1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#include <torch/csrc/jit/serialization/pickle.h>
#include <ATen/core/ivalue.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import_read.h>
namespace torch {
namespace jit {
void pickle(
std::function<void(const char* data_start, size_t data_len)> writer,
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table) {
Pickler pickler(std::move(writer), tensor_table, nullptr, nullptr);
pickler.protocol();
pickler.pushIValue(ivalue);
pickler.stop();
}
std::vector<char> pickle(
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table) {
std::vector<char> data;
pickle(
[&](const char* bytes, size_t len) {
data.insert(data.end(), bytes, bytes + len);
},
ivalue,
tensor_table);
return data;
}
// This has to live here instead of the C++ API to mirror torch.save since the
// mobile build excludes the C++ API
std::vector<char> pickle_save(const at::IValue& ivalue) {
#ifndef C10_MOBILE
// Pickle the IValue into an array of bytes
std::vector<char> pickle_data;
Pickler pickler([&](const char* buf, size_t size) {
pickle_data.insert(pickle_data.end(), buf, buf + size);
});
pickler.protocol();
pickler.pushIValue(ivalue);
pickler.stop();
std::vector<char> container_data;
container_data.reserve(pickle_data.size());
caffe2::serialize::PyTorchStreamWriter writer(
[&](const void* void_bytes, size_t len) {
const char* bytes = reinterpret_cast<const char*>(void_bytes);
container_data.insert(container_data.end(), bytes, bytes + len);
return len;
});
// Write the generated bytes and the associated tensors into a data.pkl file
// and data/0, data/1, data/2... files for each of the tensors
writeArchiveAndTensors(
"data",
pickle_data.data(),
pickle_data.size(),
pickler.tensorData(),
writer);
return container_data;
#else
AT_ERROR(
"pickle_save not supported on mobile "
"(see https://github.com/pytorch/pytorch/pull/30108)");
#endif
}
#ifndef C10_MOBILE
class VectorReader : public caffe2::serialize::ReadAdapterInterface {
public:
VectorReader(std::vector<char> data) : data_(std::move(data)) {}
size_t size() const override {
return data_.size();
}
size_t read(uint64_t pos, void* buf, size_t n, const char* what)
const override {
std::copy(
data_.data() + pos,
data_.data() + pos + n,
reinterpret_cast<char*>(buf));
return n;
}
private:
std::vector<char> data_;
};
#endif
IValue pickle_load(const std::vector<char>& data) {
// Read in the pickle data
#ifndef C10_MOBILE
caffe2::serialize::PyTorchStreamReader reader(
std::make_unique<VectorReader>(data));
return readArchiveAndTensors(
"data",
/*pickle_prefix=*/"",
/*tensor_prefix=*/"",
/*type_resolver=*/c10::nullopt,
/*obj_loader=*/c10::nullopt,
/*device=*/c10::nullopt,
reader);
#else
AT_ERROR(
"pickle_load not supported on mobile "
"(see https://github.com/pytorch/pytorch/pull/30108)");
#endif
};
IValue unpickle(
std::function<size_t(char*, size_t)> reader,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table,
c10::TypePtr (*type_parser)(const std::string&)) {
Unpickler unpickler(
std::move(reader), std::move(type_resolver), tensor_table, type_parser);
return unpickler.parse_ivalue();
}
IValue unpickle(
const char* data,
size_t size,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table,
c10::TypePtr (*type_parser)(const std::string&)) {
size_t bytes_read = 0;
return unpickle(
[&](char* buffer, size_t len) -> size_t {
if (bytes_read >= size) {
return 0;
}
len = std::min(size - bytes_read, len);
// Copy len bytes into buffer
const char* start = data + bytes_read;
std::memcpy(buffer, start, len);
bytes_read += len;
return len;
},
std::move(type_resolver),
tensor_table,
type_parser);
}
} // namespace jit
} // namespace torch
|