File: profiling_record.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (358 lines) | stat: -rw-r--r-- 9,967 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#include <torch/csrc/jit/runtime/profiling_record.h>

#include <ATen/core/symbol.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/interface.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_profiling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/interpreter.h>
namespace torch {
namespace jit {

namespace {

class ProfileRegistry {
 public:
  static ProfileRegistry* getRegistry() {
    static ProfileRegistry profile_registry_;
    return &profile_registry_;
  }

  void registerProfileNode(const std::function<bool(const Node*)>& func) {
    std::lock_guard<std::mutex> guard(mutex_);
    registry_funcs_.push_back(func);
  }

  bool shouldProfileNode(const Node* node) {
    std::lock_guard<std::mutex> guard(mutex_);
    // to guard differentiable graphs, we want profiling information
    // (in particular requires_grad) for nodes handled by autodiff
    if (isDifferentiable(node)) {
      return true;
    }
    for (const auto& func : registry_funcs_) {
      if (func(node)) {
        return true;
      }
    }
    return false;
  }

 private:
  std::vector<std::function<bool(const Node*)>> registry_funcs_;
  std::mutex mutex_;
};

} // namespace

void RegisterProfilingNode(const std::function<bool(const Node*)>& func) {
  ProfileRegistry::getRegistry()->registerProfileNode(func);
}

bool ShapeSymbolTable::bindSymbolicShapes(
    at::IntArrayRef new_sizes,
    const c10::SymbolicShape& sym_shapes) {
  if (!sym_shapes.rank().has_value()) {
    return true;
  }
  if (*sym_shapes.rank() != new_sizes.size()) {
    return false;
  }
  for (const auto i : c10::irange(new_sizes.size())) {
    auto symbol = (*sym_shapes.sizes())[i];
    if (!symbol.is_static()) {
      continue;
    }

    if (!isBound(symbol)) {
      assign(symbol, new_sizes[i]);
      continue;
    }

    if (getValue(symbol) != new_sizes[i]) {
      return false;
    }
  }
  return true;
}

ProfilingRecord::ProfilingRecord(std::shared_ptr<Graph> g)
    : profiled_graph_(std::move(g)), profiling_count_(getNumProfiledRuns()) {}

ProfileOp* ProfilingRecord::createProfileNode(
    const std::function<void(Stack&)>& fp,
    at::ArrayRef<Value*> inputs) {
  auto pn = new ProfileOp(profiled_graph_.get(), fp);

  for (auto in : inputs) {
    pn->addInput(in);
  }
  return pn;
}

ProfileIValueOp* ProfilingRecord::createProfileIValueNode(Value* in_val) {
  auto pn = new ProfileIValueOp(this->profiled_graph_.get(), nullptr);
  pn->addInput(in_val);
  auto pno = pn->addOutput();
  pno->setType(in_val->type());
  return pn;
}

ProfileIValueOp* ProfilingRecord::createProfileIValueNode(
    ArrayRef<Value*> inputs) {
  auto pn = new ProfileIValueOp(this->profiled_graph_.get(), nullptr);
  for (auto inp : inputs) {
    pn->addInput(inp);
    auto pno = pn->addOutput();
    pno->setType(inp->type());
  }
  return pn;
}

namespace {
bool isOptionalTensorType(const TypePtr& type) {
  if (type->kind() != c10::TypeKind::OptionalType) {
    return false;
  }
  const auto& kind = type->expectRef<OptionalType>().getElementType()->kind();
  return kind == c10::TypeKind::TensorType;
}
} // namespace

// Inserts profiling nodes.
//
// The prim::profile node profiles Tensor and Optional[Tensor].
//
// It stores two fields:
// 1. attr::seen_none, an integer, which is initially 0 and is set to 1 if the
// profiled value is ever `None`
// 2. attr::profiled_type, which is the most specific Tensor type that matches
// all the non-null inputs observed during profiling.
void ProfilingRecord::insertShapeProfile(
    Node* n,
    size_t offset,
    const TypePtr& input_type) {
  Value* i = n->input(offset);
  auto pn = createProfileNode(nullptr, {i});
  auto pno = pn->addOutput();
  pn->ty_(attr::profiled_type, TensorType::get());
  pn->i_(attr::seen_none, 0);
  if (isOptionalTensorType(input_type)) {
    pno->setType(OptionalType::create(TensorType::get()));
  } else if (input_type->kind() == c10::TypeKind::TensorType) {
    pno->setType(TensorType::get());
  } else {
    TORCH_INTERNAL_ASSERT(
        false,
        "Trying to profile an unsupported type (neither Tensor or Optional[Tensor]): ",
        input_type->str());
  }
  std::function<void(Stack&)> shape_profiler = [this, pn, pno](Stack& stack) {
    int64_t frame_id = 0;
    pop(stack, frame_id);
    IValue v;
    pop(stack, v);

    TensorTypePtr new_tensor_type = nullptr;
    if (v.isTensor()) {
      auto& t = v.toTensor();
      new_tensor_type = tensorTypeInCurrentExecutionContext(t);
    }

    if (v.isTensor() || v.isNone()) {
      std::lock_guard<std::mutex> lock(this->mutex_);
      if (profiling_count_ > 0) {
        GRAPH_DEBUG(
            "In run ",
            frame_id,
            " annotating %",
            pno->debugName(),
            " with ",
            *new_tensor_type);

        if (new_tensor_type != nullptr) {
          if (pn->hasSeenTensor()) {
            const auto& existing_tensor_type =
                pn->ty(attr::profiled_type)->expectRef<TensorType>();
            GRAPH_DEBUG(
                "Existing type for %",
                pno->debugName(),
                ": ",
                existing_tensor_type);
            auto merged_type = new_tensor_type->merge(existing_tensor_type);
            GRAPH_DEBUG(
                "Merged type for %", pno->debugName(), ": ", *merged_type);
            pn->ty_(attr::profiled_type, std::move(merged_type));
          } else {
            pn->setHasSeenTensor(true);
            pn->ty_(attr::profiled_type, std::move(new_tensor_type));
          }
        }
        if (v.isNone()) {
          pn->i_(attr::seen_none, 1);
        }
      }
    }
    // passing t through
    push(stack, v);
  };

  pn->setCallback(shape_profiler);
  pn->insertBefore(n);
  n->replaceInput(offset, pn->output());
}

bool needsProfiledInputs(Node* n) {
  if (tensorexpr::isSupported(n) ||
#ifndef C10_MOBILE
      (fuser::cuda::isEnabled() && fuser::cuda::profileNode(n))
#else
      false
#endif
  ) {
    return true;
  }

  switch (n->kind()) {
    // specialize_autogradzero
    case prim::AutogradAdd:
    case prim::AutogradAnyNonZero:
    case prim::AutogradAllNonZero:
    case prim::AutogradAllZero:
    case prim::AutogradZero:
    // peephole
    case aten::dim:
    case aten::size:
    case aten::expand:
    case prim::dtype:
    case prim::device:
    case prim::is_cuda:
    case aten::is_floating_point:
    case aten::type_as:
    // TODO: hack to make `test_lstm_gates_permutations_cuda`
    // pass.
    case aten::t:
    case aten::mm:
      return true;
    default:
      return ProfileRegistry::getRegistry()->shouldProfileNode(n);
  }
}

bool needsProfiledOutput(Node* n) {
  if (tensorexpr::isSupported(n) ||
#ifndef C10_MOBILE
      (fuser::cuda::isEnabled() && fuser::cuda::profileNode(n))
#else
      false
#endif
  ) {
    return true;
  }

  switch (n->kind()) {
    case prim::AutogradAdd:
    case prim::AutogradZero:
      return true;
    default:
      return ProfileRegistry::getRegistry()->shouldProfileNode(n);
  }
}

void ProfilingRecord::removeProfileCounter(Block* b) {
  for (auto it = b->nodes().rbegin(); it != b->nodes().rend();) {
    auto n = *it;
    if (n->kind() == prim::profile && n->inputs().size() == 0) {
      it.destroyCurrent();
      // there is only one counter node
      return;
    } else {
      it++;
    }
  }
}

void ProfilingRecord::instrumentBlock(Block* block) {
  for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
    auto n = *it;
    for (const auto offset : c10::irange(n->inputs().size())) {
      auto i = n->input(offset);
      if ((needsProfiledInputs(n) || needsProfiledOutput(i->node()))) {
        if (i->type()->kind() == c10::TypeKind::TensorType ||
            isOptionalTensorType(i->type())) {
          insertShapeProfile(n, offset, i->type());
        }
      }
    }

    for (auto b : n->blocks()) {
      instrumentBlock(b);
    }
  }

  // inserting profile nodes on block outputs
  // allows us to eliminate more guards as
  // the use of a guard is now in the same
  // block as opposed to being separated from
  // the definition by block boundaries
  for (size_t offset = 0; offset < block->return_node()->inputs().size();
       offset++) {
    auto i = block->return_node()->input(offset);
    if (i->type()->isSubtypeOf(*TensorType::get()) ||
        isOptionalTensorType(i->type())) {
      insertShapeProfile(block->return_node(), offset, i->type());
    }
  }
}

void ProfilingRecord::removeProfilingNodes(Block* b) {
  for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
    if (it->kind() == prim::profile || it->kind() == prim::profile_ivalue) {
      it->output()->replaceAllUsesWith(it->input());
      it.destroyCurrent();
    } else {
      for (Block* ib : it->blocks()) {
        removeProfilingNodes(ib);
      }
    }
  }
}

bool ProfilingRecord::ready() const {
  std::lock_guard<std::mutex> lock(this->mutex_);
  return profiling_count_ == 0;
}

std::unique_ptr<ProfilingRecord> ProfilingRecord::instrumentGraph(
    const std::shared_ptr<Graph>& graph) {
  auto new_g = graph->copy();

  auto pr = std::unique_ptr<ProfilingRecord>(new ProfilingRecord(new_g));
  auto raw_pr = pr.get();
  unprofileGraphInputs(new_g);
  unprofileBlock(new_g->block());
  pr->instrumentBlock(new_g->block());

  std::function<void(Stack&)> counter = [raw_pr](Stack& stack) {
    int64_t frame_id = 0;
    pop(stack, frame_id);

    std::lock_guard<std::mutex> lock(raw_pr->mutex_);

    if (raw_pr->profiling_count_ > 0) {
      raw_pr->profiling_count_--;
    }
  };

  auto pop = pr->createProfileNode(counter, {});
  new_g->appendNode(pop);
  GRAPH_DUMP("Instrumented Graph: ", new_g);
  return pr;
}

} // namespace jit
} // namespace torch