
constexpr size_t kDefaultNumProfiledRuns = 1;
constexpr size_t kDefaultBailoutDepth = 20;
C10_DEFINE_int64(
torch_jit_num_profiled_runs,
kDefaultNumProfiledRuns,
"Number of profiling runs");
C10_DEFINE_int64(
torch_jit_bailout_depth,
kDefaultBailoutDepth,
"Number of re-specializations");
namespace torch {
namespace jit {
#if defined(C10_MOBILE)
static std::atomic<bool> executor_mode{true};
static std::atomic<bool> profiling_mode{false};
#else
static std::atomic<bool> executor_mode{true};
static std::atomic<bool> profiling_mode{true};
#endif
static std::mutex fusion_strategy_lock;
FusionStrategy getInitialStrategy() {
if (FLAGS_torch_jit_always_dynamic) {
return {{FusionBehavior::DYNAMIC, 12}};
}
FusionStrategy mixed = {
{FusionBehavior::STATIC, 2}, {FusionBehavior::DYNAMIC, 10}};
if (FLAGS_torch_jit_static_then_dynamic) {
return mixed;
}
// TODO remove ifdef
#ifdef FBCODE_CAFFE2
return {{FusionBehavior::STATIC, 20}};
#endif
return mixed;
}
// defer initial value so that we can load in gflags
static c10::optional<FusionStrategy> fusion_strategy = c10::nullopt;
FusionStrategy getFusionStrategy() {
std::lock_guard<std::mutex> guard(fusion_strategy_lock);
if (fusion_strategy == c10::nullopt) {
fusion_strategy = getInitialStrategy();
}
return *fusion_strategy;
}
FusionStrategy setFusionStrategy(FusionStrategy& strategy) {
std::lock_guard<std::mutex> guard(fusion_strategy_lock);
if (fusion_strategy == c10::nullopt) {
fusion_strategy = getInitialStrategy();
}
FusionStrategy old_strategy = *fusion_strategy;
fusion_strategy = strategy;
return old_strategy;
}
static std::atomic<size_t> num_profiled_runs{kDefaultNumProfiledRuns};
std::atomic<bool>& getProfilingMode() {
return profiling_mode;
}
std::atomic<bool>& getExecutorMode() {
return executor_mode;
}
std::atomic<size_t>& getNumProfiledRuns() {
// Initialize num_profiled_runs from command-line flag.
static const size_t init = []() {
return num_profiled_runs = FLAGS_torch_jit_num_profiled_runs;
}();
(void)init; // Silence clang-tidy.
return num_profiled_runs;
}
size_t getBailoutDepth() {
// Initialize bailout_depth from command-line flag.
size_t depth = 0;
for (const auto& pair : getFusionStrategy()) {
depth += pair.second;
}
return depth;
}
static bool needsGradientInProfilingMode(Block* b) {
for (auto n : b->nodes()) {
if (n->kind() == prim::BailOut) {
auto ptt = n->output()->type()->expect<TensorType>();
if (ptt->requiresGrad() && *ptt->requiresGrad()) {
return true;
}
}
if (n->kind() == prim::profile) {
auto type = n->ty(attr::profiled_type)->expect<TensorType>();
if (type->requiresGrad() && *type->requiresGrad()) {
return true;
}
}
for (auto ib : n->blocks()) {
if (needsGradientInProfilingMode(ib)) {
return true;
}
}
}
return false;
}
// `prim::RequiresGradCheck` guarantees that requires_grad properties
// of input tensors will match the profiled, otherwise a fallback path
// will be triggered. This allow us to prune off gradients in backward
// graph for inputs that don't need gradients. We transfer requires_grad
// properties from inputs to the `prim::DifferentiableGraph` onto inputs to the
// differentiable graph. Autodiff will inspect these properties and prune
// off gradients that aren't required
// `requires_grad` properties from `dnode->outputs()` will also be transferred
static C10_UNUSED void setRequiresGradOnDiffGraph(Node* dnode) {
auto gi = dnode->g(attr::Subgraph)->inputs();
for (size_t i = 0; i < dnode->inputs().size(); i++) {
if (auto ty = dnode->input(i)->type()->cast<TensorType>()) {
auto gi_ty = gi[i]->type()->expect<TensorType>();
gi[i]->setType(gi_ty->withRequiresGrad(ty->requires_grad()));
GRAPH_DEBUG(
"Setting ",
*gi_ty->withRequiresGrad(ty->requires_grad()),
" on ",
gi[i],
" ",
gi[i]->debugName());
}
}
// We also need to put requires_grad on outputs within subgraph, so autodiff
// can set df_input_vjps and DifferentiableGraphOp can set `requires_grad=`
// properly
auto go = dnode->g(attr::Subgraph)->outputs();
auto set_requires_grad = [](const TensorTypePtr& t, Value* val) -> bool {
if (t && t->requiresGrad().has_value()) {
GRAPH_DEBUG("setting type ", *t);
val->setType(t);
return true;
}
return false;
};
for (const auto i : c10::irange(go.size())) {
auto ty = go[i]->type()->cast<TensorType>();
if (ty) {
auto n = go[i]->node();
auto dno = dnode->outputs().at(i);
for (auto dno_use : dno->uses()) {
GRAPH_DEBUG("found user of ", i, " as ", *dno_use.user);
if (n->kind() == prim::profile) {
if (set_requires_grad(
n->ty(attr::profiled_type)->expect<TensorType>(), go[i])) {
break;
}
} else if (dno_use.user->kind() == prim::profile) {
if (set_requires_grad(
dno_use.user->ty(attr::profiled_type)->expect<TensorType>(),
go[i])) {
break;
}
} else if (dno_use.user->kind() == prim::DifferentiableGraph) {
Value* o =
dno_use.user->g(attr::Subgraph)->inputs().at(dno_use.offset);
// Is it safe to not check other uses, because we are inside a
// DifferentiableGraph?
auto nn = o->uses().at(0).user;
if (nn->kind() == prim::profile) {
if (set_requires_grad(
nn->ty(attr::profiled_type)->expect<TensorType>(), go[i])) {
break;
}
}
}
}
}
}
}
bool guardDifferentiableGraph(Node* dnode) {
auto gi = dnode->g(attr::Subgraph)->inputs();
bool all_inputs_seen = true;
for (const auto i : c10::irange(gi.size())) {
auto ty = gi[i]->type()->cast<TensorType>();
if (ty) {
auto n = gi[i]->uses().at(0).user;
auto dni = dnode->inputs().at(i);
GRAPH_DEBUG("found first user of ", i, " as ", *n);
if (n->kind() == prim::profile) {
GRAPH_DEBUG(
"setting input ", i, " to type ", *n->ty(attr::profiled_type));
dni->setType(n->ty(attr::profiled_type));
} else if (dni->node()->kind() == prim::DifferentiableGraph) {
// The profiling node might have been absorbed in a preceding
// differentiable graph and thus not (not ideal for fusing either),
// see TestAutodiffSubgraphSlicing.test_does_not_create_cycles.
// Alternatives to this special casing could be specializing the types
// before autodiff or duplicating profile nodes for autodiff outputs
// but that should be done while creating subgraphs and would be
// a mess.
// XXX TODO: revisit the alternatives
Value* o = dni->node()->g(attr::Subgraph)->outputs().at(dni->offset());
if (o->node()->kind() == prim::profile) {
dni->setType(o->node()->ty(attr::profiled_type));
}
}
// Propagate the requires_grad property to inputs
// A RequiresGrad check gets added (insertTypeGuard, below)
// so requires_grad is guaranteed to match for the inputs;
// but other properties are not guaranteed to match
auto requires_grad = dni->type()->expectRef<TensorType>().requiresGrad();
gi[i]->setType(ty->withRequiresGrad(requires_grad));
// we check if the optional is defined
all_inputs_seen &= (dni->type()->cast<TensorType>() != TensorType::get());
}
}
if (all_inputs_seen) {
// we may have seen both true and false for requires_grad. In this case
// we guard with true here and the other case is in the fallback. This
// will give us trouble when we get "alternating patterns" of gradients
// of two inputs, but so it is. An alternative could be to look into
// the individual requires_grad seen in the profiling record.
insertTypeGuard(
dnode,
[](const TensorTypePtr& t) {
return TensorType::get()->withRequiresGrad(
t->requiresGrad().value_or(true));
},
prim::RequiresGradCheck);
return true;
} else {
// we inline the differentiable graph as a fallback
// ideally we would set this up for re-profiling
UpdateDifferentiableGraphRequiresGrad(
dnode->g(attr::Subgraph), c10::nullopt);
SubgraphUtils::unmergeSubgraph(dnode);
return false;
}
}
void runNooptPassPipeline(std::shared_ptr<Graph>& graph) {
GRAPH_DEBUG("Before Inliner (beginning of runNooptPassPipeline)\n", *graph);
Inline(*graph);
GRAPH_DEBUG("After Inline, Before NoGrad\n", *graph);
LowerGradOf(*graph);
GRAPH_DEBUG("After LowerGradOf, before RemoveExpands\n", *graph);
RemoveExpands(graph);
GRAPH_DEBUG("After RemoveExpands, before CanonicalizeOps\n", *graph);
CanonicalizeOps(graph);
GRAPH_DEBUG("After CanonicalizeOps, before EliminateDeadCode\n", *graph);
EliminateDeadCode(graph);
GRAPH_DEBUG(
"After EliminateDeadCode (end of runNooptPassPipeline)\n", *graph);
}
void runPreAutodiffPassPipeline(std::shared_ptr<Graph>& graph) {
GRAPH_DEBUG(
"Before InsertGuards (beginning of runPreAutodiffPassPipeline)\n",
*graph);
LowerGradOf(*graph);
GRAPH_DEBUG("After LowerGradOf, before specializeAutogradZero\n", *graph);
specializeAutogradZero(graph);
GRAPH_DEBUG("After specializeAutogradZero\n", *graph);
// runRequiredPasses
{
RemoveExpands(graph);
GRAPH_DEBUG("After RemoveExpands, before CanonicalizeOps\n", *graph);
CanonicalizeOps(graph);
GRAPH_DEBUG("After CanonicalizeOps, before EliminateDeadCode\n", *graph);
EliminateDeadCode(graph);
GRAPH_DEBUG("After EliminateDeadCode", *graph);
}
PeepholeOptimize(graph);
GRAPH_DEBUG("After PeepholeOptimize, before ConstantPropagation\n", *graph);
ConstantPropagation(graph);
// runOptimization:
{
EliminateDeadCode(graph);
GRAPH_DEBUG(
"After EliminateDeadCode, before EliminateCommonSubexpression\n",
*graph);
EliminateCommonSubexpression(graph);
GRAPH_DEBUG(
"After EliminateCommonSubexpression, before PeepholeOptimize\n",
*graph);
PeepholeOptimize(graph);
GRAPH_DEBUG("After PeepholeOptimize, before ConstantPropagation\n", *graph);
ConstantPropagation(graph);
GRAPH_DEBUG("After ConstantPropagation, before ConstantPooling\n", *graph);
ConstantPooling(graph);
GRAPH_DEBUG("After ConstantPooling, before UnrollLoops\n", *graph);
UnrollLoops(graph);
GRAPH_DEBUG("After UnrollLoops, before RemoveListMutation\n", *graph);
// run again with unrolled loops
RemoveListMutation(graph);
GRAPH_DEBUG("After RemoveListMutation, before PeepholeOptimize\n", *graph);
PeepholeOptimize(graph);
GRAPH_DEBUG("After PeepholeOptimize, before ConstantPropagation\n", *graph);
ConstantPropagation(graph);
GRAPH_DEBUG(
"After ConstantPropagation, before EliminateCommonSubexpression\n",
*graph);
EliminateCommonSubexpression(graph);
GRAPH_DEBUG(
"After EliminateCommonSubexpression, before CheckInplace\n", *graph);
CheckInplace(graph);
}
GRAPH_DEBUG(
"After CheckInplace (end of runPreAutodiffPassPipeline)\n", *graph);
}
FusionBehavior ProfilingGraphExecutorImpl::getCurrentBehavior(
size_t remaining_depth) {
size_t curr_depth = 0;
for (int i = static_cast<int>(fusion_strategy_.size()) - 1; i >= 0; i--) {
curr_depth += fusion_strategy_[i].second;
if (remaining_depth <= curr_depth) {
return fusion_strategy_[i].first;
}
}
// should never get here
TORCH_WARN("Stratgy changed mid-invocation, NYI");
return FusionBehavior::STATIC;
}
void ProfilingGraphExecutorImpl::runNoGradOptimizations(
std::shared_ptr<Graph>& graph,
size_t remaining_bailout_depth) {
GRAPH_DEBUG(
"After customPostPasses (beginning of runNoGradOptimizations)\n", *graph);
// runNondiffOptimization
{
// Run custom passes that different backends can register.
for (const auto& passPair : getCustomPrePasses()) {
passPair.first(graph);
}
GRAPH_DEBUG("After customPrePasses, before LowerSimpleTuples\n", *graph);
// TupleConstruct / TupleUnpack pairs can still be present at this point
// and must be removed for fusion.
LowerSimpleTuples(graph);
GRAPH_DEBUG("After LowerSimpleTuples\n", *graph);
if (tensorExprFuserEnabled()) {
// Remove prim::profile nodes and embed the profile info directly in the
// IR in value types. We're doing such transformation as optimizations
// that try to merge/fuse nodes in the graph (e.g. BatchMM and GraphFuser)
// work worse in the presence of intermittent prim::profile nodes.
// Optimizations relying on the type info are also responsible for
// inserting proper type checks. Once we're done with these optimizations
// we will wipe the tensor type information from the IR, so that it's not
// accidentally used by any other pass.
RemoveProfileNodesAndSpecializeTypes(graph);
GRAPH_DEBUG(
"After RemoveProfileNodesAndSpecializeTypes, before BatchMM\n",
*graph);
// Rewrite subgraphs with many MMs into expressions that batch them.
BatchMM(graph);
GRAPH_DEBUG("After BatchMM, before Fusion\n", *graph);
auto min_size = getFusionGroupInlining() ? 2 : 1;
bool dyn_shapes = getCurrentBehavior(remaining_bailout_depth) ==
FusionBehavior::DYNAMIC;
FuseTensorExprs(graph, min_size, /* composed op*/ false, dyn_shapes);
GRAPH_DEBUG("After Fusion, before customPostPasses\n", *graph);
} else {
// Rewrite subgraphs with many MMs into expressions that batch them.
BatchMM(graph);
GRAPH_DEBUG("After BatchMM, before Fusion\n", *graph);
FuseGraph(graph, true);
GRAPH_DEBUG("After Fusion, before customPostPasses\n", *graph);
}
// Run custom post-fusion passes
// e.g. NVFuser
for (const auto& passPair : getCustomPostPasses()) {
passPair.first(graph);
}
GRAPH_DEBUG(
"After customPostPasses, before RemoveTensorTypeSpecializations \n",
*graph);
RemoveTensorTypeSpecializations(graph);
GRAPH_DEBUG("After RemoveTensorTypeSpecializations\n", *graph);
}
GRAPH_DEBUG("End of runNoGradOptimizations\n");
}
void ProfilingGraphExecutorImpl::runProfilingOptimizations(
std::shared_ptr<Graph>& copy,
size_t remaining_bailout_depth) {
GRAPH_DEBUG("Before runProfilingOptimizations:\n", *copy);
if (!getGraphExecutorOptimize()) {
runNooptPassPipeline(copy);
return;
}
runPreAutodiffPassPipeline(copy);
if (needsGradientInProfilingMode(copy->block())) {
auto diff_nodes = CreateAutodiffSubgraphs(
copy,
getAutodiffSubgraphInlining() ? autodiffSubgraphNodeThreshold : 1);
GRAPH_DEBUG("After CreateAutodiffSubgraphs\n", *copy);
size_t idx = 0;
for (Node* dnode : diff_nodes) {
GRAPH_DEBUG("Optimizing diff node ", idx, " in ", *copy);
if (!guardDifferentiableGraph(dnode)) {
// if we cannot guard (because of inputs without profiling information),
// we re-inline the subgraph and remove the differentiable node
GRAPH_DEBUG("Could not guardDifferentiableGraph ", idx, " in ", *copy);
idx++;
continue;
}
GRAPH_DEBUG("After guardDifferentiableGraph:\n", *copy);
auto diff_graph = std::move(dnode->g(attr::Subgraph));
Gradient gradient = differentiate(diff_graph);
RemoveTensorTypeSpecializations(gradient.f);
ProfilingRecord::removeProfilingNodes(gradient.f->block());
GRAPH_DEBUG("Forward graph:\n", *(gradient.f));
GRAPH_DEBUG("Backward graph:\n", *(gradient.df));
// just like inside autograd.Functions, the forward of a differentiable
// graph is essentially in a torch.no_grad context.
UpdateDifferentiableGraphRequiresGrad(gradient.f, false);
GRAPH_DEBUG("After UpdateDifferentiableGraphRequiresGrad ", *gradient.f);
// replaces fallback graphs inserted by TE Fuser
replaceFallbackGraphWithFallbackFunction(gradient.f->block());
packGradient(gradient, dnode);
GRAPH_DEBUG("Finished optimizing diff node ", idx++);
}
InlineAutodiffSubgraphs(
copy,
getAutodiffSubgraphInlining() ? autodiffSubgraphNodeThreshold : 1);
replaceFallbackGraphWithFallbackFunction(copy->block());
ProfilingRecord::removeProfilingNodes(copy->block());
GRAPH_DEBUG(
"After InlineAutodiffSubgraphs and Removing Profiling Nodes\n", *copy);
} else {
runNoGradOptimizations(copy, remaining_bailout_depth);
}
EliminateDeadCode(copy);
GRAPH_DEBUG("After runProfilingOptimizations:\n", *copy);
}
void ProfilingGraphExecutorImpl::runProfilingInsensitiveOptimizations(
std::shared_ptr<Graph>& graph) {
GRAPH_DEBUG(
"Before inlining (beginning of runProfilingInsensitiveOptimizations)\n",
*graph);
// TODO: maybe this can go later in pipeline / directly in autodiff forward
// creation
if (getGraphExecutorOptimize()) {
Inline(*graph);
}
GRAPH_DEBUG("After inlining, before ClearProfilingInformation\n", *graph);
ClearProfilingInformation(graph);
GRAPH_DEBUG("After ClearProfilingInformation, before LowerGradOf\n", *graph);
LowerGradOf(*graph);
GRAPH_DEBUG("After LowerGradOf, before ClearUndefinedness\n", *graph);
// clear any residual undefinedness
// as double backward graph inputs'
// may carry over undefinedness
// from profiled backward graphs
ClearUndefinedness(graph);
// runRequiredPasses
{
GRAPH_DEBUG("After ClearUndefinedness, before RemoveExpands\n", *graph);
RemoveExpands(graph);
GRAPH_DEBUG("After RemoveExpands, before CanonicalizeOps\n", *graph);
CanonicalizeOps(graph);
GRAPH_DEBUG("After CanonicalizeOps, before EliminateDeadCode\n", *graph);
EliminateDeadCode(graph);
}
if (!getGraphExecutorOptimize()) {
GRAPH_DEBUG(
"After EliminateDeadCode (end of runProfilingInsensitiveOptimizations)\n",
*graph);
return;
}
GRAPH_DEBUG("After EliminateDeadCode, before DecomposeOps\n", *graph);
DecomposeOps(graph);
GRAPH_DEBUG("After DecomposeOps, before ConstantPropagation\n", *graph);
ConstantPropagation(graph);
GRAPH_DEBUG("After ConstantPropagation, before EliminateDeadCode\n", *graph);
EliminateDeadCode(graph);
GRAPH_DEBUG(
"After EliminateDeadCode, before EliminateCommonSubexpression\n", *graph);
EliminateCommonSubexpression(graph);
GRAPH_DEBUG(
"After EliminateCommonSubexpression, before ConstantPooling\n", *graph);
ConstantPooling(graph);
GRAPH_DEBUG("After ConstantPooling, before PeepholeOptimize\n", *graph);
PeepholeOptimize(graph);
GRAPH_DEBUG("After PeepholeOptimize, before EliminateDeadCode\n", *graph);
EliminateDeadCode(graph);
GRAPH_DEBUG("After EliminateDeadCode, before LowerSimpleTuples\n", *graph);
LowerSimpleTuples(graph);
GRAPH_DEBUG("After LowerSimpleTuples, before CheckInplace\n", *graph);
CheckInplace(graph);
GRAPH_DEBUG(
"After CheckInplace (end of runProfilingInsensitiveOptimizations)\n",
*graph);
}
ProfilingGraphExecutorImpl::ProfilingGraphExecutorImpl(
const std::shared_ptr<Graph>& graph,
std::string function_name)
: GraphExecutorImplBase(graph, std::move(function_name)) {
fusion_strategy_ = getFusionStrategy();
}
size_t ProfilingGraphExecutorImpl::getInstantiatedBailoutDepth() {
// Initialize bailout_depth from command-line flag.
size_t depth = 0;
for (const auto& pair : fusion_strategy_) {
depth += pair.second;
}
return depth;
}
const ExecutionPlan& ProfilingGraphExecutorImpl::getOptimizedPlanFor(
Stack& stack,
c10::optional<size_t> remaining_bailout_depth) {
GRAPH_DEBUG("Running ProfilingGraphExecutorImpl ", this);
// TODO: instantiate simple executor when getProfilingMode() is false
// no opt mode
if (!getGraphExecutorOptimize() || !getProfilingMode()) {
if (!fallback_plan_) {
auto copy = graph->copy();
GRAPH_DEBUG(
"Before LowerGradOf (beginning of runNooptPassPipeline)\n", *graph);
LowerGradOf(*copy);
GRAPH_DEBUG("After LowerGradOf, before RemoveExpands\n", *graph);
RemoveExpands(copy);
fallback_plan_ = ExecutionPlan(copy, function_name_);
GRAPH_DUMP("NoOpt Graph: ", copy);
}
return *fallback_plan_;
}
// if tensorExprFuserEnabled() returns true we need to persist the very first
// time ProfilingGraphExecutorImpl is called, so we can update it correctly
// for fallback functions in ProfilingGraphExecutorImpl Else,
// getPlanFor(remaining_bailout_depth) is corrected and persisted by the Code
// object in interpreter.
if (!remaining_bailout_depth_.has_value() || !tensorExprFuserEnabled()) {
if (remaining_bailout_depth.has_value()) {
remaining_bailout_depth_ = *remaining_bailout_depth;
} else {
remaining_bailout_depth_ = getInstantiatedBailoutDepth();
}
}
// simple executor
if (*remaining_bailout_depth_ == 0) {
auto copy = graph->copy();
runProfilingInsensitiveOptimizations(copy);
GRAPH_DUMP("Optimized SimpleExecutor Graph: ", copy);
optimized_plan_ = ExecutionPlan(copy, function_name_);
return *optimized_plan_;
}
// if a profiling graph hasn't been created yet
if (!pr_) {
auto copy = graph->copy();
runProfilingInsensitiveOptimizations(copy);
pr_ = ProfilingRecord::instrumentGraph(copy);
// `InsertProfileNodesForSpecializeAutogradZero` profiles a definition vs a
// use and it doesn't expect any profile nodes between a graph input and its
// consumer, `aten::_grad_sum_to_size`. This means we need to run it first,
// before any other pass that could insert `prim::iprofile_value` node on
// `aten::_grad_sum_to_size` input.
InsertProfileNodesForSpecializeAutogradZero(pr_.get());
// `InsertProfileNodesForCUDAFuser` inserts profile node for non-tensor
// value
#ifndef C10_MOBILE
if (torch::jit::fuser::cuda::isEnabled()) {
torch::jit::fuser::cuda::InsertProfileNodesForCUDAFuser(pr_.get());
}
#endif
GRAPH_DUMP("Profiled Graph: ", pr_->graph());
profiling_plan_ = ExecutionPlan(pr_->graph(), function_name_);
// fall-through
}
// profile until a graph is ready
if (!pr_->ready()) {
return *profiling_plan_;
}
auto copy = pr_->graph()->copy();
ProfilingRecord::removeProfileCounter(copy->block());
runProfilingOptimizations(copy, *remaining_bailout_depth_);
// replaces a fallback graph inserted by
// specialize_autogradzero if one exists
replaceFallbackGraphWithFallbackFunction(copy->block());
runFinalOptimizations(copy);
CheckStrictFusion(copy);
GRAPH_DUMP("Optimized Graph: ", copy);
optimized_plan_ = ExecutionPlan(copy, function_name_);
return *optimized_plan_;
}
const ExecutionPlan& ProfilingGraphExecutorImpl::getPlanFor(
Stack& stack,
c10::optional<size_t> remaining_bailout_depth) {
std::lock_guard<std::mutex> lock(compile_mutex);
// IMPORTANT: This is a hot path of calling a torchscript function. Try not to
// add any code above this.
if (optimized_plan_) {
return *optimized_plan_;
}
// if depth is not set, use
return getOptimizedPlanFor(stack, remaining_bailout_depth);
}
GraphExecutorState ProfilingGraphExecutorImpl::getDebugState() {
GraphExecutorState state;
TORCH_INTERNAL_ASSERT(optimized_plan_);
auto opt_plan = *optimized_plan_;
state.execution_plans.emplace(ArgumentSpec{0, 0}, opt_plan);
return state;
}
Node* insertFallbackFunctionCall(
Graph* graph,
GraphFunction* func,
ArrayRef<Value*> inputs) {
auto tuple_type = func->graph()->return_node()->input(0)->type();
Value* fn_constant = graph->insertNode(graph->create(prim::Constant))
->s_(attr::name, func->name())
->i_(Symbol::attr("fallback"), 1)
->output()
->setType(FunctionType::create(func));
std::vector<Value*> func_call_inputs = {fn_constant};
func_call_inputs.insert(func_call_inputs.end(), inputs.begin(), inputs.end());
Value* result =
graph->insertNode(graph->create(prim::CallFunction, func_call_inputs))
->output()
->setType(tuple_type);
auto fun_unpack_tuple = graph->insertNode(graph->createTupleUnpack(result));
return fun_unpack_tuple;
}
GraphFunction* createFallbackPathFunction(
Block* b,
const std::string& function_name) {
auto value_map = [](Value* v) { return v; };
auto graph = std::make_shared<Graph>();
graph->block()->cloneFrom(b, value_map);
auto otypes = c10::fmap(
graph->return_node()->inputs(), [](Value* v) { return v->type(); });
// a GraphFunction call only have one output, so all the outputs
// need to be packed into a tuple
auto tuple_type = TupleType::create(otypes);
auto return_tuple = graph->createTuple(graph->return_node()->inputs());
graph->appendNode(return_tuple);
for (int i = static_cast<int>(graph->outputs().size()) - 1; i >= 0; i--) {
graph->eraseOutput(i);
}
graph->registerOutput(return_tuple->output());
return new GraphFunction(function_name, graph, nullptr);
}
void ProfilingGraphExecutorImpl::replaceFallbackGraphWithFallbackFunction(
Block* b) {
Stack s;
for (auto it = b->nodes().begin(); it != b->nodes().end();) {
if (it->kind() == prim::FallbackGraph) {
auto fallback_func = createFallbackPathFunction(
it->g(attr::Subgraph)->block(), "fallback_function");
TORCH_INTERNAL_ASSERT(*remaining_bailout_depth_ > 0);
GRAPH_DEBUG(
"getPlanFor for", getHeader(*it), " ", *remaining_bailout_depth_);
fallback_func->get_executor().getPlanFor(
s, *remaining_bailout_depth_ - 1);
fallback_functions_.emplace_back(fallback_func);
WithInsertPoint wip{*it};
auto function_call = insertFallbackFunctionCall(
b->owningGraph(), fallback_func, it->inputs());
for (const auto i : c10::irange(function_call->outputs().size())) {
it->output(i)->replaceAllUsesWith(function_call->output(i));
}
it.destroyCurrent();
} else {
for (Block* ib : it->blocks()) {
replaceFallbackGraphWithFallbackFunction(ib);
}
it++;
}
}
}
void ProfilingGraphExecutorImpl::runFinalOptimizations(
std::shared_ptr<Graph>& graph) {
AddIfThenElseOp(graph);
}
} // namespace jit
} // namespace torch
|