1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#pragma once
#include <ATen/Utils.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/static/impl.h>
namespace at {
namespace native {
at::Tensor& reshape_copy_out(
at::Tensor& out,
const at::Tensor& self,
const at::DimVector& proposed_shape,
bool infer_size = true);
at::Tensor& to_copy_out(
Tensor& out,
const Tensor& self,
bool non_blocking,
bool copy_strides,
c10::optional<MemoryFormat> memory_format);
} // namespace native
} // namespace at
namespace torch {
namespace jit {
using SROpFunctor = SROperator (*)(Node* n);
struct SROperatorFunctor {
virtual SROperator Generate(Node*) {
SROperator out;
return out;
}
virtual ~SROperatorFunctor() = default;
};
C10_DECLARE_REGISTRY(SROperatorRegistry, SROperatorFunctor);
#define REGISTER_OPERATOR_FUNCTOR(name, id, ...) \
struct SROperatorFunctor_##id : public SROperatorFunctor { \
const SROpFunctor fn = __VA_ARGS__; \
SROperator Generate(Node* n) override { \
return fn(n); \
} \
}; \
C10_REGISTER_CLASS(SROperatorRegistry, name, SROperatorFunctor_##id);
C10_DECLARE_REGISTRY(SRNativeOperatorRegistry, SROperatorFunctor);
#define REGISTER_NATIVE_OPERATOR_FUNCTOR(name, id, ...) \
struct SRNativeOperatorFunctor_##id : public SROperatorFunctor { \
const SROpFunctor fn = __VA_ARGS__; \
SROperator Generate(Node* n) override { \
return fn(n); \
} \
}; \
C10_REGISTER_CLASS( \
SRNativeOperatorRegistry, name, SRNativeOperatorFunctor_##id);
inline at::Tensor create_empty_from(const at::Tensor& t) {
return at::detail::empty_cpu(
{0},
c10::typeMetaToScalarType(t.dtype()),
t.layout(),
t.device(),
c10::nullopt,
c10::nullopt);
}
inline at::Tensor create_empty_from(
at::IntArrayRef sizes,
const at::Tensor& t) {
return at::detail::empty_cpu(
sizes,
c10::typeMetaToScalarType(t.dtype()),
t.layout(),
t.device(),
c10::nullopt,
c10::nullopt);
}
inline at::Tensor create_empty(c10::ScalarType dtype) {
return at::detail::empty_cpu(
{0}, dtype, c10::nullopt, c10::nullopt, c10::nullopt, c10::nullopt);
}
inline at::Tensor create_empty_from(
const at::Tensor& t,
c10::ScalarType dtype) {
return at::detail::empty_cpu(
{0}, dtype, t.layout(), t.device(), c10::nullopt, c10::nullopt);
}
inline at::Tensor create_empty_from(const at::Tensor& t, c10::Layout layout) {
return at::detail::empty_cpu(
{0},
c10::typeMetaToScalarType(t.dtype()),
layout,
t.device(),
c10::nullopt,
c10::nullopt);
}
inline at::Tensor create_empty_from(const at::Tensor& t, c10::Device device) {
return at::detail::empty_cpu(
{0},
c10::typeMetaToScalarType(t.dtype()),
t.layout(),
device,
c10::nullopt,
c10::nullopt);
}
inline at::Tensor create_empty_from(
const at::Tensor& t,
c10::MemoryFormat memory_format) {
return at::detail::empty_cpu(
{0},
c10::typeMetaToScalarType(t.dtype()),
t.layout(),
t.device(),
c10::nullopt,
memory_format);
}
inline at::Tensor create_empty_from(
const at::Tensor& t,
c10::ScalarType dtype,
c10::MemoryFormat memory_format) {
return at::detail::empty_cpu(
{0}, dtype, t.layout(), t.device(), c10::nullopt, memory_format);
}
inline bool checkResizedDataPtr(at::Tensor& t) {
auto const prev_data_ptr = t.data_ptr();
t.resize_({0});
return prev_data_ptr == t.data_ptr();
}
inline void fastResizeToZero(at::Tensor& t) {
t.unsafeGetTensorImpl()->set_sizes_contiguous({0});
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(checkResizedDataPtr(t));
}
// check if an op has an out variant registered in Static Runtime
bool opIsRegistered(const c10::Symbol& op_name);
// check if Static Runtime can run an op natively.
// prim ops that are implemented directly in the jit interpreter are implemented
// as native ops in Static Runtime
bool nativeOpIsRegistered(const c10::Symbol& op_name);
bool canReuseInputsOutputs(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant);
bool isOptimizableContainerType(
Node* n,
const FastMap<Node*, bool>& node_has_out_variant);
SROperator getOutOfPlaceOperation(Node* n);
SROperator getNativeOperation(Node* n);
bool hasVarArgs(Node* n);
inline std::string PrintNode(const Node* node) {
std::ostringstream ss;
node->print(ss, 0, nullptr, false);
return ss.str();
}
inline void LogAndDumpSchema(const Node* node) {
VLOG(1) << "Found schema mismatch for: " << node->schema();
}
inline bool sr_schema_check(torch::jit::Node*) {
return true;
}
template <typename Schema, typename... Schemas>
bool sr_schema_check(
torch::jit::Node* node,
Schema&& first,
Schemas&&... rest) {
auto is_match = node->matches(first) || sr_schema_check(node, rest...);
if (!is_match) {
torch::jit::LogAndDumpSchema(node);
}
return is_match;
}
bool sr_schema_check_kind(torch::jit::Node* node, c10::Symbol node_kind);
} // namespace jit
} // namespace torch
|