1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
|
#include <ATen/ATen.h>
#include <ATen/core/Dict.h>
#ifdef USE_RPC
#include <torch/csrc/distributed/rpc/rref_context.h>
#endif
#include <ATen/quantized/Quantizer.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <string>
#include <type_traits>
namespace torch {
namespace jit {
using ::c10::IValue;
// Protocol 2 is the highest that can be decoded by Python 2
// See https://docs.python.org/3/library/pickle.html#data-stream-format
constexpr static uint8_t PROTOCOL_VERSION = 2;
// NOLINTNEXTLINE(bugprone-exception-escape)
Pickler::~Pickler() {
flush();
}
void Pickler::protocol() {
push<PickleOpCode>(PickleOpCode::PROTO);
push<uint8_t>(PROTOCOL_VERSION);
}
void Pickler::startTuple() {
// All attributes get pushed into a tuple and their indices saved in the
// module def
push<PickleOpCode>(PickleOpCode::MARK);
}
void Pickler::endTuple() {
push<PickleOpCode>(PickleOpCode::TUPLE);
}
void Pickler::stop() {
push<PickleOpCode>(PickleOpCode::STOP);
flush();
}
// unmemoized version called by pushIValue
void Pickler::pushIValueImpl(const IValue& ivalue) {
if (ivalue.isTensor()) {
pushTensor(ivalue);
} else if (ivalue.isTuple()) {
pushTuple(ivalue);
} else if (ivalue.isDouble()) {
pushDouble(ivalue.toDouble());
} else if (ivalue.isComplexDouble()) {
pushComplexDouble(ivalue);
} else if (ivalue.isInt()) {
pushInt(ivalue.toInt());
} else if (ivalue.isBool()) {
pushBool(ivalue.toBool());
} else if (ivalue.isString()) {
pushString(ivalue.toStringRef());
} else if (ivalue.isGenericDict()) {
pushDict(ivalue);
} else if (ivalue.isNone()) {
push<PickleOpCode>(PickleOpCode::NONE);
} else if (ivalue.isIntList()) {
pushSpecializedList(ivalue, "build_intlist", [=](const IValue& ivalue) {
for (const int64_t item : ivalue.toIntVector()) {
pushInt(item);
}
});
} else if (ivalue.isTensorList()) {
pushSpecializedList(ivalue, "build_tensorlist", [=](const IValue& ivalue) {
for (const at::Tensor& item : ivalue.toTensorVector()) {
pushIValue(item);
}
});
} else if (ivalue.isDoubleList()) {
pushSpecializedList(ivalue, "build_doublelist", [=](const IValue& ivalue) {
for (double item : ivalue.toDoubleVector()) {
pushDouble(item);
}
});
} else if (ivalue.isBoolList()) {
pushSpecializedList(ivalue, "build_boollist", [=](const IValue& ivalue) {
for (bool item : ivalue.toBoolList()) {
pushBool(item);
}
});
// note: isList must be after isIntList and friends because
// isList is true for all lists.
} else if (ivalue.isList()) {
pushGenericList(ivalue);
} else if (ivalue.isObject()) {
auto obj = ivalue.toObject();
auto type = obj->type();
if (memoized_class_types_ != nullptr) {
// memoize every class type the Pickler encountered
// This is used to make sure we capture all the run-time types
// and serialize them properly for class/interface polymorphism
memoized_class_types_->emplace_back(type);
}
auto type_name = type->name().value();
if (type_renamer_) {
type_name = type_renamer_(type);
}
pushGlobal(type_name.prefix(), type_name.name());
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
push<PickleOpCode>(PickleOpCode::NEWOBJ);
if (checkHasValidSetGetState(type)) {
Function& getstate = type->getMethod("__getstate__");
pushIValue(getstate({obj}));
} else {
push<PickleOpCode>(PickleOpCode::EMPTY_DICT);
push<PickleOpCode>(PickleOpCode::MARK);
for (size_t i = 0, n = type->numAttributes(); i < n; ++i) {
pushString(type->getAttributeName(i));
pushIValue(obj->getSlot(i));
}
push<PickleOpCode>(PickleOpCode::SETITEMS);
}
push<PickleOpCode>(PickleOpCode::BUILD);
} else if (ivalue.isDevice()) {
pushDevice(ivalue);
} else if (ivalue.isCapsule()) {
std::stringstream err;
err << "Cannot serialize custom bound C++ class";
if (memoized_class_types_ && memoized_class_types_->size()) {
if (auto qualname = memoized_class_types_->back()->name()) {
err << " " << qualname->qualifiedName();
}
}
err << ". Please define serialization methods via def_pickle() for "
"this class.";
AT_ERROR(err.str());
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
TORCH_CHECK(
torch::distributed::rpc::getAllowJitRRefPickle() == true,
"RRef jit pickling is only allowed inside RPC calls.");
pushRRef(ivalue);
#else
TORCH_CHECK(
false, "RRef pickling is only supported with the distributed package");
#endif
} else if (ivalue.isEnum()) {
auto enum_holder = ivalue.toEnumHolder();
const auto& qualified_class_name =
enum_holder->type()->qualifiedClassName();
pushGlobal(qualified_class_name.prefix(), qualified_class_name.name());
pushIValue(enum_holder->value());
push<PickleOpCode>(PickleOpCode::REDUCE);
} else {
AT_ERROR("Unknown IValue type for pickling: ", ivalue.tagKind());
}
}
void Pickler::pushDevice(const IValue& ivalue) {
auto device = ivalue.toDevice();
auto deviceStr = device.str();
auto it = memoized_devices_map_.find(deviceStr);
if (it == memoized_devices_map_.end()) {
pushGlobal("torch", "device");
pushString(deviceStr);
push<PickleOpCode>(PickleOpCode::TUPLE1);
push<PickleOpCode>(PickleOpCode::REDUCE);
memoized_devices_map_[deviceStr] = pushNextBinPut();
} else {
pushBinGet(it->second);
}
}
#ifdef USE_RPC
void Pickler::pushRRef(const IValue& ivalue) {
// It is the same as how rref is pickled in python, see PyRRef::pickle
auto rrefInterface = ivalue.toRRef();
auto rref =
c10::static_intrusive_pointer_cast<distributed::rpc::RRef>(rrefInterface);
pushGlobal("torch.distributed.rpc", "rref");
auto& ctx = distributed::rpc::RRefContext::getInstance();
auto rrefForkData = ctx.prepareChildFork(rref);
push<PickleOpCode>(PickleOpCode::MARK);
pushInt(rrefForkData.ownerId_);
pushInt(rrefForkData.rrefId_.createdOn_);
pushInt(rrefForkData.rrefId_.localId_);
pushInt(rrefForkData.forkId_.createdOn_);
pushInt(rrefForkData.forkId_.localId_);
pushInt(rrefForkData.parent_);
pushString(rrefForkData.typeStr_);
push<PickleOpCode>(PickleOpCode::TUPLE);
push<PickleOpCode>(PickleOpCode::REDUCE);
}
#endif
void Pickler::pushIValue(const IValue& ivalue) {
bool shouldMemoizeByPointer =
ivalue.isPtrType() && !ivalue.isString() && ivalue.use_count() > 1;
// Mutable ivalues are memoized by pointer equality, which we handle at this
// outer granularity. Immutable ivalues are memoized by value equality which
// is handled in the type-specific handlers inside pushIValueImpl.
if (shouldMemoizeByPointer) {
const void* ptr = ivalue.internalToPointer();
TORCH_CHECK(
ptr != nullptr,
"Pickler cannot memoize ",
ivalue.tagKind(),
" IValue ",
ivalue);
auto memo_entry = memoized_ivalue_map_.find(ptr);
if (memo_entry != memoized_ivalue_map_.end()) {
// This value has already been pushed, just do a BINGET
pushBinGet(memo_entry->second);
return;
}
pushIValueImpl(ivalue);
memoized_ivalues_.push_back(ivalue);
memoized_ivalue_map_[ptr] = pushNextBinPut();
} else {
pushIValueImpl(ivalue);
}
}
void Pickler::pushInt(int64_t n) {
if (n >= std::numeric_limits<uint8_t>::min() &&
n <= std::numeric_limits<uint8_t>::max()) {
push<PickleOpCode>(PickleOpCode::BININT1);
push<uint8_t>(n);
} else if (
n >= std::numeric_limits<uint16_t>::min() &&
n <= std::numeric_limits<uint16_t>::max()) {
push<PickleOpCode>(PickleOpCode::BININT2);
push<uint16_t>(n);
} else if (
n >= std::numeric_limits<int32_t>::min() &&
n <= std::numeric_limits<int32_t>::max()) {
push<PickleOpCode>(PickleOpCode::BININT);
push<int32_t>(n);
} else {
// Push 8 byte integer
push<PickleOpCode>(PickleOpCode::LONG1);
push<uint8_t>(8);
push<int64_t>(n);
}
}
void Pickler::pushBool(bool value) {
push<PickleOpCode>(value ? PickleOpCode::NEWTRUE : PickleOpCode::NEWFALSE);
}
void Pickler::pushBinGet(uint32_t memo_id) {
if (memo_id <= std::numeric_limits<uint8_t>::max()) {
push<PickleOpCode>(PickleOpCode::BINGET);
push<uint8_t>(memo_id);
} else {
// Memoized too many items, issue a LONG_BINGET instead
push<PickleOpCode>(PickleOpCode::LONG_BINGET);
push<uint32_t>(memo_id);
}
}
// unmemoized encoding of a string
void Pickler::pushStringImpl(const std::string& string) {
push<PickleOpCode>(PickleOpCode::BINUNICODE);
push<uint32_t>(string.size());
pushBytes(string);
}
void Pickler::pushString(const std::string& string) {
auto it = memoized_strings_map_.find(string);
if (it == memoized_strings_map_.end()) {
pushStringImpl(string);
memoized_strings_map_[string] = pushNextBinPut();
} else {
pushBinGet(it->second);
}
}
void Pickler::pushStorageOfTensor(const at::Tensor& tensor) {
const at::Storage& storage = tensor.storage();
void* addr = storage.unsafeGetStorageImpl();
auto it = memoized_storage_map_.find(addr);
if (it != memoized_storage_map_.end()) {
pushBinGet(it->second);
return;
}
// Tuple for persistent_load
push<PickleOpCode>(PickleOpCode::MARK);
// typename
pushString("storage");
// data_type
std::string data_type =
std::string(toString(tensor.scalar_type())).append("Storage");
pushGlobal("torch", data_type);
// root_key
std::string root_key = get_tensor_id_ != nullptr
? get_tensor_id_(tensor)
: c10::to_string(tensor_data_.size());
pushString(root_key);
// location
pushString(tensor.device().str());
// size
pushInt(tensor.storage().nbytes() / tensor.element_size());
push<PickleOpCode>(PickleOpCode::TUPLE);
push<PickleOpCode>(PickleOpCode::BINPERSID);
// TODO: Skip this if not writing tensors
memoized_storage_map_[addr] = pushNextBinPut();
tensor_data_.push_back(tensor);
}
void Pickler::pushBytes(const std::string& string) {
static const size_t kSmallStr = 32;
if (string.size() <= kSmallStr &&
bufferPos_ + string.size() <= buffer_.size()) {
// Small string that fits: buffer the data.
memcpy(buffer_.data() + bufferPos_, string.data(), string.size());
bufferPos_ += string.size();
} else {
// Otherwise, first flush, then write directly.
flush();
writer_(string.data(), string.size());
}
}
void Pickler::pushGlobal(
const std::string& module_name,
const std::string& class_name) {
std::string key;
key.reserve(module_name.size() + class_name.size() + 2);
key.append(module_name).append("\n").append(class_name).append("\n");
auto memo_entry = memoized_globals_map_.find(key);
if (memo_entry == memoized_globals_map_.end()) {
push<PickleOpCode>(PickleOpCode::GLOBAL);
pushBytes(key);
// Push BINPUT without adding anything to the memoized_ivalues_
size_t memo_id = pushNextBinPut();
memoized_globals_map_.insert({key, memo_id});
} else {
pushBinGet(memo_entry->second);
}
}
void Pickler::pushTensor(const IValue& ivalue) {
if (tensor_table_ == nullptr) {
pushLiteralTensor(ivalue);
} else {
pushTensorReference(ivalue);
}
}
void Pickler::pushLiteralSparseTensor(const at::Tensor& tensor) {
pushGlobal("torch._utils", "_rebuild_sparse_tensor");
push<PickleOpCode>(PickleOpCode::MARK);
// layout
auto layout = static_cast<int>(tensor.layout());
pushInt(layout);
switch (layout) {
case static_cast<int>(c10::Layout::Sparse):
// size
push<PickleOpCode>(PickleOpCode::MARK);
for (auto size : tensor.sizes()) {
pushInt(size);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
// requires grad
pushIValue(tensor.requires_grad());
// indices
pushTensor(tensor._indices());
// values
pushTensor(tensor._values());
break;
case static_cast<int>(c10::Layout::SparseCsr):
push<PickleOpCode>(PickleOpCode::MARK);
for (auto size : tensor.sizes()) {
pushInt(size);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
pushIValue(tensor.requires_grad());
pushTensor(tensor.crow_indices());
pushTensor(tensor.col_indices());
pushTensor(tensor.values());
break;
default:
TORCH_CHECK(
false,
"Unsupported sparse tensor layout type in serialization ",
static_cast<c10::Layout>(layout));
break;
}
// backward_hooks
pushGlobal("collections", "OrderedDict");
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
// Construct the collections.OrderedDict for the backward_hooks
push<PickleOpCode>(PickleOpCode::REDUCE);
push<PickleOpCode>(PickleOpCode::TUPLE);
// Call torch._utils._rebuild_sparse_coo_tensor
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushLiteralTensor(const IValue& ivalue) {
// In contrast to tensor references, literal tensors are included in the
// pickle program binary blob. They are written to the file after the STOP
// opcode. They can't be included in the pickle program itself without a bunch
// of extra machinery since byte strings are limited to 4 GB.
//
// The format here is the same one used by `torch.save()`. The code for the
// format can be found in `torch/serialization.py`.
auto& tensor = ivalue.toTensor();
if (tensor.is_sparse() || tensor.is_sparse_csr()) {
pushLiteralSparseTensor(tensor);
return;
}
bool quantized = tensor.is_quantized();
// The arguments to this function are:
// storage, storage_offset, size, stride, requires_grad, backward_hooks
pushGlobal(
"torch._utils", quantized ? "_rebuild_qtensor" : "_rebuild_tensor_v2");
push<PickleOpCode>(PickleOpCode::MARK);
pushStorageOfTensor(tensor);
// storage offset
pushInt(tensor.storage_offset());
// size
push<PickleOpCode>(PickleOpCode::MARK);
for (auto size : tensor.sizes()) {
pushInt(size);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
// stride
push<PickleOpCode>(PickleOpCode::MARK);
for (auto stride : tensor.strides()) {
pushInt(stride);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
if (quantized) {
push<PickleOpCode>(PickleOpCode::MARK);
pushGlobal("torch", toString(tensor.qscheme()));
// tuple of (qscheme, scale, zp) or (qscheme, scales, zps, axis)
switch (tensor.qscheme()) {
case at::kPerTensorAffine:
pushDouble(tensor.q_scale());
pushInt(tensor.q_zero_point());
break;
case at::kPerChannelAffineFloatQParams:
case at::kPerChannelAffine: {
pushTensor(tensor.q_per_channel_scales());
pushTensor(tensor.q_per_channel_zero_points());
pushInt(tensor.q_per_channel_axis());
} break;
default:
TORCH_CHECK(
false,
"Unsupported tensor quantization type in serialization ",
toString(tensor.qscheme()));
break;
}
push<PickleOpCode>(PickleOpCode::TUPLE);
}
// requires_grad
pushIValue(tensor.requires_grad());
// backward_hooks
pushGlobal("collections", "OrderedDict");
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
// Construct the collections.OrderedDict for the backward_hooks
push<PickleOpCode>(PickleOpCode::REDUCE);
push<PickleOpCode>(PickleOpCode::TUPLE);
// Call torch._utils._rebuild_tensor_v2
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushSpecializedList(
const IValue& ivalue,
const char* list_name,
const std::function<void(const IValue&)>& item_pusher) {
pushGlobal("torch.jit._pickle", list_name);
// Reduce arguments are spread (e.g. `*args`) before calling the global,
// so wrap in a tuple
push<PickleOpCode>(PickleOpCode::MARK);
push<PickleOpCode>(PickleOpCode::EMPTY_LIST);
// Mark list
push<PickleOpCode>(PickleOpCode::MARK);
// Add all items
item_pusher(ivalue);
// Finish list
push<PickleOpCode>(PickleOpCode::APPENDS);
// Finish tuple
push<PickleOpCode>(PickleOpCode::TUPLE);
// Call reduce
push<PickleOpCode>(PickleOpCode::REDUCE);
}
static inline double swapDouble(double value) {
const char* bytes = reinterpret_cast<const char*>(&value);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
double flipped;
char* out_bytes = reinterpret_cast<char*>(&flipped);
for (const auto i : c10::irange(sizeof(double))) {
out_bytes[i] = bytes[sizeof(double) - i - 1];
}
return *reinterpret_cast<double*>(out_bytes);
}
void Pickler::pushDouble(double value) {
push<PickleOpCode>(PickleOpCode::BINFLOAT);
// Python pickle format is big endian, swap.
push<double>(swapDouble(value));
}
void Pickler::pushComplexDouble(const IValue& value) {
c10::complex<double> d = value.toComplexDouble();
pushGlobal("builtins", "complex");
pushIValue(d.real());
pushIValue(d.imag());
push<PickleOpCode>(PickleOpCode::TUPLE2);
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushLong(const std::string& data) {
uint64_t size = data.size();
TORCH_INTERNAL_ASSERT(
size <= std::numeric_limits<uint8_t>::max(),
"Cannot pickle a long larger than 255 bytes");
push<PickleOpCode>(PickleOpCode::LONG1);
push<uint8_t>(size);
pushBytes(data);
}
void Pickler::pushTensorReference(const IValue& ivalue) {
pushGlobal("torch.jit._pickle", "build_tensor_from_id");
tensor_table_->push_back(ivalue.toTensor());
int64_t tensor_id = tensor_table_->size() - 1;
// Reduce arguments are spread (e.g. `*args`) before calling the global,
// so wrap in a tuple
push<PickleOpCode>(PickleOpCode::MARK);
pushIValue(tensor_id);
push<PickleOpCode>(PickleOpCode::TUPLE);
push<PickleOpCode>(PickleOpCode::REDUCE);
}
// startTypeTag() and endTypeTag() must be called in a pair, with 1 argument
// pushed on the stack in between them. They will add the type of a container
// ivalue to the stack as a string so we can preserve type tags across
// serialization
void Pickler::startTypeTag() {
if (tag_aggregates_) {
pushGlobal("torch.jit._pickle", "restore_type_tag");
}
}
namespace {
c10::optional<std::string> type_printer(const c10::Type& type) {
if (auto dyn = type.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str(type_printer);
}
return c10::nullopt;
}
} // namespace
// See startTypeTag
void Pickler::endTypeTag(const IValue& ivalue) {
if (!tag_aggregates_) {
return;
}
TORCH_INTERNAL_ASSERT(ivalue.isGenericDict() || ivalue.isList());
// Push the dict type
TORCH_INTERNAL_ASSERT(ivalue.type());
auto type = ivalue.type();
auto annot_str = type->annotation_str(type_printer);
pushString(annot_str);
// Pop the dict and type into a tuple
push<PickleOpCode>(PickleOpCode::TUPLE2);
// Call function via reduce
push<PickleOpCode>(PickleOpCode::REDUCE);
}
void Pickler::pushDict(const IValue& ivalue) {
auto dict = ivalue.toGenericDict();
startTypeTag();
push<PickleOpCode>(PickleOpCode::EMPTY_DICT);
static_assert(
std::is_unsigned<decltype(dict.size())>::value,
"Expected size to be non-negative.");
push<PickleOpCode>(PickleOpCode::MARK);
// Sort the dict for deterministic keys
for (const auto& entry : dict) {
pushIValue(entry.key());
pushIValue(entry.value());
}
push<PickleOpCode>(PickleOpCode::SETITEMS);
endTypeTag(ivalue);
}
size_t Pickler::pushNextBinPut() {
if (memo_id_ <= std::numeric_limits<uint8_t>::max()) {
push<PickleOpCode>(PickleOpCode::BINPUT);
push<uint8_t>(memo_id_);
} else {
// Memoized too many items, issue a LONG_BINPUT instead
push<PickleOpCode>(PickleOpCode::LONG_BINPUT);
push<uint32_t>(memo_id_);
}
AT_ASSERT(memo_id_ <= std::numeric_limits<uint32_t>::max());
++memo_id_;
return memo_id_ - 1;
}
void Pickler::pushGenericList(const IValue& ivalue) {
auto list = ivalue.toListRef();
startTypeTag();
// Push the list items
push<PickleOpCode>(PickleOpCode::EMPTY_LIST);
push<PickleOpCode>(PickleOpCode::MARK);
for (const IValue& item : list) {
pushIValue(item);
}
push<PickleOpCode>(PickleOpCode::APPENDS);
endTypeTag(ivalue);
}
void Pickler::pushTuple(const IValue& ivalue) {
auto tuple = ivalue.toTuple();
auto tuple_size = tuple->elements().size();
switch (tuple_size) {
case 0: {
push<PickleOpCode>(PickleOpCode::EMPTY_TUPLE);
} break;
case 1: {
pushIValue(tuple->elements()[0]);
push<PickleOpCode>(PickleOpCode::TUPLE1);
} break;
case 2: {
pushIValue(tuple->elements()[0]);
pushIValue(tuple->elements()[1]);
push<PickleOpCode>(PickleOpCode::TUPLE2);
} break;
case 3: {
pushIValue(tuple->elements()[0]);
pushIValue(tuple->elements()[1]);
pushIValue(tuple->elements()[2]);
push<PickleOpCode>(PickleOpCode::TUPLE3);
} break;
default: {
push<PickleOpCode>(PickleOpCode::MARK);
for (const IValue& item : tuple->elements()) {
pushIValue(item);
}
push<PickleOpCode>(PickleOpCode::TUPLE);
} break;
}
}
WriteableTensorData getWriteableTensorData(
const at::Tensor& tensor,
bool to_cpu) {
WriteableTensorData result;
result.tensor_ = tensor;
result.size_ = tensor.storage().nbytes();
// TODO HIP support
if (tensor.storage().device_type() != DeviceType::CPU && to_cpu) {
// NB: This new tensor is created to support cuda tensors.
// Storages can be mutated when converting tensors from cuda to cpu,
// and we need a cpu tensor to copy data from.
result.tensor_ =
at::empty({0}, tensor.options())
.set_(
tensor.storage(),
/* storage_offset = */ 0,
/* size = */
{static_cast<int64_t>(
tensor.storage().nbytes() / tensor.element_size())},
/* stride = */ {1})
.cpu();
TORCH_CHECK(
result.tensor_.storage().nbytes() == result.size_,
"Storage tensor size did not match record size");
}
return result;
}
bool checkHasValidSetGetState(const std::shared_ptr<c10::ClassType>& cls) {
// Check that the schemas for __getstate__ and __setstate__ are correct
auto getstate = cls->findMethod("__getstate__");
if (getstate == nullptr) {
return false;
}
auto get_schema = getstate->getSchema();
// Check __getstate__
// __getstate__ is expected to be (self) -> T
TORCH_CHECK(
get_schema.arguments().size() == 1,
"'__getstate__' must have 'self' as its only argument, but found ",
get_schema.arguments().size(),
" arguments");
TORCH_CHECK(
get_schema.returns().size() == 1,
"'__getstate__' must return 1 value, but found ",
get_schema.returns().size());
// Check __setstate__ if the method exists
// __setstate__ is expected to be (self, T) -> None
auto setstate = cls->findMethod("__setstate__");
if (!setstate) {
return false;
}
auto set_schema = setstate->getSchema();
TORCH_CHECK(
set_schema.arguments().size() == 2,
"'__setstate__' must have 'self' and the state as its "
"only arguments, but found ",
set_schema.arguments().size(),
" arguments");
TORCH_CHECK(
set_schema.returns().size() == 1,
"'__setstate__' must return None, but found ",
set_schema.returns().size(),
" return values");
TORCH_CHECK(
set_schema.returns().at(0).type()->isSubtypeOf(*NoneType::get()),
"'__setstate__' must return None, but found value of type",
set_schema.returns().at(0).type()->annotation_str());
// Check that the return type of __getstate__ matches the input to
// __setstate__
auto get_type = get_schema.returns().at(0).type();
auto set_type = set_schema.arguments().at(1).type();
TORCH_CHECK(
get_type->isSubtypeOf(*set_type),
"'__getstate__'s return type (",
get_type->annotation_str(),
") does not match '__setstate__'s argument type (",
set_type->annotation_str(),
")");
return true;
}
} // namespace jit
} // namespace torch
|