File: impl.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2190 lines) | stat: -rw-r--r-- 73,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
#include <torch/csrc/jit/runtime/static/impl.h>

#include <ATen/MemoryOverlap.h>
#include <ATen/core/symbol.h>
#include <ATen/record_function.h>
#include <c10/core/CPUAllocator.h>
#include <c10/core/InferenceMode.h>
#include <c10/macros/Macros.h>
#include <c10/util/MaybeOwned.h>
#include <c10/util/irange.h>
#include <caffe2/core/scope_guard.h>
#include <caffe2/core/timer.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/add_if_then_else.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/eliminate_no_ops.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/variadic_ops.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/csrc/jit/runtime/static/fusion.h>
#include <torch/csrc/jit/runtime/static/memory_planner.h>
#include <torch/csrc/jit/runtime/static/ops.h>
#include <torch/csrc/jit/runtime/static/passes.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <algorithm>

#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/clone_native.h>
#endif

#include <iterator>
#include <limits>
#include <sstream>
#include <stdexcept>

#ifdef FBCODE_CAFFE2
#include <common/logging/logging.h>
#include <folly/dynamic.h>
#include <folly/json.h>
#endif

// used in test only
C10_DEFINE_bool(
    static_runtime_disable_debug_memory_overlap_check,
    false,
    "If true, disable the memory overlap check in debug mode in ProcessedNode::run()");

namespace torch {
namespace jit {

namespace {

bool allArgsAreTensors(Node* node) {
  const auto& inputs = node->inputs();
  return std::all_of(inputs.begin(), inputs.end(), [](Value* value) {
    return value->type()->kind() == TypeKind::TensorType;
  });
}

} // namespace

// A manually curated set of ops that are disallowed in static runtime.
// These are rarely-used ops. Disallowing them typically eliminates
// corner cases in graph optimizations, allowing for more aggressive
// optimizations and better performance.
bool isUnsupportedOp(Node* node) {
  auto kind = node->kind();
  if (kind != aten::__is__ && kind != aten::__isnot__) {
    return false;
  }

  // We can't support aten::__is__ (and __isnot__) with tensor arguments.
  // Consider the following graph:
  // def forward(x):
  //     y = x.detach()
  //     return x is y
  // We have a graph optimization that removes the `detach` node since it is
  // a no-op during inference. But this affects the result - we get true
  // instead of false! There are many other graph passes affected by this
  // issue.
  return allArgsAreTensors(node);
}

// graph must be frozen or canEnableStaticRuntime would return false
// if there's any prim::CallMethod op left in the graph
bool canEnableStaticRuntime(const std::shared_ptr<torch::jit::Graph>& graph) {
  // check for sub-blocks
  bool can_support = true;
  for (auto* node : graph->block()->nodes()) {
    const auto kind = node->kind();
    if (kind == prim::Constant) {
      continue;
    }
    // check if can get op from Node
    const Operator* op = node->maybeOperator();
    if (isUnsupportedOp(node) || (!op && !nativeOpIsRegistered(kind))) {
      can_support = false;
      LOG(WARNING) << "Found unsupported op: " << kind.toQualString();
    }
  }
  return can_support;
}

namespace {

auto sr_metadata_registerer = torch::class_<StaticRuntimeMetadata>(
    "StaticRuntime",
    "StaticRuntimeMetadata");

} // namespace

std::string dumpValueSet(
    const FastSet<const Value*>& value_set,
    const char* set_name) {
  std::ostringstream oss;
  oss << set_name << ": {";
  for (const auto* val : value_set) {
    oss << "%" << val->debugName() << ", ";
  }
  oss << "}";
  return oss.str();
}

namespace {

void OptimizeGraph(
    std::shared_ptr<torch::jit::Graph>& graph,
    const StaticModuleOptions& opts,
    std::vector<IValue> sample_inputs) {
  GRAPH_DUMP("Before optimizations: ", graph);
  if (opts.enable_tensorexpr_fusion) {
    if (sample_inputs.empty()) {
      VLOG(1) << "Cannot perform TensorExpr fusion - sample_inputs is empty";
    } else {
      VLOG(1) << "Performing TensorExpr fusion";
      performTensorExprFusion(graph, std::move(sample_inputs));
    }
  }
  Inline(*graph);
  ConstantPropagation(graph);
  Canonicalize(graph);
  ConstantPropagation(graph);
  RemoveTensorMutation(graph);
  ConstantPropagation(graph);
  EliminateNoOpSlice(graph);
  EliminateDeadCode(graph);
  FuseInferenceOpsForSparseNN(graph);
  UseVariadicCat(graph);
  UseVariadicStack(graph);
  EliminateTrivialEquallySplit(graph);
  EliminateExtraPermuteOps(graph);
  PrepackWeights(graph);

  if (opts.enable_out_variant) {
    UseVariadicOp(
        graph,
        fromQualString("fb::sigrid_transforms_torch_bind"),
        fromQualString("fb::variadic_sigrid_transforms_torch_bind"));
    UseVariadicOp(
        graph,
        fromQualString("torcharrow::inference_wrapper_run_flat"),
        fromQualString("torcharrow::variadic_inference_wrapper_run_flat"));
    // These fused ops only have out variants - we can't do the fusion when
    // out variants are disabled.
    FuseSignLog1P(graph);
    FuseClampNaNToNum(graph);

#ifdef FBCODE_CAFFE2
    if (opts.use_copy_variants && !opts.enable_tensorexpr_fusion) {
      ReplaceWithCopy(graph);
    } else {
      ReplacePermuteWithCopy(graph);
    }
    if (opts.use_maybe_copy_variants && !opts.enable_tensorexpr_fusion) {
      ReplaceWithMaybeCopy(graph);
    }
    FuseListUnpack(graph);
    RemoveUnnecessaryOutputs(graph);
#endif
  }

  ConstantPropagation(graph);
  RemoveImmutableInputDictLookups(graph);
  UseVariadicTupleUnpack(graph);
  UseVariadicGroupedAccessor(graph);
  EliminateNoOps(
      graph, /* custom_ops */ {fromQualString("fb::scale_gradient")});
  AddIfThenElseOp(graph);
  UseSplitAndSqueeze(graph);
  UseInPlaceGetRealInputsFromOptionalInputsV2(graph);
  GRAPH_DUMP("Final graph after optimizations: ", graph);
}

bool IsSelfInGraphInput(std::shared_ptr<torch::jit::Graph>& graph) {
  return !graph->inputs().empty() && graph->inputs().at(0)->type()->is_module();
}

// remove unused input 0 from graph
bool removeSelfFromGraphInput(std::shared_ptr<torch::jit::Graph>& graph) {
  if (graph->inputs().at(0)->type()->is_module()) {
    if (graph->inputs().at(0)->hasUses()) {
      return false;
    }
    graph->eraseInput(0);
  }
  return true;
}

std::vector<Value*> valueVecFromFastSet(const FastSet<const Value*>& s) {
  std::vector<Value*> result;
  result.reserve(s.size());
  for (auto* v : s) {
    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
    result.emplace_back(const_cast<Value*>(v));
  }
  return result;
}

bool mayContainAlias(const AliasDb& db, const Value* v1, const Value* v2) {
  // AliasDb is not const-correct here, so we have to const_cast
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  return db.mayContainAlias(const_cast<Value*>(v1), const_cast<Value*>(v2));
}

bool mayContainAlias(
    const AliasDb& db,
    const Value* a,
    const FastSet<const Value*>& b) {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  return db.mayContainAlias(const_cast<Value*>(a), valueVecFromFastSet(b));
}

bool escapesScope(const AliasDb& db, const Value* a) {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  return db.escapesScope({const_cast<Value*>(a)});
}

void PrepareGraphForStaticModule(
    std::shared_ptr<torch::jit::Graph> graph,
    const StaticModuleOptions& opts,
    std::vector<IValue> sample_inputs) {
  TORCH_CHECK(canEnableStaticRuntime(graph));
  OptimizeGraph(graph, opts, std::move(sample_inputs));

  // Static runtime moves its outputs out of the runtime
  // by default. In some rare cases, this is not actually safe to
  // do - for example, if the value is a constant, static runtime
  // needs to hold onto a copy. Rather than adding special logic
  // to handle this rare case, we use this pass to detect it and
  // create an owned reference that can be safely moved out of the
  // runtime.
  CreateOwnedRefsForSpecialValues(*graph);

  // We assume that each sub-block has at least one output. If we
  // detect any that have 0, force the sub-block to return None.
  ForceNonEmptyOutputs(*graph);
}

std::pair<std::shared_ptr<Graph>, c10::optional<Module>> PrepareForStaticModule(
    const torch::jit::Module& m,
    bool is_frozen,
    const StaticModuleOptions& opts,
    std::vector<IValue> sample_inputs) {
  LOG(INFO) << "StaticModuleOptions: enable_out_variant "
            << opts.enable_out_variant << ", optimize_memory "
            << opts.optimize_memory << ", manage_output_tensors "
            << opts.manage_output_tensors << ", use_copy_variants "
            << opts.use_copy_variants << ", use_maybe_copy_variants "
            << opts.use_maybe_copy_variants << ", enable_tensorexpr_fusion "
            << opts.enable_tensorexpr_fusion;

  Module module = m.copy();
  if (!is_frozen) {
    module.eval();
    module = freeze_module(module);
  }

  Method method = module.get_method("forward");
  auto graph = module.get_method("forward").graph();

  if (!sample_inputs.empty() && IsSelfInGraphInput(graph)) {
    sample_inputs.insert(sample_inputs.begin(), m._ivalue());
  }
  PrepareGraphForStaticModule(graph, opts, std::move(sample_inputs));

  return std::make_pair(graph, module);
}

std::pair<std::shared_ptr<Graph>, c10::optional<Module>> PrepareForStaticModule(
    std::shared_ptr<torch::jit::Graph> graph,
    const StaticModuleOptions& opts,
    std::vector<IValue> sample_inputs) {
  PrepareGraphForStaticModule(graph, opts, std::move(sample_inputs));
  return std::make_pair(graph, c10::nullopt);
}

} // namespace

void ValueGroup::init(const Block& block, const AliasDb& db) {
  external_aliases_.clear();
  output_aliases_.clear();
  // Build `external_aliases` as we look through nodes forwardly from
  // the graph's inputs and add aliases of the inputs being created by the
  // nodes.
  external_aliases_.insert(block.inputs().begin(), block.inputs().end());
  for (const auto* node : block.nodes()) {
    if (node->kind() == prim::Constant) {
      for (const auto* output : node->outputs()) {
        external_aliases_.insert(output);
      }
    }
  }
  for (const auto* node : block.nodes()) {
    if (node->kind() == prim::Constant) {
      // Constants are already in `external_aliases`.
      continue;
    }
    for (const auto* v : node->outputs()) {
      if (escapesScope(db, v) || mayContainAlias(db, v, external_aliases_)) {
        external_aliases_.insert(v);
      }
    }
  }

  // Build `output_aliases` as we look through nodes reversely so that we can
  // start from the output values, and follow the flows backwardly from there.
  output_aliases_.insert(block.outputs().begin(), block.outputs().end());
  for (const auto* node : block.nodes().reverse()) {
    if (node->kind() == prim::Constant) {
      // Constants cannot create any aliases.
      continue;
    }
    for (const auto* v : node->outputs()) {
      if (mayContainAlias(db, v, output_aliases_)) {
        output_aliases_.insert(v);
      }
    }
  }
}

namespace {

bool isTensorList(const Value* value) {
  auto* type = value->type()->castRaw<ListType>();
  if (!type) {
    return false;
  }
  return type->getElementType()->kind() == c10::TypeKind::TensorType;
}

bool containTensorsOnly(at::ArrayRef<Value*> values) {
  // return true only if all outputs are tensors
  return std::all_of(values.begin(), values.end(), [](const Value* value) {
    return value->type()->kind() == c10::TypeKind::TensorType ||
        isTensorList(value);
  });
}

bool isPureFunction(const Node* node) {
  auto* schema = node->maybeSchema();
  return schema &&
      schema->aliasAnalysis() == c10::AliasAnalysisKind::PURE_FUNCTION;
}

} // namespace

ManagedTensorRanges::ManagedTensorRanges(
    Block& block,
    const AliasDb& alias_db,
    const FastSet<const Value*>& managed_tensor_values) {
  const std::vector<Node*> nodes(block.nodes().begin(), block.nodes().end());
  const FastSet<const Value*> graph_inputs(
      block.inputs().begin(), block.inputs().end());

  const auto num_nodes = nodes.size();
  for (const auto i : c10::irange(num_nodes)) {
    auto* node = nodes[i];
    for (auto* input : node->inputs()) {
      auto* lifetime = getLifetime(input);
      if (!lifetime) {
        continue;
      }
      DCHECK(lifetime->end <= i);
      lifetime->end = i;
    }
    for (auto* output : node->outputs()) {
      if (!alias_db.isMutableType(output)) {
        continue;
      }
      value_lifetimes_.emplace(output, Lifetime(i, i));
    }
  }
  for (auto* graph_output : block.outputs()) {
    auto* lifetime = getLifetime(graph_output);
    if (!lifetime) {
      continue;
    }
    lifetime->end = num_nodes;
  }

  // Handle aliases. Aliases may extend a Value*'s lifetime. If a node
  // has an input and output that may alias each other, set the input's
  // lifetime end to max(input.lifetime_end, output.lifetime_end). Iterate
  // backwards to handle chains of aliases.
  for (const auto* node : block.nodes().reverse()) {
    if (isPureFunction(node)) {
      // If the node is a pure function, it doesn't create any aliases,
      // so we can safely skip it.
      continue;
    }

    auto inputs = collectValuesWithTrackedLifetimes(node->inputs());
    auto outputs = collectValuesWithTrackedLifetimes(node->outputs());
    for (auto* input : inputs) {
      auto* input_lifetime = getLifetime(input);
      DCHECK(input_lifetime != nullptr);
      for (auto* output : outputs) {
        if (mayContainAlias(alias_db, input, output)) {
          auto* output_lifetime = getLifetime(output);
          DCHECK(output_lifetime != nullptr);
          input_lifetime->end =
              std::max(output_lifetime->end, input_lifetime->end);
        }
      }
    }
  }
  for (auto* managed_tensor : managed_tensor_values) {
    auto* lifetime = getLifetime(managed_tensor);
    DCHECK(lifetime && lifetime->end <= num_nodes);
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    Node* freeing_node;
    if (lifetime->end == num_nodes) {
      freeing_node = block.return_node();
    } else {
      freeing_node = nodes[lifetime->end];
    }
    node_to_newly_free_tensors_[freeing_node].emplace_back(managed_tensor);
  }
}

bool ManagedTensorRanges::nodeFreesManagedTensors(Node* node) const {
  auto it = node_to_newly_free_tensors_.find(node);
  return it != node_to_newly_free_tensors_.end() && !it->second.empty();
}

const std::vector<const Value*>& ManagedTensorRanges::
    availableTensorValuesAfterNode(Node* node) const {
  return node_to_newly_free_tensors_.at(node);
}

bool ManagedTensorRanges::lifetimesOverlap(const Value* v1, const Value* v2)
    const {
  const auto* v1_lifetime = getLifetime(v1);
  const auto* v2_lifetime = getLifetime(v2);
  if (!v1_lifetime || !v2_lifetime) {
    return false;
  }

  if (v1_lifetime->start < v2_lifetime->start) {
    return v1_lifetime->end >= v2_lifetime->start;
  }
  return v2_lifetime->end >= v1_lifetime->start;
}

const ManagedTensorRanges::Lifetime* ManagedTensorRanges::getLifetime(
    const Value* value) const {
  auto it = value_lifetimes_.find(value);
  if (it != value_lifetimes_.end()) {
    return &it->second;
  }
  return nullptr;
}

ManagedTensorRanges::Lifetime* ManagedTensorRanges::getLifetime(
    const Value* value) {
  // const_cast is safe here, this is just a way to avoid code duplication
  // between the const/non-const versions of getLifetime.

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  const auto* const_this = const_cast<const ManagedTensorRanges*>(this);

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  return const_cast<ManagedTensorRanges::Lifetime*>(
      const_this->getLifetime(value));
}

std::vector<const Value*> ManagedTensorRanges::
    collectValuesWithTrackedLifetimes(at::ArrayRef<const Value*> values) {
  std::vector<const Value*> mutable_values;
  mutable_values.reserve(values.size());
  std::copy_if(
      values.begin(),
      values.end(),
      std::back_inserter(mutable_values),
      [this](const Value* value) { return getLifetime(value) != nullptr; });
  return mutable_values;
}

StaticModule::StaticModule(
    std::shared_ptr<torch::jit::Graph> g,
    const StaticModuleOptions& opts,
    std::vector<IValue> sample_inputs)
    : StaticModule(
          PrepareForStaticModule(g->copy(), opts, std::move(sample_inputs)),
          opts) {}

StaticModule::StaticModule(
    const torch::jit::Module& m,
    bool is_frozen,
    const StaticModuleOptions& opts,
    std::vector<IValue> sample_inputs)
    : StaticModule(
          PrepareForStaticModule(m, is_frozen, opts, std::move(sample_inputs)),
          opts) {}

StaticModule::StaticModule(
    std::pair<std::shared_ptr<torch::jit::Graph>, c10::optional<Module>>
        graph_and_module,
    const StaticModuleOptions& opts)
    : opts_(opts),
      graph_(std::move(graph_and_module.first)),
      module_(std::move(graph_and_module.second)),
      num_inputs_(graph_->inputs().size()) {
  sr_metadata_ = c10::make_intrusive<jit::StaticRuntimeMetadata>(opts_);
  // recursively attach metadata to prim::fork nodes
  attachNodeMetadata(graph_->block());

  // check opt flags
  if (opts.manage_output_tensors) {
    TORCH_CHECK(
        opts_.enable_out_variant,
        "When manage_output_tensors is true, enable_out_variant must be set to true");
  }
  if (opts_.optimize_memory) {
    TORCH_CHECK(
        opts_.enable_out_variant,
        "When optimize_memory is true, enable_out_variant must be set to true");
  }

  // handle schema
  if (module_.has_value()) {
    Method method = module_->get_method("forward");
    schema_ = method.function().getSchema();
    const auto num_schema_args = schema_->arguments().size();
    DCHECK(num_schema_args > 0);
    if (removeSelfFromGraphInput(graph_)) {
      module_ = c10::nullopt;
      num_inputs_ = num_schema_args - 1;
    }
  }

  {
    size_t nodes_size = 0, constants_size = 0;
    for (Node* node : graph_->nodes()) {
      ++(node->kind() == prim::Constant ? constants_size : nodes_size);
    }

    constants_.reserve(constants_size);
    functions_.reserve(nodes_size);
  }

  // Create ProcessedFunction instances first to freeze their addresses to pass
  // to ProcessedNode.
  AliasDb alias_db(graph_, /*isFrozen=*/false);
  GRAPH_DEBUG("AliasDb: ", alias_db.toString());

  // Maps each Value* in the graph to its index in the values_ array that will
  // eventually be created by StaticRuntime.
  FastMap<const Value*, uint32_t> value_to_index;
  prepareFunctionsAndConstants(graph_->block(), alias_db, value_to_index);

  const auto constants_index_offset = 0;
  const auto values_index_offset = constants_index_offset + constants().size();
  value_buffer_size_ = values_index_offset;

  value_buffer_size_ +=
      prepareBlockInfo(graph_->block(), values_index_offset, value_to_index);

  prepareStaticNodeInfos(graph_->block(), value_to_index, alias_db);

  for (auto& block_and_info : block_infos_) {
    auto& block_info = block_and_info.second;
    block_info.prepare_for_memory_planner(alias_db, opts);
  }
}

size_t StaticModule::prepareBlockInfo(
    Block* block,
    const size_t start_idx,
    FastMap<const Value*, uint32_t>& value_to_index) {
  block_infos_.emplace(block, BlockInfo(start_idx, *block));

  const auto num_inputs = block->inputs().size();
  for (const auto i : c10::irange(num_inputs)) {
    value_to_index.emplace(block->inputs()[i], start_idx + i);
  }
  auto cur_idx = start_idx + num_inputs;

  for (auto* node : block->nodes()) {
    for (auto* sub_block : node->blocks()) {
      cur_idx += prepareBlockInfo(sub_block, cur_idx, value_to_index);
    }

    if (node->kind() == prim::Constant) {
      continue;
    }

    TORCH_CHECK(
        cur_idx < (1 << 16),
        "outputs offset in values table",
        cur_idx,
        " would overflow 2-byte index storage");

    const auto num_outputs = node->outputs().size();
    for (const auto i : c10::irange(num_outputs)) {
      value_to_index.emplace(node->outputs()[i], cur_idx + i);
    }
    cur_idx += num_outputs;
  }

  std::vector<uint16_t> output_indices;
  output_indices.reserve(block->outputs().size());
  for (auto* output : block->outputs()) {
    const auto output_idx = value_to_index.at(output);
    TORCH_CHECK(
        output_idx < (1 << 16),
        "outputs offset in values table",
        output_idx,
        " would overflow 2-byte index storage");
    output_indices.push_back(output_idx);
  }

  block_infos_.at(block).set_output_indices(std::move(output_indices));
  return cur_idx - start_idx;
}

void StaticModule::attachNodeMetadata(Block* block) {
  for (auto* node : block->nodes()) {
    if (node->kind() == prim::fork) {
      node->ival_(getStaticRuntimeMetadataSymbol(), IValue(sr_metadata_));
    }
    for (auto* sub_block : node->blocks()) {
      attachNodeMetadata(sub_block);
    }
  }
}

void StaticModule::prepareFunctionsAndConstants(
    Block* block,
    const AliasDb& alias_db,
    FastMap<const Value*, uint32_t>& value_to_index) {
  for (auto* node : block->nodes()) {
    for (auto* sub_block : node->blocks()) {
      prepareFunctionsAndConstants(sub_block, alias_db, value_to_index);
    }

    if (node->kind() == prim::Constant) {
      auto* v = node->output();
      TORCH_CHECK(v->type()->kind() != FunctionType::Kind);
      value_to_index.emplace(v, constants_.size());
      constants_.emplace_back(toIValue(v).value());
      continue;
    }

    // see [Check and correct bad schema alias info at runtime]
    bool check_outputs_for_overlap =
        !alias_db.mayContainAlias(node->inputs(), node->outputs()) &&
        containTensorsOnly(node->outputs());
    // new ProcessedFunction
    functions_.emplace_back(
        node, opts_.enable_out_variant, check_outputs_for_overlap);
  }
}

size_t StaticModule::prepareStaticNodeInfos(
    Block* block,
    const FastMap<const Value*, uint32_t>& value_to_index,
    const AliasDb& alias_db,
    size_t node_idx) {
  const auto node_start = node_idx;

  auto& block_info = block_infos_.at(block);
  std::vector<StaticNodeInfo> nodes;
  FastMap<Node*, bool> node_has_out_variant;

  for (auto* node : block->nodes()) {
    if (node->kind() == prim::Constant) {
      continue;
    }

    for (auto* sub_block : node->blocks()) {
      node_idx +=
          prepareStaticNodeInfos(sub_block, value_to_index, alias_db, node_idx);
    }
    ProcessedNodeInputs input_indices(node->inputs().size());
    for (const auto input_idx : c10::irange(node->inputs().size())) {
      auto* input = node->inputs()[input_idx];
      auto input_ivalue_idx = value_to_index.at(input);
      TORCH_CHECK(
          input_ivalue_idx < (1 << 16),
          "input index in values table ",
          input_ivalue_idx,
          " would overflow 2-byte index storage");
      input_indices[input_idx] = input_ivalue_idx;
    }

    ProcessedFunction* fn = &functions_[node_idx];

    // create a new ProcessedNode
    const auto node_output_idx = node->outputs().empty()
        // The index is unused if there are no outputs, so just create a
        // placeholder value.
        ? std::numeric_limits<uint16_t>::max()
        : value_to_index.at(node->output(0));
    nodes.emplace_back(node, fn, std::move(input_indices), node_output_idx);

    node_has_out_variant.emplace(node, nodes.back().has_out_variant());
    ++node_idx;
  }

  block_info.set_nodes(std::move(nodes), node_has_out_variant);
  block_info.init_value_group(alias_db);

  return node_idx - node_start;
}

void BlockInfo::set_nodes(
    std::vector<StaticNodeInfo> nodes,
    const FastMap<Node*, bool>& node_has_out_variant) {
  nodes_ = std::move(nodes);

  for (auto& node : nodes_) {
    if (node.num_outputs() == 1 &&
        isOptimizableContainerType(node.node(), node_has_out_variant)) {
      node_is_optimizable_container_type_.emplace(node.node());
    }
  }
}
void BlockInfo::prepare_for_memory_planner(
    const AliasDb& alias_db,
    const StaticModuleOptions& opts) {
  if (!opts.enable_out_variant) {
    return;
  }

  // Never manage graph outputs so that we can do std::move(output_ivalue).
  // This does not affect performance if the graph returns a collection object.
  FastSet<const Value*> graph_output_values(
      block_.outputs().begin(), block_.outputs().end());

  // collect register indices of outputs of ops with out variant
  for (StaticNodeInfo& pnode : nodes_) {
    if (!pnode.has_out_variant()) {
      continue;
    }
    auto outputs = pnode.node()->outputs();
    for (const auto i : c10::irange(outputs.size())) {
      const Value* out_v = outputs[i];
      // Types are stored in the underlying TorchScript IR
      bool is_tensor_type = out_v->type()->castRaw<TensorType>();
      if (opts.manage_output_tensors && is_tensor_type &&
          graph_output_values.find(out_v) == graph_output_values.end() &&
          value_group_.isOutputAlias(out_v)) {
        managed_output_tensor_values_.insert(out_v);
        continue;
      }
      if (value_group_.isAlwaysAlive(out_v)) {
        continue;
      }
      if (is_tensor_type) {
        managed_tensor_values_.insert(out_v);
      } else if (node_is_optimizable_container_type(pnode.node())) {
        // We "leak" certain container types because their allocations
        // take a long time
        leaked_values_.insert(out_v);
      }
    }
  }

  for (const Value* output : block_.outputs()) {
    managed_tensor_values_.erase(output);
  }
  GRAPH_DEBUG("managed_tensor_values: ", dumpValueSet(managed_tensor_values_));
  GRAPH_DEBUG(
      "managed_output_tensor_values_: ",
      dumpValueSet(managed_output_tensor_values_));

  managed_tensor_ranges_ =
      ManagedTensorRanges(block_, alias_db, managed_tensor_values_);
}

const StaticModuleOptions& StaticModule::opts() const {
  return opts_;
}

size_t StaticModule::num_outputs() const {
  return graph_->outputs().size();
}

size_t StaticModule::num_inputs() const {
  return num_inputs_;
}

StaticRuntime& StaticModule::runtime() {
  if (!cached_runtime_) {
    cached_runtime_ = std::make_unique<StaticRuntime>(*this);
  }
  return *cached_runtime_;
}

Node* StaticModule::findNodeWithKindForTesting(const std::string& kind) const {
  for (auto& block_and_info : block_infos_) {
    auto& block_info = block_and_info.second;
    for (auto& pnode : block_info.nodes()) {
      if (pnode.node()->kind().toQualString() == kind) {
        return pnode.node();
      }
    }
  }
  return nullptr;
}

c10::IValue StaticModule::operator()(
    const std::vector<c10::IValue>& args,
    const KeywordArgs& kwargs) {
  return runtime()(args, kwargs);
}

c10::IValue StaticModule::operator()(
    std::vector<c10::IValue>&& args,
    const KeywordArgs& kwargs) {
  return runtime()(std::move(args), kwargs);
}

BlockRunner::BlockRunner(
    const StaticModule& sm,
    IValue* values,
    Block* block,
    torch::jit::TaskLauncher* launcher,
    bool is_root_block)
    : static_module_(sm),
      block_info_(static_module_.block_info(block)),
      is_root_block_(is_root_block),
      first_input_is_self_(
          is_root_block_ && static_module_.first_input_is_self()),
      inputs_begin_(block_info_.block_inputs_idx()),
      // TODO(T108633124): Turn on manage output tensors for sub-blocks.
      manage_output_tensors_enabled_(
          is_root_block_ && sm.opts().manage_output_tensors),
      values_(values) {
  nodes_.reserve(block_info_.nodes().size());
  for (auto& pre_pnode : block_info_.nodes()) {
    nodes_.emplace_back(pre_pnode, values_);
  }

  for (auto index : block_info_.block_output_indices()) {
    outputs_.emplace_back(&values_[index]);
  }

  for (auto& pnode : nodes_) {
    auto* node = pnode.node();

    // attach the async taskLauncher to processedNodes
    pnode.set_metadata(launcher);
    auto blocks = node->blocks();
    const auto num_blocks = blocks.size();
    if (num_blocks == 0) {
      continue;
    }
    DCHECK(node->kind() == prim::If || node->kind() == prim::Loop);
    std::vector<BlockRunner> block_runners;
    block_runners.reserve(num_blocks);

    for (auto* b : blocks) {
      block_runners.emplace_back(sm, values_, b, launcher);
    }
    pnode.set_metadata(std::move(block_runners));
  }
}

// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
BlockRunner::BlockRunner(BlockRunner&&) noexcept = default;

BlockRunner::~BlockRunner() = default;

void BlockRunner::set_arg(const size_t idx, std::vector<IValue>&& args) {
  DCHECK(idx < args.size());
  Input(idx + first_input_is_self_) = std::move(args[idx]);
}

void BlockRunner::set_arg(const size_t idx, const std::vector<IValue>& args) {
  DCHECK(idx < args.size());
  Input(idx + first_input_is_self_) = args[idx];
}

void BlockRunner::set_arg(const size_t idx, const IValue& arg) {
  Input(idx + first_input_is_self_) = arg;
}

namespace {
void check_type(const Argument& schema_arg, const IValue& arg) {
  // Fast path for most common case
  if (arg.isTensor() &&
      schema_arg.type()->kind() == c10::TypeKind::TensorType) {
    return;
  }
  TORCH_CHECK(arg.type()->isSubtypeOf(schema_arg.type()));
}
} // namespace

template <typename IValueList>
void BlockRunner::set_inputs(
    IValueList&& args,
    const std::unordered_map<std::string, c10::IValue>& kwargs) {
  const auto& schema = static_module_.schema();
  if (first_input_is_self_) {
    Input(0) = static_module_.module()._ivalue();
  }

  if (!is_root_block_ || C10_UNLIKELY(!schema)) {
    TORCH_CHECK(
        kwargs.empty(), "Schema is not available, but BlockRunner got kwargs.");

    const auto total_num_inputs = args.size() + first_input_is_self_;
    TORCH_CHECK(total_num_inputs == block_info_.num_inputs());

    for (size_t i = 0; i < args.size(); ++i) {
      set_arg(i, std::forward<IValueList>(args));
    }
    return;
  }

  const auto& schema_args = schema->arguments();
  size_t consumed_kwargs = 0;
  DCHECK(schema_args.size() > 0);
  TORCH_CHECK(
      args.size() < schema_args.size(),
      "Static runtime got too many arguments");
  for (size_t i = 0; i < schema_args.size() - 1; ++i) {
    // Start at 1 since the schema always contains `self`.
    const auto& schema_arg = schema_args[i + 1];

    if (i < args.size()) {
      check_type(schema_arg, args[i]);
      set_arg(i, std::forward<IValueList>(args));
      continue;
    }

    auto it = kwargs.find(schema_arg.name());
    if (it != kwargs.end()) {
      check_type(schema_arg, it->second);
      set_arg(i, it->second);
      ++consumed_kwargs;
      continue;
    }

    auto maybe_default_val = schema_arg.default_value();
    if (maybe_default_val) {
      set_arg(i, *maybe_default_val);
      continue;
    }

    TORCH_CHECK(
        false, "Static runtime is missing required kwarg ", schema_arg.name());
  }
  TORCH_CHECK(consumed_kwargs == kwargs.size());
}

void BlockRunner::create_memory_planner() {
  if (!planner_) {
    planner_ = std::make_unique<StandardMemoryPlanner>(
        this,
        block_info_,
        static_module_.opts().enable_out_variant,
        manage_output_tensors_enabled_,
        static_module_.opts().optimize_memory);
  }
}

namespace {

void destroyNodeOutputs(ProcessedNode& p_node) {
  const auto borrows_outputs = borrowsOutputs(p_node.node()->kind());
  for (const auto i : c10::irange(p_node.num_outputs())) {
    auto& output = p_node.Output(i);
    if (doesNotHeapAllocateWhenStoredInIValue(*output.type())) {
      continue;
    }

    if (borrows_outputs) {
      // NB: No need to incref here. This codepath is only hit if the run didn't
      // finish, so we shouldn't be returning anything to the client.
      c10::MaybeOwnedTraits<IValue>::destroyBorrow(output);
    } else {
      output = IValue();
    }
  }
}

} // namespace

void BlockRunner::clean_up_intermediate_ivalues() noexcept {
  // We have to iterate in reverse order here due to borrowed
  // IValues - we don't want to destroy a value until all of its
  // borrows are cleaned up!
  for (auto it = nodes_.rbegin(); it != nodes_.rend(); ++it) {
    destroyNodeOutputs(*it);
  }
}

void BlockRunner::resetMemory() noexcept {
  planner_.reset();
  // We must clean up intermediate values before inputs in case
  // there are borrowed inputs and static runtime owns the only
  // reference (e.g. the inputs were std::move'd into the runtime)
  clean_up_intermediate_ivalues();
  clean_up_input_ivalues();
}

c10::IValue BlockRunner::move_outputs_to_tuple(uint32_t num_outputs) {
  switch (num_outputs) {
    case 1:
      return c10::ivalue::Tuple::create(IValue(std::move(*outputs_[0])));
    case 2:
      return c10::ivalue::Tuple::create(
          IValue(std::move(*outputs_[0])), IValue(std::move(*outputs_[1])));
    case 3:
      return c10::ivalue::Tuple::create(
          IValue(std::move(*outputs_[0])),
          IValue(std::move(*outputs_[1])),
          IValue(std::move(*outputs_[2])));
    default: {
      std::vector<c10::IValue> outputs;
      outputs.reserve(num_outputs);
      for (const auto i : c10::irange(num_outputs)) {
        // use move here. Otherwise, clean up outputs_[i] explicitly
        outputs.emplace_back(std::move(*outputs_[i]));
      }
      return c10::ivalue::Tuple::create(std::move(outputs));
    }
  }
}

/// [Check and correct bad schema alias info at runtime]
/// Static runtime relies on the operator schema's alias info to be correct for
/// memory planning. Because it's hard to enforce the alias info to be correct,
/// we need to do runtime detection for accidental aliases that do not comply
/// with the schema. Only aliases of managed tensors are problematic. To avoid
/// runtime crashes, we can add runtime detection and force the op to comply
/// with its schema by cloning the alias. Because all managed tensors' data_ptrs
/// are part of the internal buffer that the MemoryPlanner allocates, we can
/// check aliases by checking the memory overlap with this internal buffer. But
/// a tensor's storage can be resized during inferenceso we need another way to
/// handle the resized case.
///
/// There are two ways for incorrect schema to break memory planning. Let's look
/// at two examples:
///
/// Example 1:
/// @code
///   def forward(x):
///     a = x + x
///     b = bad_op(a)  # b ends up aliasing a incorrectly
///     return (b)
/// @endcode
/// bad_op: its schema says it returns a new Tensor, but it actually returns an
/// alias. In this case, the memory planner would recognize `a` as a managed
/// tensor and clean up its memory before returning `b`. But `b` is actually an
/// alias of `a`, when `a`'s data_ptr get reset, `b`'s data_ptr gets reset too.
///
/// Example 2:
/// @code
///   def forward(x):
///     a = x + x
///     a2 = bad_op(a) # a2 ends up alias a incorrectly
///     b = a + a
///     c = b * b # c shares storage with a
///     d = c + 2 # d shares storage with b
///     e = a2 * a2
///     return (d, e)
/// @endcode
/// With the memory reuse algorithm, `c` could end up sharing storage with `a`,
/// but because of bad_op, `a2` now aliases `a`. `c` overwrites `a` and
/// therefore `a2`, leading to the wrong results. We solve this problem with two
/// steps. Note this doesn't happen with the current memory reuse algorithm
/// because of the way it's implemented. Things could change with a different
/// implementation.
///
/// Step 1, annotate the ProcessedNodes with a flag `check_memory_overlap_` set
/// to true if its outputs do not alias its inputs as indicated by the AliasDb
/// and all of its outputs are Tensors. Then at runtime, we check that the
/// nodes' output tensors do not overlap with the internal buffer that the
/// MemoryPlanner allocates. For latency concerns, we only run this check for
/// fallback ops. The schemas of native ops and out variants are vetted and
/// enforced with static runtime unit tests. For the first iteration, we do a
/// full memory overlap check with
/// ProcessedNode::verify_and_correct_memory_overlap() because the internal
/// buffer doesn't exist yet.
///
/// Step 2, if a managed tensor gets resized during inference, it gets a new
/// data_ptr which is not from the buffer. We can tackle this corner case by
/// delaying the deallocation of the managed tensors to after the outputs are no
/// longer used (essentially merging the internal/output buffers into one).
/// Before the merging is implemented, we add another flag `overlap_detected_`
/// to flag any node with overlap detected in Step 1 and do a full memory
/// overlap check if the fast check (by checking memory overlap with internal
/// buffer) fails. There is still a corner case that fails with the added flag.
/// If a resize is triggered at the same time as the op creating an alias at the
/// same time, the current checks would fail to detect the alias.
void BlockRunner::verify_and_correct_memory_overlap(ProcessedNode& n) {
  // The slow check can be removed once the internal/output buffers are merged
  if (C10_UNLIKELY(n.check_outputs_for_memory_overlap())) {
    if (C10_UNLIKELY(!planner_)) {
      // slow check, for first iter only
      n.verify_and_correct_memory_overlap();
    } else {
      bool overlap_detected_with_fast_check = false;
      for (size_t i = 0; i < n.outputs().size(); i++) {
        auto& output = n.Output(i);
        if (output.isTensor()) {
          overlap_detected_with_fast_check |=
              fast_check_and_correct_overlap_with(n, output);
        } else if (output.isTensorList()) {
          auto tensor_list = output.toListRef();
          for (auto& ival : tensor_list) {
            overlap_detected_with_fast_check |=
                fast_check_and_correct_overlap_with(
                    n,
                    // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
                    const_cast<c10::IValue&>(ival));
          }
        }
      }
      if (n.outputs_memory_overlap_detected() &&
          !overlap_detected_with_fast_check) {
        // slow check. Only run when the fast check fails.
        n.verify_and_correct_memory_overlap();
      }
    }
  }
}

bool BlockRunner::fast_check_and_correct_overlap_with(
    ProcessedNode& n,
    c10::IValue& tensor_ival) {
  auto& tensor = tensor_ival.toTensor();
  if (planner_->overlapWithInternalBuffer(tensor.data_ptr())) {
    DLOG(INFO) << "Detected alias for node: " << PrintNode(n.node());
    tensor_ival = at::native::clone(tensor, c10::nullopt);
    n.set_outputs_memory_overlap_detected();
    return true;
  }
  return false;
}

BlockRunner::Deallocator::~Deallocator() {
  // Assume cleanup cannot throw.
  cleanupImpl();
#ifndef NDEBUG
  block_runner_.check_for_memory_leak(/*output_returned*/ false);
#endif
}

void BlockRunner::Deallocator::cleanupImpl() {
  // MemoryPlanner is created after the first invocation of `run()`. This
  // is done intentionally because MemoryPlanner uses `Tensor` sizes of
  // the previous `run()` for memory planning of subsequent runs
  if (C10_LIKELY(finished_)) {
    block_runner_.create_memory_planner();
  }

  if (C10_LIKELY(block_runner_.planner_)) {
    block_runner_.planner_->deallocate();
  } else {
    // This is the first run, and it didn't finish, so we can't use a
    // `MemoryPlanner` to deallocate stuff. Just reset everything mannually.
    block_runner_.resetMemory();
  }
  // clean up owning refs of input tensors
  block_runner_.clean_up_input_ivalues();
  if (C10_UNLIKELY(!finished_)) {
    block_runner_.deallocateOutputTensors();
  }
}

template <typename IValueList>
c10::IValue BlockRunner::run_impl(
    IValueList&& args,
    const KeywordArgs& kwargs) {
  // We assume inference workloads, so we do not need
  // autograd. Enabling this is a significant win on dispatcher
  // overhead because it saves a round of dispatch for at least some
  // functions, such as resize_ and resize_as_.
  c10::InferenceMode mode;

  {
    auto on_exit = Deallocator(*this);

    if (planner_) {
      DCHECK(!manage_output_tensors_enabled_ || checkOutputTensorMemoryLeaks());
      planner_->allocate();
    }

    set_inputs(std::forward<IValueList>(args), kwargs);

    for (auto& n : nodes_) {
      // LOG(INFO) << "Running node: " << PrintNode(n.node());
      n.run();
      // Check for incorrect schema alias info.
      verify_and_correct_memory_overlap(n);
    }
    on_exit.setFinished();
  }

  // no need to keep references of outputs in static runtime anymore
  if (block_info_.num_outputs() > 1) {
    return move_outputs_to_tuple(block_info_.num_outputs());
  }

  DCHECK(check_for_memory_leak(/*output_returned*/ false));

  // use move here. Otherwise, clean up outputs_[0] explicitly
  return std::move(*outputs_[0]);
}

template <typename IValueList>
c10::IValue BlockRunner::run_impl_record_functions(
    IValueList&& args,
    const KeywordArgs& kwargs) {
  auto step_callbacks =
      at::getStepCallbacksUnlessEmpty(at::RecordScope::STATIC_RUNTIME_MODEL);
  if (C10_UNLIKELY(step_callbacks.has_value())) {
    at::RecordFunction guard(std::move(*step_callbacks));
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(guard.isActive());
    guard.needsInputs()
        ? guard.before(
              "forward", c10::ArrayRef<const IValue>(args.data(), args.size()))
        : guard.before("forward");

    return run_impl(std::forward<IValueList>(args), kwargs);
  }
  return run_impl(std::forward<IValueList>(args), kwargs);
}

template <typename IValueList>
c10::intrusive_ptr<c10::ivalue::Future> BlockRunner::run_impl_async(
    IValueList&& args,
    const KeywordArgs& kwargs) {
  // run the graph inline in the caller thread. Async ops will be
  // executed on taskLauncher attached to the metadata of ProcessedNodes
  c10::IValue output = run_impl(args, kwargs);

  // If the output is of type future, return it
  if (output.isFuture()) {
    return output.toFuture();
  }

  // wrap the output into future, mark completed and return it
  TypePtr return_type;
  if (block_info_.num_outputs() > 1) {
    return_type = TupleType::create(
        fmap(outputs(), [](const IValue* v) { return v->type(); }));
  } else {
    return_type = outputs().at(0)->type();
  }
  c10::intrusive_ptr<Future> future = c10::make_intrusive<Future>(return_type);
  future->markCompleted(output);
  return future;
}

template <typename IValueList>
c10::intrusive_ptr<c10::ivalue::Future> BlockRunner::
    run_impl_record_functions_async(
        IValueList&& args,
        const KeywordArgs& kwargs) {
  auto step_callbacks =
      at::getStepCallbacksUnlessEmpty(at::RecordScope::STATIC_RUNTIME_MODEL);
  if (C10_UNLIKELY(step_callbacks.has_value())) {
    at::RecordFunction guard(std::move(*step_callbacks));
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(guard.isActive());
    guard.needsInputs()
        ? guard.before(
              "forward", c10::ArrayRef<const IValue>(args.data(), args.size()))
        : guard.before("forward");

    return run_impl_async(std::forward<IValueList>(args), kwargs);
  }
  return run_impl_async(std::forward<IValueList>(args), kwargs);
}

c10::IValue BlockRunner::operator()(
    const std::vector<c10::IValue>& args,
    const KeywordArgs& kwargs) {
#ifdef PYTORCH_DISABLE_NET_PROFILING
  return run_impl(args, kwargs);
#else
  return run_impl_record_functions(args, kwargs);
#endif
}

c10::IValue BlockRunner::operator()(
    std::vector<c10::IValue>&& args,
    const KeywordArgs& kwargs) {
#ifdef PYTORCH_DISABLE_NET_PROFILING
  return run_impl(std::move(args), kwargs);
#else
  return run_impl_record_functions(std::move(args), kwargs);
#endif
}

c10::intrusive_ptr<c10::ivalue::Future> BlockRunner::runAsync(
    const std::vector<c10::IValue>& args,
    const KeywordArgs& kwargs) {
#ifdef PYTORCH_DISABLE_NET_PROFILING
  return run_impl_async(args, kwargs);
#else
  return run_impl_record_functions_async(args, kwargs);
#endif
}

c10::intrusive_ptr<c10::ivalue::Future> BlockRunner::runAsync(
    std::vector<c10::IValue>&& args,
    const KeywordArgs& kwargs) {
#ifdef PYTORCH_DISABLE_NET_PROFILING
  return run_impl_async(std::move(args), kwargs);
#else
  return run_impl_record_functions_async(std::move(args), kwargs);
#endif
}

namespace {

std::string generate_latency_json(const std::string& label, double millis) {
#ifdef FBCODE_CAFFE2
  folly::dynamic json = folly::dynamic::object();
  json["type"] = label;
  json["metric"] = "latency";
  json["unit"] = "ms";
  json["value"] = millis;
  return "PyTorchObserver " + folly::toJson(json);
#else
  return "";
#endif
}

} // namespace

void BlockRunner::benchmark(
    const std::vector<std::vector<c10::IValue>>& args_list,
    const std::vector<KeywordArgs>& kwargs_list,
    const int warmup_runs,
    const int main_runs,
    bool print_per_node_time,
    bool generate_ai_pep_output) {
  TORCH_CHECK(
      kwargs_list.size() == 0 || args_list.size() == kwargs_list.size());
  std::cout << "Input size: " << args_list.size() << std::endl;
  float time_per_iter =
      benchmark_model(args_list, kwargs_list, warmup_runs, main_runs);
  std::cout << "Static runtime ms per iter: " << time_per_iter
            << ". Iters per second: " << 1000.0 / time_per_iter << std::endl;

  IndividualMetrics results =
      benchmark_individual_ops(args_list, kwargs_list, warmup_runs, main_runs);

  if (print_per_node_time) {
    for (const auto i : c10::irange(nodes_.size())) {
      const Node* node = nodes_[i].node();
      std::cout << "Node #" << i << ": " << results.time_per_node[i]
                << " ms/iter, ";
      node->print(std::cout, 0, nullptr, false);
    }
  }

  std::vector<std::pair<std::string, double>> time_per_node_type_vec{
      results.time_per_node_type.begin(), results.time_per_node_type.end()};
  if (args_list.size() == 0) {
    std::sort(
        time_per_node_type_vec.begin(),
        time_per_node_type_vec.end(),
        [&results](auto& left, auto& right) {
          return results.instances_per_node_type[left.first] >
              results.instances_per_node_type[right.first];
        });
  } else {
    std::sort(
        time_per_node_type_vec.begin(),
        time_per_node_type_vec.end(),
        [](auto& left, auto& right) { return left.second > right.second; });
  }
  std::cout << "Time per node type:" << std::endl;
  for (const auto& p : time_per_node_type_vec) {
    const std::string& kind = p.first;
    const double ms = p.second;
    std::cout << std::setw(15) << ms << " ms. " << std::setw(10)
              << results.percent_per_node_type[kind] << "%. " << kind << " ("
              << results.instances_per_node_type[kind] << " nodes";
    if (results.out_nodes.count(kind)) {
      std::cout << ", out variant)" << std::endl;
    } else if (results.native_nodes.count(kind)) {
      std::cout << ", native)" << std::endl;
    } else {
      std::cout << ")" << std::endl;
    }

    if (generate_ai_pep_output) {
      LOG(INFO) << generate_latency_json(kind, ms);
    }
  }
  if (generate_ai_pep_output) {
    LOG(INFO) << generate_latency_json(
        "static_runtime_first_iter", results.first_iter_time);
  }
  std::cout << std::setw(15) << results.total_time << " ms. in Total"
            << std::endl;
  std::cout << "BlockRunner setup time: " << results.setup_time << " ms"
            << std::endl;
  std::cout << "Memory allocation time: " << results.memory_alloc_time
            << " ms\n";
  std::cout << "Memory deallocation time: " << results.memory_dealloc_time
            << " ms" << std::endl;
  std::cout << "Outputs deallocation time: " << results.output_dealloc_time
            << " ms" << std::endl;
  std::cout << "First iter time: " << results.first_iter_time << " ms"
            << std::endl;
  std::cout << "Number of operators: " << nodes_.size() << std::endl;

  if (planner_) {
    std::cout << "Total number of managed tensors: "
              << planner_->total_num_managed_tensors() << std::endl;
    std::cout << "Total number of managed output tensors: "
              << planner_->total_num_managed_output_tensors() << std::endl;
    std::cout << "Total number of unmanaged values: "
              << planner_->total_num_unmanaged() << std::endl;
    std::cout << "Number of unmanaged values requiring cleanup: "
              << planner_->num_unmanaged_non_scalars() << std::endl;
    std::cout << "Number of unmanaged values not requiring cleanup: "
              << planner_->num_unmanaged_scalars() << std::endl;
    std::cout << "Total memory managed: " << planner_->total_managed()
              << " bytes" << std::endl;
    if (static_module_.opts().optimize_memory) {
      std::cout << "Total number of reused tensors: "
                << planner_->total_reused_tensors() << std::endl;
    }
  }

  auto unsupported_nodes_count = results.total_nodes_count -
      results.out_nodes_count - results.native_nodes.size();
  std::cout << "Total number of 'out' variant nodes/total number of nodes: "
            << results.out_nodes_count << "/" << results.total_nodes_count
            << " ("
            << 100.0 * (results.out_nodes_count) /
          static_cast<float>(results.total_nodes_count)
            << "%)" << std::endl;
  std::cout << "Total number of nodes not covered by SR/total number of nodes: "
            << unsupported_nodes_count << "/" << results.total_nodes_count
            << " ("
            << 100.0 * (unsupported_nodes_count) /
          static_cast<float>(results.total_nodes_count)
            << "%)" << std::endl;

  check_for_memory_leak();

#ifndef NDEBUG
  KeywordArgs empty_kwargs;
  display_nodes(
      args_list[0], kwargs_list.size() > 0 ? kwargs_list[0] : empty_kwargs);
#endif
}

float BlockRunner::benchmark_model(
    const std::vector<std::vector<c10::IValue>>& args_list,
    const std::vector<KeywordArgs>& kwargs_list,
    const int warmup_runs,
    const int main_runs) {
  TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1);
  TORCH_CHECK(
      kwargs_list.size() == 0 || args_list.size() == kwargs_list.size());

  const bool is_kwargs_empty = kwargs_list.size() == 0;
  const KeywordArgs empty_kwargs;
  for (const auto i : c10::irange(warmup_runs)) {
    (void)i; // Suppress unused variable warning
    for (const auto j : c10::irange(args_list.size())) {
      operator()(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);
      if (manage_output_tensors_enabled_) {
        deallocateOutputTensors();
      }
    }
  }
  caffe2::Timer timer;
  for (const auto i : c10::irange(main_runs)) {
    (void)i; // Suppress unused variable warning
    for (const auto j : c10::irange(args_list.size())) {
      operator()(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);
      if (manage_output_tensors_enabled_) {
        deallocateOutputTensors();
      }
    }
  }
  float millis = timer.MilliSeconds();
  return millis / (static_cast<float>(main_runs) * args_list.size());
}

bool display_ivalue(const IValue& iv) {
  if (iv.isTensor()) {
    std::cout << "Tensor " << iv.toTensor().toString() << " {";
    for (const auto i : c10::irange(iv.toTensor().sizes().size())) {
      std::cout << iv.toTensor().sizes()[i];
      if (iv.toTensor().sizes().size() > i + 1) {
        std::cout << ", ";
      }
    }
    std::cout << "}\n";
    return true;
  } else if (iv.isTensorList()) {
    std::cout << "TensorList {" << iv.toTensorList().size() << "}\n";
    return true;
  } else if (iv.isGenericDict()) {
    std::cout << "Dict {" << iv.toGenericDict().size() << "}\n";
    return true;
  } else if (iv.isTuple()) {
    std::cout << "Tuple {" << iv.toTupleRef().elements().size() << "}\n";
    return true;
  } else if (iv.isInt()) {
    std::cout << "int {" << iv.toInt() << "}\n";
    return true;
  } else if (iv.isBool()) {
    std::cout << "bool {" << iv.toBool() << "}\n";
    return true;
  } else if (iv.isDouble()) {
    std::cout << "double {" << iv.toDouble() << "}\n";
    return true;
  }
  return false;
}

void display_pnode_info(const ProcessedNode& pnode) {
  pnode.node()->print(std::cout, 0, nullptr, false);
  for (const auto i : c10::irange(pnode.num_inputs())) {
    std::cout << "\ti" << i << ": ";
    if (!display_ivalue(pnode.Input(i))) {
      std::cout << *(pnode.node()->inputs()[i]->type()) << '\n';
    }
  }
  const auto outputs = pnode.outputs();
  for (const auto i : c10::irange(outputs.size())) {
    std::cout << "\to" << i << ": ";
    if (!display_ivalue(outputs[i])) {
      std::cout << *(pnode.node()->outputs()[i]->type()) << '\n';
    }
  }
}

void BlockRunner::display_nodes(
    const std::vector<c10::IValue>& args,
    const KeywordArgs& kwargs) {
  c10::InferenceMode mode;

  auto on_exit = Deallocator(*this);

  if (planner_) {
    planner_->allocate();
  }
  set_inputs(args, kwargs);

  for (auto& node : nodes_) {
    node.run();
    display_pnode_info(node);
  }
  on_exit.setFinished();
}

BlockRunner::IndividualMetrics BlockRunner::benchmark_individual_ops(
    const std::vector<std::vector<c10::IValue>>& args_list,
    const std::vector<KeywordArgs>& kwargs_list,
    const int warmup_runs,
    const int main_runs) {
  TORCH_CHECK(
      kwargs_list.size() == 0 || args_list.size() == kwargs_list.size());
  TORCH_CHECK(warmup_runs >= 1 && main_runs >= 1);

  IndividualMetrics results;
  results.time_per_node.resize(nodes_.size(), 0);
  if (args_list.size() == 0) {
    // When the given input is empty, compute the op statistics from the given
    // graph without executing it.
    for (const auto i : c10::irange(nodes_.size())) {
      const Node* node = nodes_[i].node();
      std::string kind(node->kind().toQualString());
      // TODO: Collect op statistics from sub-blocks here.
      results.time_per_node[i] = 0;
      results.time_per_node_type[kind] = 0;
      results.instances_per_node_type[kind]++;
      if (nodes_[i].has_out_variant()) {
        results.out_nodes.insert(kind);
        results.out_nodes_count++;
      } else if (nodes_[i].has_native()) {
        results.native_nodes.insert(kind);
      }
      results.total_time += results.time_per_node[i];
    }
    results.total_nodes_count = nodes_.size();
    results.memory_alloc_time = 0;
    results.memory_dealloc_time = 0;
    results.output_dealloc_time = 0;
    for (const auto& p : results.time_per_node_type) {
      const std::string& kind = p.first;
      results.percent_per_node_type[kind] = 0;
    }
    return results;
  }

  const bool is_kwargs_empty = kwargs_list.size() == 0;
  const KeywordArgs empty_kwargs;
  bool manage_output_tensors = static_module_.opts().manage_output_tensors;
  // See comment on above use of InferenceMode for
  // explanation.
  c10::InferenceMode mode;

  // setup time
  caffe2::Timer timer;

  set_inputs(args_list[0], is_kwargs_empty ? empty_kwargs : kwargs_list[0]);

  results.setup_time = timer.MilliSeconds();

  // The first iteration profiles each node's output Tensors' sizes and
  // initializes the memory planner with the profile information. Folllowing
  // iterations just use the already established memory planning.
  timer.Start();
  operator()(args_list[0], is_kwargs_empty ? empty_kwargs : kwargs_list[0]);
  if (manage_output_tensors) {
    deallocateOutputTensors();
  }
  results.first_iter_time = timer.MilliSeconds();

  // warmup runs
  for (const auto i : c10::irange(warmup_runs - 1)) {
    (void)i; // Suppress unused variable warning
    for (const auto j : c10::irange(args_list.size())) {
      operator()(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);
      if (manage_output_tensors) {
        deallocateOutputTensors();
      }
    }
  }

  // main runs
  for (const auto i : c10::irange(main_runs)) {
    (void)i; // Suppress unused variable warning

    for (const auto j : c10::irange(args_list.size())) {
      set_inputs(args_list[j], is_kwargs_empty ? empty_kwargs : kwargs_list[j]);

      timer.Start();
      if (planner_) {
        planner_->allocate();
      }
      float millis = timer.MilliSeconds();
      results.memory_alloc_time += millis;

      for (const auto k : c10::irange(nodes_.size())) {
        timer.Start();
        nodes_[k].run();
        millis = timer.MilliSeconds();
        results.time_per_node[k] += millis;
        verify_and_correct_memory_overlap(nodes_[k]);
      }
      timer.Start();
      create_memory_planner();
      planner_->deallocate();
      // clean up owning refs of input tensors
      clean_up_input_ivalues();
      if (manage_output_tensors) {
        deallocateOutputTensors();
      }
      millis = timer.MilliSeconds();
      results.memory_dealloc_time += millis;

      timer.Start();
      // no need to keep references of outputs in static runtime anymore
      c10::IValue output;
      if (static_module_.num_outputs() > 1) {
        output = move_outputs_to_tuple(static_module_.num_outputs());
      }

      DCHECK(check_for_memory_leak(/*output_returned*/ false));

      // use move here. Otherwise, clean up outputs_[0] explicitly
      output = std::move(*outputs_[0]);
      // release outputs explicitly to measure the time it takes
      output = IValue();
      millis = timer.MilliSeconds();
      results.output_dealloc_time += millis;
    }
  }

  // post processing
  const float num_total_iters =
      (static_cast<float>(main_runs) * args_list.size());
  for (const auto i : c10::irange(nodes_.size())) {
    const Node* node = nodes_[i].node();
    std::string kind = std::string(node->kind().toQualString());
    results.time_per_node[i] /= num_total_iters;
    results.time_per_node_type[kind] += results.time_per_node[i];
    results.instances_per_node_type[kind]++;
    if (nodes_[i].has_out_variant()) {
      results.out_nodes.insert(kind);
      results.out_nodes_count++;
    } else if (nodes_[i].has_native()) {
      results.native_nodes.insert(kind);
    }
    results.total_time += results.time_per_node[i];
  }
  results.total_nodes_count = nodes_.size();
  results.memory_alloc_time /= num_total_iters;
  results.memory_dealloc_time /= num_total_iters;
  results.output_dealloc_time /= num_total_iters;
  for (const auto& p : results.time_per_node_type) {
    const std::string& kind = p.first;
    results.percent_per_node_type[kind] = p.second / results.total_time * 100;
  }
  return results;
}

bool BlockRunner::check_for_memory_leak(
    bool output_returned,
    bool recurse_on_sub_blocks) {
  // check for inputs
  for (const auto i : c10::irange(block_info_.num_inputs())) {
    TORCH_CHECK(
        values_[i + block_info_.block_inputs_idx()].isNone(),
        "Input ",
        i,
        " was not cleaned up");
  }
  FastSet<const IValue*> output_ivalues(outputs_.begin(), outputs_.end());
  for (const auto n : c10::irange(nodes_.size())) {
    auto& pnode = nodes_[n];
    for (const auto i : c10::irange(pnode.num_outputs())) {
      const IValue* ival = &pnode.Output(i);
      const Value* val = pnode.node()->output(i);
      // subtlety: isManagedOutputTensorValue may give a false
      // negative here if an output is an alias of this value, so
      // check the actual tensor!
      if (planner_ &&
          (isManagedOutputTensor(*ival) || isManagedOutputTensorValue(val))) {
        // `ival` contains a managed output tensor that the runtime doesn't
        // reclaim at the end of an iteration, but the client does so
        // by explicitly calling
        // `BlockRunner::deallocateOutputTensors`.
        continue;
      }
      const std::string error_msg = "Output " + c10::to_string(i) + ", %" +
          val->debugName() + " of node " + c10::to_string(n) +
          " which has kind " + pnode.node()->kind().toQualString() +
          " was not cleaned up";
      if (output_ivalues.count(ival) == 0) {
        // check for intermediates
        if (!ival->isNone()) {
          TORCH_CHECK(
              ival->isTensor() ||
                  block_info_.node_is_optimizable_container_type(
                      pnode.node()) ||
                  doesNotHeapAllocateWhenStoredInIValue(*val->type()),
              error_msg);
          if (ival->isTensor()) {
            const auto& t = ival->toTensor();
            if (t.defined()) {
              auto* storage_impl = t.storage().unsafeGetStorageImpl();
              TORCH_CHECK(
                  storage_impl->data() == nullptr ||
                      (planner_ &&
                       planner_->isManagedStorageImpl(storage_impl)),
                  error_msg);
            }
          }
        }
      } else {
        // check for outputs
        if (output_returned) {
          TORCH_CHECK(ival->isNone(), error_msg);
        }
      }
    }
    auto* metadata = pnode.metadata();
    if (recurse_on_sub_blocks && metadata) {
      auto& block_runners = metadata->block_runners();
      for (auto& block_runner : block_runners) {
        block_runner.check_for_memory_leak(
            output_returned, recurse_on_sub_blocks);
      }
    }
  }
  VLOG(1) << "Finished checking for memory leak";
  return true;
}

void BlockRunner::deallocateOutputTensors() {
  if (!static_module_.opts().manage_output_tensors) {
    TORCH_CHECK(
        !planner_ || planner_->numOutputBufferBytes() == 0,
        "manage_output_tensors is disabled, but output tensor buffer is not empty.");
    return;
  }
  if (planner_) {
    planner_->deallocateOutputTensors();
    DCHECK(checkOutputTensorMemoryLeaks());
  }
}

bool BlockRunner::checkOutputTensorMemoryLeaks() {
  if (!static_module_.opts().manage_output_tensors || !planner_) {
    return true;
  }
  for (const auto n : c10::irange(nodes_.size())) {
    auto& pnode = nodes_[n];
    for (const auto i : c10::irange(pnode.num_outputs())) {
      const IValue* ival = &pnode.Output(i);
      const Value* val = pnode.node()->output(i);
      if (!isManagedOutputTensorValue(val) || !ival->isTensor()) {
        // ival can not be a tensor if it's being managed by ops like
        // to_maybe_copy_out; see ReplaceWithMaybeCopy for details.
        continue;
      }
      const auto& t = ival->toTensor();
      if (t.defined()) {
        auto* storage_impl = t.storage().unsafeGetStorageImpl();
        const std::string error_msg = "Output " + c10::to_string(i) + ", %" +
            val->debugName() + " of node " + c10::to_string(n) +
            " was not cleaned up";
        TORCH_CHECK(storage_impl->data() == nullptr, error_msg);
      }
    }
  }
  VLOG(1) << "Finished checking for memory leak from output tensors";
  return true;
}

bool BlockRunner::isManagedOutputTensor(const IValue& ivalue) const {
  return planner_ && planner_->isManagedOutputTensor(ivalue);
}

bool BlockRunner::isManagedOutputTensorValue(const Value* value) const {
  // It's possible that manage_output_tensors_ was disabled after initializing
  // managed_output_tensor_values, so we have to check that flag here.
  if (!planner_ || !manage_output_tensors_enabled_) {
    return false;
  }
  const auto& managed_outputs = block_info_.managed_output_tensor_values();
  return managed_outputs.find(value) != managed_outputs.end();
}

void BlockRunner::disableManageOutputTensors() {
  if (!manage_output_tensors_enabled_) {
    return;
  }
  manage_output_tensors_enabled_ = false;
  if (!planner_) {
    return;
  }
  // Reset all IValues and destruct planner_ so that it can be reconstructed in
  // the next run.
  for (auto& n : nodes_) {
    for (const auto i : c10::irange(n.outputs().size())) {
      n.Output(i) = IValue();
    }
  }
  planner_.reset();
}

ProcessedFunction::ProcessedFunction(
    Node* node,
    bool enable_out_variant,
    bool check_memory_overlap)
    : check_memory_overlap_(check_memory_overlap),
      num_outputs_(node->outputs().size()) {
  if (enable_out_variant) {
    f_ = getOutOfPlaceOperation(node);
    if (f_) {
      kind_ = ProcessedFunction::Kind::kOutVariant;
      // do not check memory overlap for out variants
      check_memory_overlap_ = false;
      VLOG(1) << "Switch to out variant for node: " << PrintNode(node);
      return;
    }
  }
  {
    f_ = getNativeOperation(node);
    if (f_) {
      kind_ = ProcessedFunction::Kind::kNativeFunction;
#ifdef NDEBUG
      // skip this check in opt mode because these ops are better vetted
      check_memory_overlap_ = false;
#endif
      VLOG(1) << "Switch to native impl for node: " << PrintNode(node);
      return;
    }
  }
  {
    const Operator& op = node->getOperator();
    f_ = [node_op = op.getOperation(node),
          has_var_args = hasVarArgs(node)](ProcessedNode* pnode) mutable {
      std::vector<IValue> stack;
      const size_t size = pnode->num_inputs();
      stack.reserve(size + has_var_args);
      for (const auto i : c10::irange(size)) {
        stack.emplace_back(pnode->Input(i));
      }
      // Need to store the number of inputs in stack for variadic ops.
      if (has_var_args) {
        stack.emplace_back(static_cast<int>(size));
      }
      node_op(stack);
      TORCH_DCHECK_EQ(stack.size(), pnode->num_outputs());
      for (const auto i : c10::irange(pnode->num_outputs())) {
        pnode->Output(i) = std::move(stack[i]);
      }
    };
    kind_ = ProcessedFunction::Kind::kInterpreterFallback;
    VLOG(1) << "Fallback interpreter for node: " << PrintNode(node);
  }
}

StaticNodeInfo::StaticNodeInfo(
    Node* node,
    ProcessedFunction* fn,
    ProcessedNodeInputs inputs,
    uint16_t outputs_offset)
    : node_(node),
      fn_(fn),
      inputs_(std::move(inputs)),
      outputs_offset_(outputs_offset) {
  TORCH_CHECK(num_outputs() == node->outputs().size());
}

std::vector<IValue> ProcessedNode::inputs_ivalue_vec() const {
  std::vector<IValue> result;
  result.reserve(inputs_.size());
  for (const auto idx : c10::irange(num_inputs())) {
    result.emplace_back(Input(idx));
  }
  return result;
}

void ProcessedNode::run() {
#ifndef PYTORCH_DISABLE_PER_OP_PROFILING
  auto step_callbacks =
      at::getStepCallbacksUnlessEmpty(at::RecordScope::STATIC_RUNTIME_OP);
  if (C10_UNLIKELY(step_callbacks.has_value())) {
    at::RecordFunction guard(std::move(*step_callbacks));
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(guard.isActive());
    if (guard.needsInputs()) {
      const auto inputs = inputs_ivalue_vec();
      guard.before(
          get_op_name(),
          c10::ArrayRef<const IValue>(inputs.data(), inputs.size()));
    } else {
      guard.before(get_op_name());
    }
    if (has_out_variant()) {
      guard._setStaticRuntimeOutVariant();
    }

    fn_->run(this);
  } else {
    fn_->run(this);
  }
#else
  fn_->run(this);
#endif
#ifndef NDEBUG
  if (FLAGS_static_runtime_disable_debug_memory_overlap_check) {
    // run check but do not enforce
    verify_no_memory_overlap();
  } else {
    DCHECK(verify_no_memory_overlap());
  }
#endif
}

static bool checkNoMemoryOverlap(const at::Tensor& a, const at::Tensor& b) {
  at::MemOverlapStatus status = at::get_overlap_status(a, b);
  if (status == at::MemOverlapStatus::Full ||
      status == at::MemOverlapStatus::Partial) {
    return false;
  }
  if (status == at::MemOverlapStatus::TooHard) {
    VLOG(1) << "Detected TOO_HARD memory overlap status";
  }
  return true;
}

bool ProcessedNode::verify_no_memory_overlap(bool force_check) const {
  const static std::array<c10::Symbol, 7> special_case_ops = {
      fromQualString("prim::TypeCheck"),
      fromQualString("prim::IfThenElse"),
      fromQualString("static_runtime::select_tensor"),
      fromQualString("static_runtime::VarTupleUnpack"),
      fromQualString("static_runtime::dict_unpack"),
      fromQualString("static_runtime::fused_split_and_squeeze"),
      fromQualString("static_runtime::create_owned_ref")};
  if (!force_check &&
      std::find(
          begin(special_case_ops), end(special_case_ops), node()->kind()) !=
          end(special_case_ops)) {
    return true;
  }

  return verify_outputs_dont_overlap_each_other() &&
      verify_inputs_dont_overlap_outputs(force_check);
}

bool ProcessedNode::verify_outputs_dont_overlap_each_other() const {
  for (const auto i : c10::irange(num_outputs())) {
    if (!Output(i).isTensor()) {
      continue;
    }
    const auto& out0_t = Output(i).toTensor();
    for (const auto j : c10::irange(i + 1, num_outputs())) {
      if (!Output(j).isTensor()) {
        continue;
      }
      const auto& out1_t = Output(j).toTensor();
      if (!checkNoMemoryOverlap(out0_t, out1_t)) {
        LOG(INFO) << "Node output " << i << " overlaps with output " << j
                  << ", " << PrintNode(node_);
        return false;
      }
    }
  }
  return true;
}

bool ProcessedNode::verify_inputs_dont_overlap_outputs(bool force_check) const {
  auto schema = node()->maybeSchema();
  // skip memory overlap check for mutable or view ops with only one output
  bool skip_check = !schema ||
      ((schema->is_mutable() || !fn_->checkMemoryOverlap()) &&
       num_outputs() == 1);
  if (!force_check && skip_check) {
    if (!schema) {
      VLOG(2) << "Detected that op schema is null";
      return true;
    }
    VLOG(2) << "schema->is_mutable: " << schema->is_mutable()
            << ", fn_->checkMemoryOverlap: " << fn_->checkMemoryOverlap()
            << ", num_outputs_: " << num_outputs();
    return true;
  }

  for (const auto i : c10::irange(inputs_.size())) {
    const IValue* in = &Input(i);
    if (!in->isTensor()) {
      continue;
    }
    const auto& in_t = in->toTensor();
    for (const auto j : c10::irange(num_outputs())) {
      const IValue& out = Output(j);
      if (!out.isTensor()) {
        continue;
      }
      const auto& out_t = out.toTensor();
      if (!checkNoMemoryOverlap(in_t, out_t)) {
        LOG(INFO) << "Node input " << i << " overlaps with output " << j << ", "
                  << PrintNode(node_);
        LOG(INFO) << *schema;
        return false;
      }
    }
  }
  return true;
}

bool ProcessedNode::check_and_correct_overlap_with(
    const at::Tensor& input,
    c10::IValue& output_ival) {
  auto& tensor = output_ival.toTensor();
  if (!checkNoMemoryOverlap(input, tensor)) {
    DLOG(INFO) << "Detected alias for node: " << PrintNode(node());
    output_ival = at::native::clone(tensor, c10::nullopt);
    set_outputs_memory_overlap_detected();
    return true;
  }
  return false;
}

void ProcessedNode::verify_and_correct_memory_overlap() {
  for (const auto i : c10::irange(inputs_.size())) {
    const IValue& in = Input(i);
    if (!in.isTensor()) {
      continue;
    }
    const auto& in_t = in.toTensor();
    for (const auto j : c10::irange(num_outputs())) {
      auto& output = Output(j);
      if (output.isTensor()) {
        check_and_correct_overlap_with(in_t, output);
      } else if (output.isTensorList()) {
        auto tensors = output.toListRef();
        for (const auto& ival : tensors) {
          // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
          check_and_correct_overlap_with(in_t, const_cast<c10::IValue&>(ival));
        }
#ifdef FBCODE_CAFFE2
        if (outputs_memory_overlap_detected()) {
          LOG_EVERY_MS(WARNING, 60000)
              << "Detected alias for node: " << PrintNode(node());
        }
#endif
      }
    }
  }
}

StaticRuntime::StaticRuntime(const StaticModule& sm)
    : values_(sm.value_buffer_size()) {
  std::copy(sm.constants().begin(), sm.constants().end(), values_.data());
  // default task launcher set to inter-op thread pool
  async_task_launcher_ = at::launch;
  block_ = std::make_unique<BlockRunner>(
      sm,
      values_.data(),
      sm.root_block(),
      &async_task_launcher_,
      true /*is_root_block*/);
}

c10::IValue StaticRuntime::operator()(
    const std::vector<c10::IValue>& args,
    const KeywordArgs& kwargs) {
  return (*block_)(args, kwargs);
}

c10::IValue StaticRuntime::operator()(
    std::vector<c10::IValue>&& args,
    const KeywordArgs& kwargs) {
  return (*block_)(std::move(args), kwargs);
}

c10::intrusive_ptr<c10::ivalue::Future> StaticRuntime::runAsync(
    const std::vector<c10::IValue>& args,
    const KeywordArgs& kwargs,
    torch::jit::TaskLauncher taskLauncher) {
  async_task_launcher_ = std::move(taskLauncher);
  return block_->runAsync(args, kwargs);
}

c10::intrusive_ptr<c10::ivalue::Future> StaticRuntime::runAsync(
    std::vector<c10::IValue>&& args,
    const KeywordArgs& kwargs,
    torch::jit::TaskLauncher taskLauncher) {
  async_task_launcher_ = std::move(taskLauncher);
  return block_->runAsync(std::move(args), kwargs);
}

bool StaticRuntime::check_for_memory_leak(bool output_returned) {
  return block_->check_for_memory_leak(
      output_returned, /* recurse_on_sub_blocks */ true);
}

bool StaticRuntime::checkOutputTensorMemoryLeaks() {
  return block_->checkOutputTensorMemoryLeaks();
}

void StaticRuntime::deallocateOutputTensors() {
  block_->deallocateOutputTensors();
}

bool StaticRuntime::isManagedOutputTensor(const IValue& ivalue) const {
  return block_->isManagedOutputTensor(ivalue);
}

void StaticRuntime::disableManageOutputTensors() {
  block_->disableManageOutputTensors();
}

const MemoryPlanner* StaticRuntime::get_memory_planner() const {
  return block_->get_memory_planner();
}

} // namespace jit
} // namespace torch