1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
#include <google/protobuf/util/json_util.h>
#include <google/protobuf/util/type_resolver_util.h>
#include <torch/csrc/jit/frontend/script_type_parser.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#include <torch/csrc/jit/serialization/import_legacy.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/source_range_serialization_impl.h>
#include <caffe2/core/common.h>
#include <caffe2/core/types.h>
#include <caffe2/proto/caffe2_pb.h>
#include <caffe2/proto/torch_pb.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/ATen.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
using caffe2::serialize::PyTorchStreamReader;
void postSetStateValidate(const IValue& v);
namespace {
struct ClassResolver : public Resolver {
explicit ClassResolver(const SourceImporter& source_importer)
: source_importer_(source_importer) {}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
override {
return source_importer_.loadType(c10::QualifiedName(name));
}
private:
SourceImporter source_importer_;
};
class ScriptModuleDeserializer final {
public:
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
const c10::optional<at::Device>& device)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
device_(device),
source_importer_(
compilation_unit_,
&constant_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, export_prefix_, qualifier);
},
reader_->version()) {
for (auto& constant : constant_table_) {
TORCH_INTERNAL_ASSERT(constant.isTensor(), " expected a tensor");
tensor_table_.emplace_back(std::move(constant).toTensor());
}
}
Module LEGACY_deserialize();
private:
at::Tensor LEGACY_loadTensor(
const torch::TensorDef& tensor_proto,
std::unordered_map<std::string, at::Storage>& storageMap);
void LEGACY_loadTensorTable(torch::ModelDef* model_def);
void LEGACY_moduleSetState(const Module& module, IValue state);
IValue LEGACY_loadPickleArchive(const std::string& name);
Module LEGACY_convertModule(const torch::ModuleDef& module_def);
std::vector<IValue> LEGACY_pickled_ivalues_;
std::vector<std::string> LEGACY_moduleStack_;
std::shared_ptr<Source> sourceLoader(const std::string& qualifier);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::shared_ptr<PyTorchStreamReader> reader_;
c10::optional<at::Device> device_;
// Legacy only tensor can be a constant.
std::vector<at::IValue> constant_table_;
std::vector<at::Tensor> tensor_table_;
SourceImporter source_importer_;
std::string export_prefix_ = "code/";
};
Module ScriptModuleDeserializer::LEGACY_deserialize() {
torch::ModelDef model_def;
at::DataPtr data_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t data_size;
std::tie(data_ptr, data_size) = reader_->getRecord("model.json");
// NB: cannot use JsonStringToMessage, since fbcode's protobuf is too old
// be consistent with JsonStringToMessage
std::string url_prefix = "type.googleapis.com";
std::unique_ptr<::google::protobuf::util::TypeResolver> resolver(
::google::protobuf::util::NewTypeResolverForDescriptorPool(
url_prefix, model_def.GetDescriptor()->file()->pool()));
std::string json_string = std::string(
static_cast<char*>(data_ptr.get()),
static_cast<char*>(data_ptr.get()) + data_size);
std::string binary_string;
::google::protobuf::util::JsonParseOptions opts;
opts.ignore_unknown_fields = true;
auto convert_result = ::google::protobuf::util::JsonToBinaryString(
resolver.get(),
url_prefix + "/" + model_def.GetDescriptor()->full_name(),
json_string,
&binary_string,
opts);
if (!convert_result.ok()) {
std::stringstream ss;
ss << convert_result;
AT_ERROR(ss.str());
}
AT_ASSERTM(
model_def.ParseFromString(binary_string),
"JSON transcoder produced invalid protobuf output.");
auto proto_version = model_def.proto_version();
export_prefix_ = "libs/";
LEGACY_loadTensorTable(&model_def);
AT_ASSERT(proto_version < 6);
if (proto_version == 2) {
const auto& list = LEGACY_loadPickleArchive("attributes.pkl").toList();
LEGACY_pickled_ivalues_.insert(
LEGACY_pickled_ivalues_.end(), list.begin(), list.end());
} else if (proto_version >= 3) {
LEGACY_pickled_ivalues_ =
std::move(*LEGACY_loadPickleArchive("attributes.pkl").toTuple())
.elements()
.vec();
}
LEGACY_moduleStack_.emplace_back("__torch__");
const auto& module_def = model_def.main_module();
// Move tensors in constant table.
for (auto& tensor : tensor_table_) {
constant_table_.emplace_back(IValue(std::move(tensor)));
}
return LEGACY_convertModule(module_def);
}
IValue ScriptModuleDeserializer::LEGACY_loadPickleArchive(
const std::string& name) {
at::DataPtr attributes_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t attributes_size;
std::tie(attributes_ptr, attributes_size) = reader_->getRecord(name);
auto ivalue = unpickle(
reinterpret_cast<const char*>(attributes_ptr.get()),
attributes_size,
[&](const c10::QualifiedName& qn) {
auto cls = source_importer_.loadType(qn)->expect<ClassType>();
return c10::StrongTypePtr(compilation_unit_, std::move(cls));
},
tensor_table_);
return ivalue;
}
void ScriptModuleDeserializer::LEGACY_loadTensorTable(
torch::ModelDef* model_def) {
std::unordered_map<std::string, at::Storage> storageMap;
for (const torch::TensorDef& tensor : model_def->tensors()) {
tensor_table_.emplace_back(LEGACY_loadTensor(tensor, storageMap));
}
}
at::Tensor ScriptModuleDeserializer::LEGACY_loadTensor(
const torch::TensorDef& tensor_proto,
std::unordered_map<std::string, at::Storage>& storageMap) {
std::vector<int64_t> dims(
tensor_proto.dims().begin(), tensor_proto.dims().end());
std::vector<int64_t> strides(
tensor_proto.strides().begin(), tensor_proto.strides().end());
auto type = at::typeMetaToScalarType(
caffe2::DataTypeToTypeMeta(tensor_proto.data_type()));
if (tensor_proto.is_quantized()) {
type = toQIntType(type);
}
const std::string& record_key = tensor_proto.data().key();
AT_ASSERT(tensor_proto.has_device() && !tensor_proto.device().empty());
at::Device device(tensor_proto.device());
if (device_.has_value()) {
// override the device, if user provides map_location
device = device_.value();
}
auto storage_it = storageMap.find(record_key);
if (storage_it == storageMap.end()) {
at::DataPtr storage_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
uint64_t record_size;
std::tie(storage_ptr, record_size) = reader_->getRecord(record_key);
auto cpu_storage = at::Storage(
c10::Storage::use_byte_size_t(),
record_size,
std::move(storage_ptr),
/*allocator=*/nullptr,
/*resizable=*/false); // NB: we didn't set any allocator for the tensor
if (device.is_cpu()) {
storage_it =
storageMap.insert(std::make_pair(record_key, cpu_storage)).first;
} else if (device.is_cuda()) {
at::Tensor cpu_tensor =
at::empty({0}, at::CPU(type).options()).set_(cpu_storage);
at::Storage cuda_storage =
cpu_tensor.to(device, cpu_tensor.scalar_type()).storage();
storage_it =
storageMap.insert(std::make_pair(record_key, cuda_storage)).first;
} else {
AT_ERROR(
"supported devices include CPU and CUDA, however got ",
DeviceTypeName(device.type(), false));
}
}
if (storage_it->second.device().type() != device.type() ||
(device.has_index() &&
storage_it->second.device().index() != device.index())) {
std::stringstream oss;
oss << "storage previously was specified with device "
<< storage_it->second.device() << "but now is specified with device "
<< device << std::endl;
AT_ERROR(oss.str());
}
at::Tensor result;
if (device.is_cpu()) {
if (tensor_proto.is_quantized()) {
result =
at::_empty_affine_quantized(
{0}, type, tensor_proto.scale(), tensor_proto.zero_point())
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
} else {
result =
at::empty({0}, at::CPU(type).options())
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
}
} else if (device.is_cuda()) {
result =
at::empty(
{0}, c10::TensorOptions(type).device(storage_it->second.device()))
.set_(storage_it->second, tensor_proto.offset(), dims, strides);
}
AT_ASSERT(result.defined());
result = autograd::make_variable(result, tensor_proto.requires_grad());
return result;
}
void ScriptModuleDeserializer::LEGACY_moduleSetState(
const Module& module,
IValue state) {
auto setstate = module.find_method("__setstate__");
TORCH_CHECK(
setstate,
"Cannot call '__setstate__' method because"
" it does not exist");
// Since all Tensors are going to be None before `__setstate__` is run, we
// can't do any optimizations on them that depend on the module type since the
// values aren't consistent with their corresponding types.
GraphOptimizerEnabledGuard guard(false);
// TODO: once modules are first class in the interpreter and methods are not
// lowered, change this to `module->run_method("__setstate__", {state});`
if (setstate->num_inputs() == 1) {
setstate->run({module._ivalue()});
} else if (setstate->num_inputs() == 2) {
setstate->run({module._ivalue(), std::move(state)});
} else {
AT_ERROR("Unexpected schema on '__setstate__'");
}
}
Module ScriptModuleDeserializer::LEGACY_convertModule(
const torch::ModuleDef& module_def) {
// HACK: The current model exporter can create module_defs with invalid Python
// identifiers as names (they contain `.`)
const auto atoms = c10::QualifiedName(module_def.name()).atoms();
const size_t numPushed = atoms.size();
for (const auto& atom : atoms) {
auto is_digits = [](const std::string& str) {
return std::all_of(str.begin(), str.end(), ::isdigit);
};
auto sanitized = is_digits(atom) ? std::string("_") + atom : atom;
LEGACY_moduleStack_.emplace_back(sanitized);
}
auto module =
Module(c10::QualifiedName(LEGACY_moduleStack_), compilation_unit_);
for (const auto i : c10::irange(module_def.submodules_size())) {
const torch::ModuleDef& sub_def = module_def.submodules(i);
auto submodule = LEGACY_convertModule(sub_def);
module.register_module(sub_def.name(), submodule);
}
for (const auto i : c10::irange(module_def.parameters_size())) {
const torch::ParameterDef& param_def = module_def.parameters(i);
at::Tensor tensor = constant_table_.at(param_def.tensor_id()).toTensor();
if (param_def.is_buffer()) {
module.register_buffer(param_def.name(), tensor);
} else {
module.register_parameter(param_def.name(), tensor, /*is_buffer=*/false);
}
}
ScriptTypeParser typeParser(
std::make_shared<ClassResolver>(source_importer_));
for (const auto i : c10::irange(module_def.attributes_size())) {
const torch::AttributeDef& attr_def = module_def.attributes(i);
if (module.hasattr(attr_def.name())) {
// this attribute was already registered as a buffer above.
continue;
}
IValue ivalue;
if (attr_def.id() >= 0) {
// attribute has no value in the table, set it to None for now. After
// __getstate__, check that all the attributes that are not Optional
// can't be None
ivalue = LEGACY_pickled_ivalues_.at(attr_def.id());
}
module.register_attribute(
attr_def.name(), typeParser.parseType(attr_def.type()), ivalue);
}
// If present, load in the table of source ranges from the original
// generating code.
std::shared_ptr<SourceRangeUnpickler> gen_ranges = nullptr;
if (module_def.has_torchscript_debug_arena()) {
at::DataPtr data;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t size;
std::tie(data, size) =
reader_->getRecord(module_def.torchscript_debug_arena().key());
gen_ranges =
std::make_shared<ConcreteSourceRangeUnpickler>(std::move(data), size);
}
if (module_def.has_torchscript_arena()) {
at::DataPtr data;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t size;
std::tie(data, size) =
reader_->getRecord(module_def.torchscript_arena().key());
std::string data_str(static_cast<const char*>(data.get()), size);
auto src = std::make_shared<Source>(
std::string(static_cast<const char*>(data.get()), size),
module_def.torchscript_arena().key(),
1,
std::move(gen_ranges));
source_importer_.LEGACY_import_methods(module, src);
}
if (module_def.has_get_state_attribute_id()) {
LEGACY_moduleSetState(
module,
LEGACY_pickled_ivalues_.at(module_def.get_state_attribute_id()));
}
const ClassTypePtr& module_type = module._ivalue()->type();
for (size_t i = 0, N = module_type->numAttributes(); i < N; ++i) {
// Verify that all the non-optional attributes have been initialized
// TODO: Issue #20497
const IValue& v = module._ivalue()->getSlot(i);
if (module_type->getAttribute(i)->kind() != TypeKind::OptionalType) {
TORCH_CHECK(
!v.isNone(),
"The field '",
module_type->getAttributeName(i),
"' was left unitialized after __setstate__, but expected a ",
"value of type '",
v.type()->repr_str(),
"'");
}
}
for (const auto i : c10::irange(numPushed)) {
(void)i; // Suppress unused variable warning
LEGACY_moduleStack_.pop_back();
}
return module;
}
} // namespace
Module LEGACY_deserialize(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<caffe2::serialize::PyTorchStreamReader> reader,
const c10::optional<c10::Device>& device) {
ScriptModuleDeserializer deserializer(
std::move(cu), std::move(reader), device);
return deserializer.LEGACY_deserialize();
}
} // namespace jit
} // namespace torch
|