1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
#include <torch/csrc/jit/runtime/static/init.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/runtime/static/fusion.h>
#include <torch/csrc/jit/runtime/static/impl.h>
// This number is a heuristic determined with pytorch/benchmark
#define DEFAULT_FUSION_SIZE 4
namespace torch {
namespace jit {
void initStaticModuleBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::class_<StaticModule> static_module(m, "StaticModule");
py::class_<StaticRuntime::IndividualMetrics>(
static_module, "IndividualMetrics")
.def_readonly("setup_time", &StaticRuntime::IndividualMetrics::setup_time)
.def_readonly(
"memory_alloc_time",
&StaticRuntime::IndividualMetrics::memory_alloc_time)
.def_readonly(
"memory_dealloc_time",
&StaticRuntime::IndividualMetrics::memory_dealloc_time)
.def_readonly(
"output_dealloc_time",
&StaticRuntime::IndividualMetrics::output_dealloc_time)
.def_readonly(
"first_iter_time", &StaticRuntime::IndividualMetrics::first_iter_time)
.def_readonly("total_time", &StaticRuntime::IndividualMetrics::total_time)
.def_readonly(
"out_nodes_count", &StaticRuntime::IndividualMetrics::out_nodes_count)
.def_readonly(
"total_nodes_count",
&StaticRuntime::IndividualMetrics::total_nodes_count)
.def_readonly(
"time_per_node", &StaticRuntime::IndividualMetrics::time_per_node)
.def_readonly(
"time_per_node_type",
&StaticRuntime::IndividualMetrics::time_per_node_type)
.def_readonly(
"percent_per_node_type",
&StaticRuntime::IndividualMetrics::percent_per_node_type)
.def_readonly(
"instances_per_node_type",
&StaticRuntime::IndividualMetrics::instances_per_node_type)
.def_readonly("out_nodes", &StaticRuntime::IndividualMetrics::out_nodes);
static_module
.def(
"__call__",
[](StaticModule& self,
const py::args& args,
const py::kwargs& kwargs) {
std::vector<c10::IValue> arg_ivalues;
std::unordered_map<std::string, c10::IValue> kwarg_ivalues;
for (size_t i = 0; i < args.size(); ++i) {
auto ivalue = torch::jit::toIValue(args[i], c10::AnyType::get());
arg_ivalues.push_back(ivalue);
}
for (const auto& kv : kwargs) {
kwarg_ivalues[py::cast<std::string>(kv.first)] =
torch::jit::toIValue(kv.second, c10::AnyType::get());
}
c10::IValue ret = self(arg_ivalues, kwarg_ivalues);
return toPyObject(ret);
})
.def(
"benchmark",
[](StaticModule& self,
const std::vector<at::Tensor>& args,
const std::unordered_map<std::string, at::Tensor>& kwargs,
const int warmup_runs,
const int main_runs) {
std::vector<c10::IValue> arg_ivalues{args.begin(), args.end()};
std::unordered_map<std::string, c10::IValue> kwarg_ivalues{
kwargs.begin(), kwargs.end()};
self.runtime().benchmark(
{arg_ivalues}, {kwarg_ivalues}, warmup_runs, main_runs);
})
.def(
"benchmark_individual_ops",
[](StaticModule& self,
const std::vector<at::Tensor>& args,
const std::unordered_map<std::string, at::Tensor>& kwargs,
const int warmup_runs,
const int main_runs) {
std::vector<c10::IValue> arg_ivalues{args.begin(), args.end()};
std::unordered_map<std::string, c10::IValue> kwarg_ivalues{
kwargs.begin(), kwargs.end()};
return self.runtime().benchmark_individual_ops(
{arg_ivalues}, {kwarg_ivalues}, warmup_runs, main_runs);
})
.def(
"runAsync",
[](StaticModule& self,
const py::tuple& args,
const py::dict& kwargs) {
std::vector<c10::IValue> arg_ivalues;
for (const auto& elem : args) {
arg_ivalues.push_back(
torch::jit::toIValue(elem, c10::AnyType::get()));
}
std::unordered_map<std::string, c10::IValue> kwarg_ivalues;
for (const auto& kv : kwargs) {
kwarg_ivalues[py::cast<std::string>(kv.first)] =
torch::jit::toIValue(kv.second, c10::AnyType::get());
}
// custom executor for async op execution
auto task_launcher = [](const std::function<void()>& f) {
at::launch(f);
};
return toPyObject(self.runtime().runAsync(
arg_ivalues, kwarg_ivalues, task_launcher));
});
m.def(
"_jit_to_static_module",
[](std::shared_ptr<torch::jit::Graph> g) { return StaticModule(g); })
.def(
"_jit_to_static_module",
[](const torch::jit::Module& module) { return StaticModule(module); })
.def(
"_fuse_to_static_module",
[](torch::jit::Module& module, size_t min_size) {
module.eval();
module = freeze_module(module);
Method method = module.get_method("forward");
auto graph = method.graph();
fuseStaticSubgraphs(graph, min_size);
},
py::arg("module"),
py::arg("min_size") = DEFAULT_FUSION_SIZE)
.def(
"_fuse_to_static_module",
[](std::shared_ptr<torch::jit::Graph> g, size_t min_size) {
fuseStaticSubgraphs(g, min_size);
},
py::arg("graph"),
py::arg("min_size") = DEFAULT_FUSION_SIZE);
}
} // namespace jit
} // namespace torch
|