1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <ATen/core/symbol.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/interface.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_profiling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/interpreter.h>
namespace torch {
namespace jit {
namespace {
class ProfileRegistry {
public:
static ProfileRegistry* getRegistry() {
static ProfileRegistry profile_registry_;
return &profile_registry_;
}
void registerProfileNode(const std::function<bool(const Node*)>& func) {
std::lock_guard<std::mutex> guard(mutex_);
registry_funcs_.push_back(func);
}
bool shouldProfileNode(const Node* node) {
std::lock_guard<std::mutex> guard(mutex_);
// to guard differentiable graphs, we want profiling information
// (in particular requires_grad) for nodes handled by autodiff
if (isDifferentiable(node)) {
return true;
}
for (const auto& func : registry_funcs_) {
if (func(node)) {
return true;
}
}
return false;
}
private:
std::vector<std::function<bool(const Node*)>> registry_funcs_;
std::mutex mutex_;
};
} // namespace
void RegisterProfilingNode(const std::function<bool(const Node*)>& func) {
ProfileRegistry::getRegistry()->registerProfileNode(func);
}
bool ShapeSymbolTable::bindSymbolicShapes(
at::IntArrayRef new_sizes,
const c10::SymbolicShape& sym_shapes) {
if (!sym_shapes.rank().has_value()) {
return true;
}
if (*sym_shapes.rank() != new_sizes.size()) {
return false;
}
for (const auto i : c10::irange(new_sizes.size())) {
auto symbol = (*sym_shapes.sizes())[i];
if (!symbol.is_static()) {
continue;
}
if (!isBound(symbol)) {
assign(symbol, new_sizes[i]);
continue;
}
if (getValue(symbol) != new_sizes[i]) {
return false;
}
}
return true;
}
ProfilingRecord::ProfilingRecord(std::shared_ptr<Graph> g)
: profiled_graph_(std::move(g)), profiling_count_(getNumProfiledRuns()) {}
ProfileOp* ProfilingRecord::createProfileNode(
const std::function<void(Stack&)>& fp,
at::ArrayRef<Value*> inputs) {
auto pn = new ProfileOp(profiled_graph_.get(), fp);
for (auto in : inputs) {
pn->addInput(in);
}
return pn;
}
ProfileIValueOp* ProfilingRecord::createProfileIValueNode(Value* in_val) {
auto pn = new ProfileIValueOp(this->profiled_graph_.get(), nullptr);
pn->addInput(in_val);
auto pno = pn->addOutput();
pno->setType(in_val->type());
return pn;
}
ProfileIValueOp* ProfilingRecord::createProfileIValueNode(
ArrayRef<Value*> inputs) {
auto pn = new ProfileIValueOp(this->profiled_graph_.get(), nullptr);
for (auto inp : inputs) {
pn->addInput(inp);
auto pno = pn->addOutput();
pno->setType(inp->type());
}
return pn;
}
namespace {
bool isOptionalTensorType(const TypePtr& type) {
if (type->kind() != c10::TypeKind::OptionalType) {
return false;
}
const auto& kind = type->expectRef<OptionalType>().getElementType()->kind();
return kind == c10::TypeKind::TensorType;
}
} // namespace
// Inserts profiling nodes.
//
// The prim::profile node profiles Tensor and Optional[Tensor].
//
// It stores two fields:
// 1. attr::seen_none, an integer, which is initially 0 and is set to 1 if the
// profiled value is ever `None`
// 2. attr::profiled_type, which is the most specific Tensor type that matches
// all the non-null inputs observed during profiling.
void ProfilingRecord::insertShapeProfile(
Node* n,
size_t offset,
const TypePtr& input_type) {
Value* i = n->input(offset);
auto pn = createProfileNode(nullptr, {i});
auto pno = pn->addOutput();
pn->ty_(attr::profiled_type, TensorType::get());
pn->i_(attr::seen_none, 0);
if (isOptionalTensorType(input_type)) {
pno->setType(OptionalType::create(TensorType::get()));
} else if (input_type->kind() == c10::TypeKind::TensorType) {
pno->setType(TensorType::get());
} else {
TORCH_INTERNAL_ASSERT(
false,
"Trying to profile an unsupported type (neither Tensor or Optional[Tensor]): ",
input_type->str());
}
std::function<void(Stack&)> shape_profiler = [this, pn, pno](Stack& stack) {
int64_t frame_id = 0;
pop(stack, frame_id);
IValue v;
pop(stack, v);
TensorTypePtr new_tensor_type = nullptr;
if (v.isTensor()) {
auto& t = v.toTensor();
new_tensor_type = tensorTypeInCurrentExecutionContext(t);
}
if (v.isTensor() || v.isNone()) {
std::lock_guard<std::mutex> lock(this->mutex_);
if (profiling_count_ > 0) {
GRAPH_DEBUG(
"In run ",
frame_id,
" annotating %",
pno->debugName(),
" with ",
*new_tensor_type);
if (new_tensor_type != nullptr) {
if (pn->hasSeenTensor()) {
const auto& existing_tensor_type =
pn->ty(attr::profiled_type)->expectRef<TensorType>();
GRAPH_DEBUG(
"Existing type for %",
pno->debugName(),
": ",
existing_tensor_type);
auto merged_type = new_tensor_type->merge(existing_tensor_type);
GRAPH_DEBUG(
"Merged type for %", pno->debugName(), ": ", *merged_type);
pn->ty_(attr::profiled_type, std::move(merged_type));
} else {
pn->setHasSeenTensor(true);
pn->ty_(attr::profiled_type, std::move(new_tensor_type));
}
}
if (v.isNone()) {
pn->i_(attr::seen_none, 1);
}
}
}
// passing t through
push(stack, v);
};
pn->setCallback(shape_profiler);
pn->insertBefore(n);
n->replaceInput(offset, pn->output());
}
bool needsProfiledInputs(Node* n) {
if (tensorexpr::isSupported(n) ||
#ifndef C10_MOBILE
(fuser::cuda::isEnabled() && fuser::cuda::profileNode(n))
#else
false
#endif
) {
return true;
}
switch (n->kind()) {
// specialize_autogradzero
case prim::AutogradAdd:
case prim::AutogradAnyNonZero:
case prim::AutogradAllNonZero:
case prim::AutogradAllZero:
case prim::AutogradZero:
// peephole
case aten::dim:
case aten::size:
case aten::expand:
case prim::dtype:
case prim::device:
case prim::is_cuda:
case aten::is_floating_point:
case aten::type_as:
// TODO: hack to make `test_lstm_gates_permutations_cuda`
// pass.
case aten::t:
case aten::mm:
return true;
default:
return ProfileRegistry::getRegistry()->shouldProfileNode(n);
}
}
bool needsProfiledOutput(Node* n) {
if (tensorexpr::isSupported(n) ||
#ifndef C10_MOBILE
(fuser::cuda::isEnabled() && fuser::cuda::profileNode(n))
#else
false
#endif
) {
return true;
}
switch (n->kind()) {
case prim::AutogradAdd:
case prim::AutogradZero:
return true;
default:
return ProfileRegistry::getRegistry()->shouldProfileNode(n);
}
}
void ProfilingRecord::removeProfileCounter(Block* b) {
for (auto it = b->nodes().rbegin(); it != b->nodes().rend();) {
auto n = *it;
if (n->kind() == prim::profile && n->inputs().size() == 0) {
it.destroyCurrent();
// there is only one counter node
return;
} else {
it++;
}
}
}
void ProfilingRecord::instrumentBlock(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
auto n = *it;
for (const auto offset : c10::irange(n->inputs().size())) {
auto i = n->input(offset);
if ((needsProfiledInputs(n) || needsProfiledOutput(i->node()))) {
if (i->type()->kind() == c10::TypeKind::TensorType ||
isOptionalTensorType(i->type())) {
insertShapeProfile(n, offset, i->type());
}
}
}
for (auto b : n->blocks()) {
instrumentBlock(b);
}
}
// inserting profile nodes on block outputs
// allows us to eliminate more guards as
// the use of a guard is now in the same
// block as opposed to being separated from
// the definition by block boundaries
for (size_t offset = 0; offset < block->return_node()->inputs().size();
offset++) {
auto i = block->return_node()->input(offset);
if (i->type()->isSubtypeOf(*TensorType::get()) ||
isOptionalTensorType(i->type())) {
insertShapeProfile(block->return_node(), offset, i->type());
}
}
}
void ProfilingRecord::removeProfilingNodes(Block* b) {
for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
if (it->kind() == prim::profile || it->kind() == prim::profile_ivalue) {
it->output()->replaceAllUsesWith(it->input());
it.destroyCurrent();
} else {
for (Block* ib : it->blocks()) {
removeProfilingNodes(ib);
}
}
}
}
bool ProfilingRecord::ready() const {
std::lock_guard<std::mutex> lock(this->mutex_);
return profiling_count_ == 0;
}
std::unique_ptr<ProfilingRecord> ProfilingRecord::instrumentGraph(
const std::shared_ptr<Graph>& graph) {
auto new_g = graph->copy();
auto pr = std::unique_ptr<ProfilingRecord>(new ProfilingRecord(new_g));
auto raw_pr = pr.get();
unprofileGraphInputs(new_g);
unprofileBlock(new_g->block());
pr->instrumentBlock(new_g->block());
std::function<void(Stack&)> counter = [raw_pr](Stack& stack) {
int64_t frame_id = 0;
pop(stack, frame_id);
std::lock_guard<std::mutex> lock(raw_pr->mutex_);
if (raw_pr->profiling_count_ > 0) {
raw_pr->profiling_count_--;
}
};
auto pop = pr->createProfileNode(counter, {});
new_g->appendNode(pop);
GRAPH_DUMP("Instrumented Graph: ", new_g);
return pr;
}
} // namespace jit
} // namespace torch
|