File: python_print.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1759 lines) | stat: -rw-r--r-- 61,077 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
#include <torch/csrc/jit/serialization/python_print.h>

#include <algorithm>

#include <ATen/core/ivalue.h>
#include <ATen/core/qualified_name.h>
#include <c10/util/Exception.h>
#include <c10/util/StringUtil.h>
#include <c10/util/irange.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/error_report.h>
#include <torch/csrc/jit/frontend/versioned_symbols.h>
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/operator_upgraders/version_map.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/runtime/calculate_necessary_args.h>
#include <torch/csrc/jit/serialization/type_name_uniquer.h>

using c10::QualifiedName;

namespace torch {
namespace jit {

static bool isValidIdentifierChar(char c, size_t pos) {
  return islower(c) || isupper(c) || c == '_' || (pos > 0 && isdigit(c));
}

static bool isValidIdentifier(const std::string& name) {
  if (name.size() == 0)
    return false;
  for (const auto i : c10::irange(name.size())) {
    if (!isValidIdentifierChar(name[i], i))
      return false;
  }
  return true;
}

// some names are valid identifiers but off limits because
// they are keywords or namespaces used in the output
const static std::unordered_set<std::string> reserved_names = {
    // identifiers in the environment while parsing
    "_", // avoid the confusing unnamed _
    "as",
    "aten",
    "attribute",
    "CONSTANTS",
    "fork",
    "getattr",
    "inf",
    "nan",
    "infj",
    "nanj",
    "ops",
    "__torch__",
    // the python keywords
    "and",
    "as",
    "assert",
    "async",
    "await",
    "break",
    "class",
    "continue",
    "def",
    "del",
    "elif",
    "else",
    "except",
    "False",
    "finally",
    "for",
    "from",
    "global",
    "if",
    "import",
    "in",
    "is",
    "lambda",
    "None",
    "nonlocal",
    "not",
    "or",
    "pass",
    "raise",
    "return",
    "True",
    "try",
    "with",
    "while",
    "with",
    "yield",
    "uninitialized",
    "unchecked_cast",
};

// Helper to avoid duplicating class types
void PrintDepsTable::add(const c10::NamedTypePtr& type) {
  // Despite doing the linear search below, we don't want to do
  // wasteful work and only try to insert each instance once.
  if (!non_unique_.insert(type).second) {
    return;
  }
  // Need to do actual equality comparison, not a pointer equality. This is
  // because for some types (e.g. FunctionType), we may have multiple
  // TypePtr's that represent the same underlying thing.
  // TODO: this should be really swapped for something more efficient
  auto it = std::find_if(
      table_.cbegin(), table_.cend(), [&](const c10::NamedTypePtr& dep) {
        return *dep == *type;
      });

  if (it == table_.cend()) {
    table_.push_back(type);
  }
}

struct PythonPrintImpl {
  using SourceRangeStack = std::vector<SourceRange>;
  SourceRangeStack source_range_stack_ = {SourceRange()};

  struct WithSourceRange {
    explicit WithSourceRange(SourceRangeStack* stack, Node* n) : stack(stack) {
      TORCH_INTERNAL_ASSERT(stack);
      if (auto gen_source = n->sourceRange().findSourceRangeThatGenerated()) {
        stack->push_back(std::move(gen_source.value()));
      } else {
        stack->push_back(n->sourceRange());
      }
    }

    ~WithSourceRange() {
      stack->pop_back();
    }

    SourceRangeStack* stack;
  };

  class TaggedStringStream {
   public:
    TaggedStringStream(const SourceRangeStack* srs) : srs_(srs) {}

    TaggedStringStream& operator<<(const std::string& s) {
      // This prevents having redundant entries at the same offset,
      // which can happen for example in printValueList when begin
      // and end are the empty string.
      if (s.size() == 0) {
        return *this;
      }

      if (!ranges_.size() || ranges_.back().range != srs_->back()) {
        ranges_.emplace_back((size_t)oss_.tellp(), srs_->back());
      }
      oss_ << s;
      return *this;
    }

    TaggedStringStream& operator<<(const TaggedStringStream& rhs) {
      for (const auto& range : rhs.ranges_) {
        if (!ranges_.size() || ranges_.back().range != range.range) {
          ranges_.emplace_back((size_t)oss_.tellp() + range.bytes, range.range);
        }
      }
      oss_ << rhs.oss_.str();
      return *this;
    }

    // This overload is here to prevent people from shooting themselves in the
    // foot. I would be highly surprised if someone actually wanted to write out
    // the address of a TaggedStringStream in the pretty print.
    TaggedStringStream& operator<<(
        const std::shared_ptr<TaggedStringStream>& rhs) {
      (*this) << *rhs;
      return *this;
    }

    template <typename T>
    TaggedStringStream& operator<<(const T& t) {
      if (!ranges_.size() || ranges_.back().range != srs_->back()) {
        ranges_.emplace_back((size_t)oss_.tellp(), srs_->back());
      }
      oss_ << t;
      return *this;
    }

    std::string str() const {
      return oss_.str();
    }

    const std::vector<TaggedRange>& ranges() const {
      return ranges_;
    }

   private:
    std::ostringstream oss_;
    std::vector<TaggedRange> ranges_;
    const SourceRangeStack* srs_;
  };

  // scanValue, scanNode, scanBlock:
  // decide if it is safe to omit the output of a temporary variable,
  // and inline the expression into its use
  // we only do this if
  // (1) it is a constant, or
  // (2) the temporary is unnamed, is single output, is used once,
  //     and would appear in the same order when the expression tree is
  //     reparsed.
  // The last case can be checked
  // because when we emit a expresion tree in the parser,
  // we do a left-to-right postorder traversal of the expression tree (emit
  // children, then emit op). The reverse of this is a right-to-left preorder
  // traversal of the tree. By doing a right-to-left preorder traversal of the
  // inputs of a node, while also scanning the list of emitted nodes backward,
  // we can see if they line up with what would happen when parsed the node as
  // an expression. While they line up we collapse them into an inline
  // expression.

  // The inductive step is that the right-most input should be produced by the
  // node immediatly before the current node if it is in tree order.

  bool canInline(Value* v) {
    Node* n = v->node();
    // there must be only 1 values, otherwise we need an assignment to handle
    // the multiple outout values
    if (n->outputs().size() != 1)
      return false;
    // if it is used more than once, then we need a variable
    if (v->uses().size() != 1)
      return false;
    auto use = v->uses().at(0);
    // if it has a name set, then it was written as a variable so preserve that
    // unless it is being fed directly to the end of the block.
    // in which case it is not as useful to give it a name just to return it
    if (v->hasDebugName() && use.user->kind() != prim::Return)
      return false;
    // don't try to inline control blocks
    if (n->blocks().size() != 0)
      return false;
    // if it is a loop-carried input, we need a variable
    // otherwise the condition or trip count may be emitted in the wrong order
    // w.r.t. to it
    if (use.user->kind() == prim::Loop && use.offset >= 2)
      return false;

    // subgraph may use this more than once, so disable inlining
    if (use.user->kind() == prim::fork || use.user->kind() == prim::rpc_async ||
        use.user->kind() == prim::rpc_sync ||
        use.user->kind() == prim::rpc_remote)
      return false;

    // isinstance appearing in an if expression
    // causes type refinement to occur, but we have
    // already handled the refinement and inserted cast
    // expressions. By not inlining it into the if condition,
    // we prevent it from happening again.
    if (v->node()->kind() == prim::isinstance) {
      return false;
    }

    return true;
  }

  // block_point is the current node in the reverse linear scan of the emitted
  // nodes v is the current value in the tree traversal that may match with
  // block_point's output.
  Node* scanValue(Node* block_point, Value* v) {
    Node* n = v->node();
    AT_ASSERT(n->kind() == prim::Constant || output_inline_.count(n) == 0);

    if (n == block_point &&
        canInline(v)) { // the node must be at the expected point of the typical
                        // tree traversal
      // recursively see if we can inline the inputs to this input
      block_point = scanNode(block_point);
      output_inline_.insert(n);
    } else if (n->kind() == prim::Constant) {
      // constant nodes can always be inlined, we will de-dup them on parsing
      // and put them at the top of the function regardless
      output_inline_.insert(n);
    }
    return block_point;
  }
  Node* previousNonConstant(Node* n) {
    do {
      n = n->prev();
    } while (n->kind() == prim::Constant);
    return n;
  }

  Node* scanNode(Node* n) {
    // don't bother to scan nodes we have already determined to be inline
    if (output_inline_.count(n)) {
      return n;
    }
    for (auto b : n->blocks()) {
      scanBlock(b);
    }
    Node* block_point = previousNonConstant(n);
    for (auto it = n->inputs().rbegin(), end = n->inputs().rend(); it != end;
         ++it) {
      block_point = scanValue(block_point, *it);
    }
    return block_point;
  }

  void scanBlock(Block* b) {
    scanNode(b->return_node());
    for (auto node : b->nodes().reverse()) {
      scanNode(node);
    }
  }

  size_t getOrAddConstant(at::IValue val) {
    // XXX - N^2 warning. This code does the exact same thing as
    // ConstantPool, which is also N^2 in the size of the constants,
    // because it doesn't hash any information about the tensors.
    // We will probably need to optimize this at some point using hashing.
    if (val.isTensor()) {
      auto& t = val.toTensor();
      for (const auto i : c10::irange(constant_table_.size())) {
        if (!constant_table_[i].isTensor()) {
          continue;
        }
        auto& t2 = constant_table_[i].toTensor();
        if (t.options().type_equal(t2.options()) && t.equal(t2)) {
          return i;
        }
      }
    }
    constant_table_.emplace_back(std::move(val));
    return constant_table_.size() - 1;
  }

  std::unordered_set<Node*> seen_constants;
  void buildConstantList(Node* n, std::vector<Node*>& constants) {
    for (auto input : n->inputs()) {
      if (input->node()->kind() == prim::Constant &&
          seen_constants.count(input->node()) == 0) {
        constants.push_back(input->node());
        seen_constants.insert(input->node());
      }
    }
    for (auto b : n->blocks()) {
      buildConstantList(b, constants);
    }
  }
  void buildConstantList(Block* b, std::vector<Node*>& constants) {
    for (auto n : b->nodes())
      buildConstantList(n, constants);
    buildConstantList(b->return_node(), constants);
  }

  // get a new name unique across calls to debugName() and
  // anything we have used.
  std::unordered_map<std::string, size_t> next_id;

  std::string genNameImpl(
      const std::string& candidate,
      std::unordered_set<std::string>& used) {
    std::string name = candidate;
    while (used.count(name) || reserved_names.count(name)) {
      // NOLINTNEXTLINE(performance-inefficient-string-concatenation)
      name = candidate + c10::to_string(next_id[name]++);
    }
    used.insert(name);
    return name;
  }
  std::string genName(const std::string& candidate) {
    return genNameImpl(candidate, used_names_);
  }

  // unique names might not be valid identifiers,
  // force them to be by rewriting them
  static std::string makeValidIdentifier(const std::string& candidate) {
    std::stringstream ss;
    if (candidate.size() == 0 || isdigit(candidate[0]))
      ss << "_";
    for (char c : candidate) {
      if (isupper(c) || islower(c) || isdigit(c) || c == '_')
        ss << c;
      else
        ss << '_';
    }
    return ss.str();
  }
  // if we have to assign 'v' a name, what should it be?
  // use the debugName if it was set, otherwise generate a name.
  std::string genUniqueNameFor(Value* v) {
    return genName(
        v->hasDebugName() ? makeValidIdentifier(v->debugNameBase()) : "_");
  }

  // map from Value to how it should be printed at each use
  std::unordered_map<Value*, std::shared_ptr<TaggedStringStream>> expr_table_;
  std::unordered_map<Value*, std::string> ident_refs_;

  // NB: we MUST pass around the shared pointers to these streams by value.
  // There is an interaction in splitLongInlines where the string value for
  // both the RHS and the LHS of an expression are live at the same time,
  // however the value for the RHS is overwritten in the table.
  std::shared_ptr<TaggedStringStream> useOf(Value* v) const {
    // Ident refs take precedent over expression refs, since presence in
    // the ident ref table indicates we have already emitted a statement
    // assigning the given value.
    if (ident_refs_.count(v)) {
      auto rv = std::make_shared<TaggedStringStream>(&source_range_stack_);
      (*rv) << ident_refs_.at(v);
      return rv;
    }
    if (expr_table_.count(v)) {
      return expr_table_.at(v);
    }
    TORCH_INTERNAL_ASSERT(
        false,
        "Value (debug name: \"",
        v->debugName(),
        "\") was not present in either expressions table or ident refs table");
  }
  void assignValue(Value* v, const std::string& s) {
    ident_refs_[v] = s;
  }
  void assignValue(Value* v, std::shared_ptr<TaggedStringStream> s) {
    expr_table_[v] = std::move(s);
  }
  void assignValue(Value* v, Value* w) {
    assignValue(v, useOf(w));
  }
  void assignValuesToTheirUniqueNames(at::ArrayRef<Value*> values) {
    for (auto v : values) {
      assignValue(v, genUniqueNameFor(v));
    }
  }

  size_t level = 0;
  // indent to the current indent level
  TaggedStringStream& indent() {
    for (const auto i : c10::irange(level)) {
      (void)i; // Suppress unused variable warning
      body_ << "  ";
    }
    return body_;
  }

  ResourceGuard WithIndented() {
    level++;
    return ResourceGuard([this] { level--; });
  }

  template <class T0, class T1, class F>
  void zipWith(at::ArrayRef<T0> list_a, at::ArrayRef<T1> list_b, F action)
      const {
    auto it_a = list_a.begin();
    auto it_b = list_b.begin();

    if (list_a.size() != list_b.size()) {
      AT_ERROR("Python printer expected 2 lists of same size");
    }

    for (; it_a != list_a.end(); ++it_a, ++it_b) {
      action(*it_a, *it_b);
    }
  }

  void printValueList(
      TaggedStringStream& stmt,
      at::ArrayRef<Value*> list,
      const char* begin = "",
      const char* end = "") {
    stmt << begin;
    auto delimiter = "";
    for (auto* value : list) {
      stmt << delimiter;
      stmt << useOf(value);
      delimiter = ", ";
    }
    stmt << end;
  }

  void printValueIndex(TaggedStringStream& stmt, at::ArrayRef<Value*> inputs) {
    const std::string val_name = useOf(inputs[0])->str();
    if (isValidIdentifier(val_name)) {
      stmt << val_name;
    } else {
      stmt << "(" << val_name << ")";
    }
    stmt << "[";
    stmt << useOf(inputs[1]);
    stmt << "]";
  }

  void printDict(
      TaggedStringStream& stmt,
      at::ArrayRef<Value*> key_value_pairs,
      const char* begin = "{",
      const char* end = "}") {
    stmt << begin;
    auto delimiter = "";
    for (size_t i = 0; i < key_value_pairs.size(); i += 2) {
      stmt << delimiter;
      auto key = key_value_pairs[i];
      auto value = key_value_pairs[i + 1];

      stmt << useOf(key) << ": " << useOf(value);

      delimiter = ", ";
    }
    stmt << end;
  }

  void printAssignment(at::ArrayRef<Value*> lhs, at::ArrayRef<Value*> rhs) {
    if (lhs.size() == 0) {
      return;
    }
    indent();
    printValueList(body_, lhs);
    // We need to preserve Union/Optional type annotations, but only if
    // we're not assigning values as part of a tuple unpacking statement
    // (Python doesn't allow type annotations in multiple assignment)
    if (lhs.size() == 1) {
      Value* v = lhs.at(0);
      if (!annotated_unions_.count(v) && !expr_table_.count(v) &&
          (v->type()->kind() == UnionType::Kind ||
           v->type()->kind() == OptionalType::Kind)) {
        body_ << " : " << v->type()->annotation_str();
        annotated_unions_.insert(v);
      }
    }
    body_ << " = ";
    // or if value is being assigned to something of a union type
    printValueList(body_, rhs);
    body_ << "\n";
  }

  bool requiresAnnotation(Value* lhs, Value* rhs) {
    if (lhs->type()->kind() == UnionType::Kind ||
        lhs->type()->kind() == OptionalType::Kind) {
      return annotated_unions_.insert(lhs).second;
    } else {
      return *lhs->type() != *rhs->type();
    }
  }

  void printAnnotatedAssignment(
      at::ArrayRef<Value*> lhs,
      at::ArrayRef<Value*> rhs) {
    for (const auto i : c10::irange(lhs.size())) {
      indent();
      body_ << useOf(lhs[i]);
      if (requiresAnnotation(lhs[i], rhs[i])) {
        body_ << ": " << lhs[i]->type()->annotation_str(type_printer_);
      }
      body_ << " = " << useOf(rhs[i]) << "\n";
    }
  }

  void printIf(IfView stmt) {
    assignValuesToTheirUniqueNames(stmt.outputs());
    indent() << "if " << useOf(stmt.cond()) << ":\n";
    {
      auto guard = WithIndented();
      // Print node contents
      printBlock(stmt.thenBlock(), stmt.outputs().size() > 0);
      printAssignment(stmt.outputs(), stmt.thenOutputs());
    }
    indent() << "else:\n";
    {
      auto guard = WithIndented();
      printBlock(stmt.elseBlock(), stmt.outputs().size() > 0);
      printAssignment(stmt.outputs(), stmt.elseOutputs());
    }
  }

  void printLoop(LoopView stmt) {
    // Loop carried dependencies are handled by assigning their initial
    // values to the node->outputs() before the loop,
    // and assign node->outputs() to the new values at the end of each trip.

    auto loop_type = stmt.loopType();
    if (loop_type == LoopView::ModifiedLoop) {
      throw ErrorReport(stmt.node()->sourceRange())
          << "loop cannot be printed as python "
          << "because it has gone through an optimization "
          << "that combined while and for loops. File a bug";
    }

    bool emit_as_for_loop = loop_type == LoopView::For;

    assignValuesToTheirUniqueNames(stmt.carriedOutputs());
    // Add aliases for loop-carried dependencies
    zipWith(
        stmt.bodyCarriedInputs(), // Start at 1 to ignore trip count
        stmt.carriedOutputs(),
        [&](Value* block_input, Value* node_output) {
          assignValue(block_input, node_output);
        });

    // Print initial assignments of loop node outputs = loop node inputs
    printAnnotatedAssignment(stmt.carriedOutputs(), stmt.carriedInputs());

    assignValuesToTheirUniqueNames(stmt.currentTripCount());
    // Loop header
    if (emit_as_for_loop) {
      indent();
      body_ << "for " << useOf(stmt.currentTripCount()) << " in range("
            << useOf(stmt.maxTripCount()) << "):\n";
    } else {
      // note: trip_count_in_block is unused because this is a while loop,
      // so we reuse the Value* as a stand-in for the loop condition
      printAssignment(stmt.currentTripCount(), stmt.inputCond());
      indent();
      body_ << "while " << useOf(stmt.currentTripCount()) << ":\n";
    }
    // Loop body
    {
      ResourceGuard indent = WithIndented();
      // Update block outputs to block inputs for next loop iteration
      // skip the assignment to the new condition in for loops because
      // the condition is always True
      size_t offset = emit_as_for_loop ? 1 : 0;
      auto body_block = stmt.bodyBlock();
      ArrayRef<Value*> loop_carried_block_inputs =
          body_block->inputs().slice(offset);
      printBlock(body_block, loop_carried_block_inputs.size() > 0);
      printAssignment(
          loop_carried_block_inputs, body_block->outputs().slice(offset));
    }
  }

  bool isLongLine(const std::string& str) {
    // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
    return str.size() + level * 2 >= 40;
  }

  bool isLongInline(Node* node) {
    return output_inline_.count(node) &&
        isLongLine(useOf(node->output())->str());
  }

  bool isNonConstantInline(Value* input) {
    return input->node()->kind() != prim::Constant &&
        output_inline_.count(input->node());
  }

  // [reordering of inlines]
  // We inline anything that is semantically legal to inline, but sometimes
  // we find that these lines get too long. In that case we break the lines
  /// and it  is important that we un-inline all the inputs preceeding the long
  /// input:
  //   r = foo(x.add_(b), some_long + expression)
  //  wrong!
  //   _0 = some_long + expression
  //   r = foo(x.add_(b), _0) # wrong! _0 runs before mutating add_
  // legal!
  //   _0 = x.add_(b)
  //   _1 = some_long + expression
  //   r = foo(_0, _1)

  void splitLongInlines(Value* v) {
    std::vector<Value*> to_split_reversed;
    Use u = v->uses().at(0);
    scanLongInlines(u.user, u.offset, to_split_reversed);
    for (auto it = to_split_reversed.rbegin(), end = to_split_reversed.rend();
         it != end;
         ++it) {
      printOutputDefinition((*it)->node(), *useOf(*it));
    }
  }

  void scanLongInlines(
      Node* user,
      int64_t offset,
      std::vector<Value*>& to_split_reversed) {
    auto it = visited_split_inline_uses_.find(user);
    bool present = it != visited_split_inline_uses_.end();
    for (int64_t i = offset; i >= (present ? it->second + 1 : 0); --i) {
      Value* prev_arg = user->input(i);
      if (isNonConstantInline(prev_arg)) {
        to_split_reversed.push_back(prev_arg);
      }
    }
    visited_split_inline_uses_[user] = offset;
    if (!present && output_inline_.count(user)) {
      Use u = user->output()->uses().at(0);
      scanLongInlines(u.user, int64_t(u.offset) - 1, to_split_reversed);
      // -1 because the actual use is still being
      // emitted so it cannot be split
    }
  }

  template <typename T>
  void printOutputDefinition(Node* node, const T& expr) {
    assignValuesToTheirUniqueNames(node->outputs());
    indent();
    // Print outputs
    if (node->outputs().size() > 0) {
      printValueList(body_, node->outputs());
      body_ << " = ";
    }
    body_ << expr << "\n";
  }

  // Recursively check contained types for any class dependencies
  void registerClassDependencies(const TypePtr& type) {
    if (const auto classType = type->cast<ClassType>()) {
      deps_table_.add(classType);
    } else if (const auto tupleType = type->cast<TupleType>()) {
      if (tupleType->name()) {
        deps_table_.add(tupleType);
      }
    } else if (const auto interfaceType = type->cast<InterfaceType>()) {
      deps_table_.add(interfaceType);
    } else if (const auto enumType = type->cast<EnumType>()) {
      deps_table_.add(enumType);
    }
    for (const auto& containedType : type->containedTypes()) {
      registerClassDependencies(containedType);
    }
  }
  void scanTypeDependencies(Node* node) {
    // Check for class dependencies. If this node inputs or outputs a class
    // type, we need to add it to our table of dependencies.
    for (const auto input : node->inputs()) {
      registerClassDependencies(input->type());
    }
    for (const auto output : node->outputs()) {
      registerClassDependencies(output->type());
    }
    for (const auto& name : node->attributeNames()) {
      switch (node->kindOf(name)) {
        case AttributeKind::ty:
          registerClassDependencies(node->ty(name));
          break;
        case AttributeKind::tys:
          for (const TypePtr& t : node->tys(name)) {
            registerClassDependencies(t);
          }
          break;
        default:
          // noop
          break;
      }
    }
  }

  void checkVersion(Node* node) {
    if (auto schema = node->maybeSchema()) {
      auto schema_name = getFullSchemaName(*schema);
      auto version_entry = get_operator_version_map().find(schema_name);
      if (version_entry != get_operator_version_map().end()) {
        const auto& entry = version_entry->second;
        // TODO (tugsuu) move this calculation into a separate step.
        uint64_t current_version = entry[entry.size() - 1].bumped_at_version;
        uint64_t legacy_version_map_version =
            get_min_version_for_kind(node->kind());

        // True means we solely calculate based on upgrader version
        if (get_version_calculator_flag()) {
          min_version_ = std::max(min_version_, current_version);
        } else {
          if (legacy_version_map_version != 0) {
            min_version_ = std::max(min_version_, legacy_version_map_version);
          } else {
            min_version_ = std::max(min_version_, current_version);
          }
        }
      }
    }
  }

  void printNode(Node* node, bool print_const) {
    WithSourceRange guard(&source_range_stack_, node);
    scanTypeDependencies(node);
    checkVersion(node);
    if (!print_const && node->kind() == prim::Constant)
      return;
    switch (node->kind()) {
      case prim::Return:
        if (enforce_importable_ && node->inputs().size() != 1) {
          throw ErrorReport(node->sourceRange())
              << "Exportable methods must have a single return value. "
              << "Normal use of ScriptMethods should enforce this";
        }
        if (node->inputs().size() > 0) {
          indent();
          body_ << "return ";
          printValueList(body_, node->inputs());
          body_ << "\n";
        }
        break;
      case prim::Loop:
        printLoop(LoopView(node));
        break;
      case prim::If:
        printIf(IfView(node));
        break;
      case prim::TupleUnpack:
      case prim::ListUnpack:
        assignValuesToTheirUniqueNames(node->outputs());
        indent();
        // TupleUnpack(unpacked) turns into an assignment op that forces
        // the unpack to be inserted when parsed back in:
        // a, b, = unpacked
        // a, = unpacked # trailing comma forces an unpack to happen
        if (node->outputs().size() > 0) {
          printValueList(body_, node->outputs(), "", ", = ");
        }
        body_ << useOf(node->input()) << "\n";
        break;
      case prim::SetAttr: {
        const auto obj = node->inputs().at(0);
        const auto newVal = node->inputs().at(1);
        const auto type = obj->type()->expect<ClassType>();
        const auto& attrname = node->s(attr::name);
        indent();
        body_ << useOf(obj) << "." << attrname << " = " << useOf(newVal)
              << "\n";
      } break;
      case prim::fork: {
        // the subgraph gets emitted as another function
        auto name = genName("__forked_function");
        std::shared_ptr<Graph> graph = node->g(attr::Subgraph);
        indent();
        body_ << "def " << name << "():\n";
        for (size_t i = 0; i < node->inputs().size(); ++i) {
          assignValue(graph->inputs().at(i), node->inputs().at(i));
        }
        printBody(graph->block());
        std::stringstream ss;
        ss << "fork(" << name << ")";
        printOutputDefinition(node, ss.str());
      } break;
      case prim::Enter: {
        const auto in = node->inputs().at(0);
        const auto out = node->outputs().at(0);
        indent();
        body_ << "with " << useOf(in);
        if (out->uses().size() > 0) {
          assignValue(out, genUniqueNameFor(out));
          body_ << " as " << useOf(out);
        }
        body_ << ":\n";
        level++;
      } break;
      case prim::Exit: {
        // If the previous node is a prim::Enter, the with block the generated
        // this Enter/Exit pair must have been empty.
        if (node->prev()->kind() == prim::Enter) {
          indent();
          body_ << "pass\n";
        }
        level--;
      } break;
      case prim::Closure: {
        if (enforce_importable_) {
          throw ErrorReport(node->sourceRange())
              << "closures are not exportable";
        }
        assignValuesToTheirUniqueNames(node->outputs());
        auto name = useOf(node->output())->str();
        std::shared_ptr<Graph> graph = node->g(attr::Subgraph);
        indent();
        body_ << "def " << name << "(";
        assignValuesToTheirUniqueNames(graph->inputs());
        for (size_t i = 0; i < graph->inputs().size(); ++i) {
          Value* v = graph->inputs().at(i);
          if (i > 0) {
            body_ << ", ";
          }
          body_ << useOf(v) << ": " << v->type()->annotation_str(type_printer_);
        }
        body_ << "):\n";
        printBody(graph->block());
      } break;
      case prim::ModuleContainerIndex: {
        const auto container = node->inputs().at(0);
        const auto key = node->inputs().at(1);
        const auto out = node->outputs().at(0);
        assignValuesToTheirUniqueNames(out);
        indent();
        body_ << useOf(out) << " : " << out->type()->annotation_str() << " = "
              << useOf(container) << "[" << useOf(key) << "]\n";
      } break;
      default:
        auto ss = std::make_shared<TaggedStringStream>(&source_range_stack_);
        printRHS(*ss, node);

        // we prevent long constants from inlining here.
        // it is not safe to do the same thing for non-constants here
        // because of [reordering of inlines]
        if (output_inline_.count(node) == 0 ||
            (node->kind() == prim::Constant && isLongLine(ss->str()))) {
          printOutputDefinition(node, *ss);
        } else {
          // this node is safe to inline, so assign the output value
          // to that expression directly
          assignValue(node->output(), ss);
          if (isLongLine(ss->str())) {
            splitLongInlines(node->output());
          }
        }
    }
  }

  static bool containsNonASCIIString(const IValue& val) {
    bool hasNonASCII = false;
    auto checkSubvalue = [&hasNonASCII](const IValue& val) {
      if (val.isString()) {
        const auto maxASCII = 0x7fu;
        for (auto c : val.toStringRef()) {
          if (c > maxASCII) {
            hasNonASCII = true;
            return true;
          }
        }
      }
      return false;
    };

    val.visit(checkSubvalue);
    return hasNonASCII;
  }

  void printConstant(TaggedStringStream& stmt, const IValue& v) {
    const auto customFormatter = [&](std::ostream& ss, const IValue& v) {
      if (v.isTensor() || containsNonASCIIString(v) || v.isObject()) {
        TORCH_INTERNAL_ASSERT(!v.type<c10::Type>()->is_module());
        ss << "CONSTANTS.c" << getOrAddConstant(v);
        return true;
      }

      auto type = v.type();
      if (auto dyn = type->castRaw<c10::DynamicType>()) {
        type = dyn->fallback();
      }
      if (v.isTuple() && type->expectRef<TupleType>().schema()) {
        // print the namedtuple constructor and let rest of tuple printing
        // continue
        ss << type->expectRef<TupleType>().annotation_str(type_printer_);
      }
      return false;
    };

    std::stringstream ss;
    v.repr(ss, customFormatter);
    stmt << ss.str();
  }

  void printOpName(TaggedStringStream& stmt, Symbol kind) {
    // Special overriding ops set that requires serializing differently to
    // preserve the original code semantics.
    // This will be more properly handled when we have namespace semantics
    // for serializing the ops, and it right now hard coded these ops to
    // ensure consistency and not breaking BC in the future.
    const static std::unordered_map<Symbol, std::string> override_symbols = {
        {aten::backward, "torch.autograd.backward"},
        {aten::grad, "torch.autograd.grad"},
    };
    if (override_symbols.find(kind) != override_symbols.end()) {
      stmt << override_symbols.at(kind);
    } else if (kind.is_aten()) {
      // special case aten -> torch because we want to rename
      // the aten namespace, but this change will take more time
      // doing it here ensures we do not have fix up archives later
      stmt << "torch." << kind.toUnqualString();
    } else {
      stmt << "ops." << kind.ns().toUnqualString() << "."
           << kind.toUnqualString();
    }
  }

  // Prints the RHS value of a Node, e.g. `aten.add(x, y)`
  void printRHS(TaggedStringStream& stmt, Node* node) {
    switch (node->kind()) {
      case prim::PythonOp: {
        auto value = static_cast<const PythonOp*>(node);
        if (enforce_importable_) {
          throw ErrorReport(node->sourceRange())
              << "Could not export Python function call '" << value->name()
              << "'. Remove calls to Python functions before export. "
              << "Did you forget to add @script or @script_method annotation? "
              << "If this is a nn.ModuleList, add it to __constants__";
        }
        std::stringstream scalars_stream;
        stmt << "^" << value->name();
        value->writeScalars(scalars_stream);
        stmt << scalars_stream.str();
        printValueList(stmt, node->inputs(), "(", ")");
      } break;
      case prim::Uninitialized: {
        stmt << "uninitialized("
             << node->output()->type()->annotation_str(type_printer_) << ")";
      } break;
      case prim::Constant: {
        if (node->outputs().size() == 1 &&
            node->output()->type()->kind() == TypeKind::FunctionType) {
          auto fn = node->output()->type()->expect<FunctionType>();
          deps_table_.add(fn);
          stmt << fn->annotation_str(type_printer_);
        } else if (!node->mustBeNone()) {
          IValue v = toIValue(node->output()).value();
          printConstant(stmt, v);
        } else {
          stmt << "None";
        }
      } break;
      case aten::ScalarImplicit:
      case aten::FloatImplicit:
      case aten::IntImplicit: {
        stmt << "annotate("
             << node->output()->type()->annotation_str(type_printer_) << ", "
             << useOf(node->input()) << ")";
      } break;
      case aten::Int: {
        printValueList(stmt, node->inputs(), "int(", ")");
      } break;
      case aten::Float: {
        printValueList(stmt, node->inputs(), "float(", ")");
      } break;
      case aten::Bool: {
        printValueList(stmt, node->inputs(), "bool(", ")");
      } break;
      case aten::str: {
        printValueList(stmt, node->inputs(), "str(", ")");
      } break;
      case aten::__getitem__: {
        printValueIndex(stmt, node->inputs());
      } break;
      case prim::Print: {
        printValueList(stmt, node->inputs(), "print(", ")");
      } break;
      case aten::sorted: {
        printValueList(stmt, node->inputs(), "sorted(", ")");
      } break;
      case prim::TupleConstruct: {
        if (auto qualname =
                node->output()->type()->expectRef<TupleType>().name()) {
          stmt << node->output()->type()->annotation_str(type_printer_);
        }
        printValueList(
            stmt, node->inputs(), "(", node->inputs().size() == 1 ? ",)" : ")");
      } break;
      case prim::TupleIndex: {
        stmt << "(" << useOf(node->inputs().at(0)) << ")["
             << useOf(node->inputs().at(1)) << "]";
      } break;
      case prim::TupleSlice: {
        stmt << "(" << useOf(node->input()) << ")[" << node->i(attr::beg) << ":"
             << node->i(attr::end) << "]";
      } break;
      case prim::ListConstruct: {
        ListTypePtr list_type = node->output()->type()->expect<ListType>();
        TypePtr elem_type = list_type->getElementType();
        // Empty lists must be annotated with their type so the compiler knows
        // what type is supposed to be inside them
        if (node->inputs().size() == 0) {
          stmt << "annotate("
               << node->output()->type()->annotation_str(type_printer_)
               << ", [])";
          // If we can't infer the type based on what's inside, explicitly
          // annotate it to disambiguate.
          // This happens for List[Tensor] vs. List[Optional[Tensor]]
        } else if (!elementTypeCanBeInferredFromMembers(elem_type)) {
          stmt << "annotate("
               << node->output()->type()->annotation_str(type_printer_) << ", ";
          printValueList(stmt, node->inputs(), "[", "]");
          stmt << ")";
          // Otherwise just print a list
        } else {
          printValueList(stmt, node->inputs(), "[", "]");
        }
      } break;
      case prim::DictConstruct: {
        auto dict_type = node->output()->type()->expect<DictType>();
        // There are cases where we must annotate the dict with an explicit type
        // to help the compiler out:
        //   - the dict is empty
        //   - the dict has potentially ambiguous element types
        //       (e.g. Tensor vs. Optional[Tensor])
        if (node->inputs().size() == 0 ||
            !elementTypeCanBeInferredFromMembers(dict_type->getKeyType()) ||
            !elementTypeCanBeInferredFromMembers(dict_type->getValueType())) {
          stmt << "annotate("
               << node->output()->type()->annotation_str(type_printer_) << ", ";
          printDict(stmt, node->inputs());
          stmt << ")";
          // Otherwise just print a dict
        } else {
          printDict(stmt, node->inputs());
        }
      } break;
      case prim::CreateObject: {
        const auto classType = node->output()->type()->expect<ClassType>();
        stmt << classType->annotation_str(type_printer_) << ".__new__("
             << classType->annotation_str(type_printer_) << ")";
      } break;
      case prim::GetAttr: {
        const auto obj = node->inputs().at(0);
        const auto classType = obj->type()->expect<ClassType>();
        const auto& field = node->s(attr::name);
        if (isValidIdentifier(field)) {
          stmt << useOf(obj) << "." << field;
        } else {
          stmt << "getattr(" << useOf(obj) << ", ";
          std::stringstream field_stream;
          c10::printQuotedString(field_stream, field);
          stmt << field_stream.str() << ")";
        }
      } break;
      case prim::CallFunction: {
        stmt << useOf(node->inputs().at(0)) << "(";
        for (size_t i = 1; i < node->inputs().size(); i++) {
          stmt << useOf(node->inputs()[i]) << ", ";
        }
        stmt << ")";
      } break;
      case prim::CallMethod: {
        const auto& self = node->inputs().at(0);
        const auto& methodName = node->s(attr::name);
        stmt << "(" << useOf(self) << ")"
             << "." << methodName << "(";
        for (size_t i = 1; i < node->inputs().size(); i++) {
          stmt << useOf(node->inputs()[i]) << ", ";
        }
        stmt << ")";

        if (auto selfClass = self->type()->cast<ClassType>()) {
          deps_table_.add(selfClass);
          const Function& method = selfClass->getMethod(node->s(attr::name));
          TORCH_INTERNAL_ASSERT(
              method.qualname() ==
              QualifiedName(selfClass->name()->qualifiedName(), methodName));
        } else if (auto selfInterface = self->type()->cast<InterfaceType>()) {
          deps_table_.add(selfInterface);
        } else {
          TORCH_INTERNAL_ASSERT(
              false, "method call to unhandled type in serialization");
        }

      } break;
      case aten::_unwrap_optional: {
        printOpName(stmt, node->kind());
        stmt << "(";
        // we cannot recover the type of unwrap_optional(None),
        // using normal schema matching, so we route around this by rewriting
        // the call to unwrap_optional(annotated(Optional[T], None))
        if (node->input()->type()->isSubtypeOf(*NoneType::get()) ||
            node->input()->mustBeNone()) {
          auto input_type = OptionalType::create(node->output()->type());
          stmt << "annotate(" << input_type->annotation_str(type_printer_)
               << ", " << useOf(node->input()) << ")";
        } else {
          stmt << useOf(node->input());
        }
        stmt << ")";
      } break;
      // unchecked_unwrap_optional is no longer generated by the compiler,
      // but may end up here if it was first loaded from a old model and
      // re-saved. On re-save we upgrade it to an unchecked_cast, which is an
      // equivalent op
      case prim::unchecked_unwrap_optional:
      case prim::unchecked_cast: {
        stmt << "unchecked_cast("
             << node->output()->type()->annotation_str(type_printer_) << ", "
             << useOf(node->input()) << ")";
      } break;
      case prim::isinstance: {
        stmt << "isinstance(" << useOf(node->input()) << ", ";
        const auto& types = node->tys(attr::types);
        if (types.size() == 1) {
          stmt << types.at(0)->annotation_str(type_printer_);
        } else {
          // check multiple things, e.g. (str, list, int)
          stmt << "(";
          bool first = true;
          for (const TypePtr& typ : types) {
            if (!first) {
              stmt << ", ";
            }
            stmt << typ->annotation_str(type_printer_);
            first = false;
          }
          stmt << ")";
        }
        stmt << ")";
      } break;
      case prim::tolist: {
        stmt << "annotate("
             << node->output()->type()->annotation_str(type_printer_) << ", ";
        stmt << useOf(node->input(0)) << ".tolist()"
             << ")";
      } break;
      case prim::EnumValue:
        // Note: This CAN NOT be printed as raw operator ops.prim.EnumValue
        // because its return type depends on type of enum and must be further
        // resolved, but ops.prim.EnumValue construction does not provide such
        // functionality.
        stmt << "(" << useOf(node->input()) << ").value";
        break;
      case prim::EnumName:
        stmt << "(" << useOf(node->input()) << ").name";
        break;
      default: {
        printOpName(stmt, node->kind());
        const FunctionSchema& schema = node->schema();
        stmt << "(";
        // calculate how many args are specified.
        // see (https://github.com/pytorch/pytorch/pull/56079) for more
        // details.
        size_t num_schema_args = schema.arguments().size();

        // we only want to do this extra logic only when necessary.
        if (num_schema_args > 0) {
          // calculate how many args are specified.
          // see (https://github.com/pytorch/pytorch/pull/56079) for more
          // details.
          auto specified_args =
              CalculateNecessaryArgs(schema.arguments(), node->inputs(), true);

          auto num_necessary = specified_args.first;
          auto num_out = specified_args.second;

          for (size_t i = 0; i < num_necessary; ++i) {
            if (i > 0)
              stmt << ", ";
            auto v = useOf(node->inputs().at(i));
            // print the kwarg name if it is a kwarg only argument.
            if (i < num_schema_args) {
              auto arg = schema.arguments().at(i);
              if (arg.kwarg_only()) {
                stmt << arg.name() << "=";
              }
            } else {
              // vararg functions like format can have extra arguments
              AT_ASSERT(schema.is_vararg());
            }
            stmt << *v;
          }

          // print out args
          for (size_t i = num_schema_args - num_out; i < num_schema_args; i++) {
            stmt << ", ";
            auto arg = schema.arguments().at(i);
            TORCH_INTERNAL_ASSERT(arg.is_out());
            // figure out the corresponding input at this index
            auto input_idx = node->inputs().size() - (num_schema_args - i);
            if (input_idx < node->inputs().size()) {
              stmt << arg.name() << "=" << *useOf(node->inputs().at(input_idx));
            }
          }
        }
        stmt << ")";
      } break;
    }
  }

  TaggedStringStream& printBlock(Block* root, bool block_has_other_statements) {
    // pythons weird 'pass' syntax creates a bunch of places where we have to
    // check if this block would be empty. But not everything in a block is a
    // node. Sometimes if, loop, and return statements will follow this block
    // and block_has_other_statements == true.
    if (!block_has_other_statements &&
        root->nodes().begin() == root->nodes().end()) {
      indent();
      body_ << "pass\n";
    }
    for (auto* node : root->nodes()) {
      printNode(node, /*print_const=*/false);
    }
    return body_;
  }

  template <typename dtype>
  IValue createBroadList(dtype value, const int64_t& N) {
    c10::List<dtype> repeated;
    repeated.reserve(N);
    for (const auto i : c10::irange(N)) {
      (void)i; // Suppress unused variable warning
      repeated.push_back(value);
    }
    return repeated;
  }

  void printDefaultValue(
      const Argument& arg,
      TaggedStringStream& stmt,
      const IValue& value) {
    stmt << "=";
    // handle broadcasting lists
    if (arg.type()->kind() == ListType::Kind &&
        (value.isInt() || value.isDouble() || value.isBool())) {
      TORCH_INTERNAL_ASSERT(arg.N(), "expected broadcastinglist");
      if (value.isInt()) {
        printConstant(stmt, createBroadList<int64_t>(value.toInt(), *arg.N()));
      } else if (value.isBool()) {
        printConstant(stmt, createBroadList<bool>(value.toBool(), *arg.N()));
      } else if (value.isDouble()) {
        printConstant(
            stmt, createBroadList<double>(value.toDouble(), *arg.N()));
      }
    } else {
      printConstant(stmt, value);
    }
  }

  void printBody(Block* body) {
    // we always print constants at the top of the function, in the order
    // in which they are used.
    std::vector<Node*> constants;
    buildConstantList(body, constants);

    // current graph is used to de-dup names within a single graph
    scanBlock(body);
    {
      auto guard = WithIndented();
      // Print initial constant table (most are just inlined into their use,
      // but some like long strings do get emitted)
      for (Node* n : constants) {
        printNode(n, /*print_const=*/true);
      }
      // Print body
      printBlock(body, body->return_node()->inputs().size() > 0);
      printNode(body->return_node(), /*print_const=*/false);
    }
  }

 public:
  void printFunction(
      const Function& func,
      bool print_first_argument_type = true) {
    const FunctionSchema& schema = func.getSchema();
    Graph& graph = *toGraphFunction(func).graph();
    used_names_.clear(); // each graph can reuse local names

    WithSourceRange guard(&source_range_stack_, graph.param_node());

    indent();
    body_ << "def " << func.name() << "(";
    auto param_it = graph.inputs().begin();
    for (const Argument& arg : schema.arguments()) {
      registerClassDependencies(arg.type());
      std::string arg_name = genName(arg.name());
      if (param_it == graph.inputs().begin()) {
        // the first argument may omit its type when it is implied by context
        // the flag print_first_argument_type determines when to do this
        body_ << arg_name;
        if (print_first_argument_type) {
          body_ << ": " << arg.type()->annotation_str(type_printer_);
          annotated_unions_.insert(*param_it);
        }
      } else {
        body_ << ",\n    " << arg_name << ": "
              << arg.type()->annotation_str(type_printer_);
        annotated_unions_.insert(*param_it);
      }
      if (arg.default_value()) {
        printDefaultValue(arg, body_, *arg.default_value());
      }
      assignValue(*param_it++, arg_name);
    }

    const auto& returnType = schema.returns().at(0).type();
    body_ << ") -> " << returnType->annotation_str(type_printer_) << ":\n";
    registerClassDependencies(returnType);

    printBody(graph.block());
  }

  void printMethod(const Function& func) {
    printFunction(func, /*print_first_argument_type=*/false);
  }

  PythonPrintImpl(
      std::vector<at::IValue>& constant_table,
      PrintDepsTable& deps_table,
      c10::TypePrinter type_printer,
      bool enforce_importable)
      : body_(&source_range_stack_),
        constant_table_(constant_table),
        deps_table_(deps_table),
        type_printer_(std::move(type_printer)),
        enforce_importable_(enforce_importable) {}

  void printClass(const ClassTypePtr& classType) {
    // If any of the methods are not Graph funtions, this indicates that
    // this class is a custom-bound C++ class. Skip serialization
    // of this class, we will depend on the ClassType being defined
    // in the target process.
    for (auto& method : classType->methods()) {
      if (!method->isGraphFunction()) {
        return;
      }
    }

    bool is_module = classType->is_module();
    body_ << "class " << classType->name()->name();
    if (is_module) {
      body_ << "(Module)";
    }

    body_ << ":\n";
    {
      const auto guard = WithIndented();
      size_t numAttrs = classType->numAttributes();
      // For modules, we need to print special information about the module's
      // attributes and parameters.
      if (is_module) {
        std::vector<std::string> params;
        std::vector<std::string> buffers;
        // Populate the __parameters__ field. This tells the importer which
        // attributes are parameters.
        for (const auto i : c10::irange(numAttrs)) {
          if (classType->is_parameter(i)) {
            params.push_back(classType->getAttributeName(i));
          }
          if (classType->is_buffer(i)) {
            buffers.push_back(classType->getAttributeName(i));
          }
        }
        indent();
        body_ << "__parameters__ = [";
        for (const auto& param : params) {
          body_ << "\"" << param << "\", ";
        }
        body_ << "]\n";

        indent();
        body_ << "__buffers__ = [";
        for (const auto& buffer : buffers) {
          body_ << "\"" << buffer << "\", ";
        }
        body_ << "]\n";
        auto forwardPreHooks = classType->getForwardPreHooks();
        if (forwardPreHooks.size() > 0) {
          indent();
          body_ << "__forward_pre_hooks__ = [";
          for (const auto& pre_hook : forwardPreHooks) {
            body_ << "\"" << pre_hook->name() << "\", ";
          }
          body_ << "]\n";
        }

        auto forwardHooks = classType->getForwardHooks();
        if (forwardHooks.size() > 0) {
          indent();
          body_ << "__forward_hooks__ = [";
          for (const auto& hook : forwardHooks) {
            body_ << "\"" << hook->name() << "\", ";
          }
          body_ << "]\n";
        }
      }

      for (const auto i : c10::irange(numAttrs)) {
        const auto& name = classType->getAttributeName(i);
        const auto& type = classType->getAttribute(i);
        registerClassDependencies(type);

        indent();

        // Handling for when the attribute name is not a valid Python
        // identifier. This happens for, e.g. ModuleList.
        if (!isValidIdentifier(name)) {
          if (i == 0) {
            // Initialize the annotations dict if necessary.
            body_ << "__annotations__ = []\n";
            indent();
          }
          // Print out a direct manipulation of the annotations dict, like:
          //   __annotations__["0"] = SomeType
          body_ << "__annotations__["
                << "\"" << name
                << "\"] = " << type->annotation_str(type_printer_) << "\n";
        } else {
          // Otherwise: just emit a python 3 attribute annotation, like:
          //   foo : SomeType
          body_ << name << " : " << type->annotation_str(type_printer_) << "\n";
        }
      }

      size_t numConstants = classType->numConstants();
      for (const auto i : c10::irange(numConstants)) {
        const auto& name = classType->getConstantName(i);
        IValue v = classType->getConstant(i);

        indent();
        body_ << name << " : "
              << "Final[" << v.type()->annotation_str(type_printer_) << "] = ";
        auto ss = std::make_shared<TaggedStringStream>(&source_range_stack_);
        printConstant(*ss, v);
        body_ << ss->str() << "\n";
      }

      // TODO fields
      for (auto& method : classType->methods()) {
        printFunction(*method);
      }
      std::set<std::string> already_printed;
      for (auto& hook : classType->getForwardHooks()) {
        if (already_printed.count(hook->name()) == 0) {
          already_printed.insert(hook->name());
          printFunction(*hook);
        }
      }
      for (auto& pre_hook : classType->getForwardPreHooks()) {
        if (already_printed.count(pre_hook->name()) == 0) {
          already_printed.insert(pre_hook->name());
          printFunction(*pre_hook);
        }
      }
    }
  }

  void printNamedType(const c10::NamedTypePtr& type) {
    if (auto functionType = type->cast<FunctionType>()) {
      printFunction(*functionType->function());
    } else if (auto classType = type->cast<ClassType>()) {
      printClass(classType);
    } else if (auto tupleType = type->cast<TupleType>()) {
      TORCH_INTERNAL_ASSERT(tupleType->schema());
      body_ << "class " << tupleType->name()->name();
      body_ << "(NamedTuple):\n";
      {
        const auto guard = WithIndented();
        for (const auto& attr : tupleType->schema()->arguments()) {
          TORCH_INTERNAL_ASSERT(attr.type());
          indent();
          body_ << attr.name() << " : "
                << attr.type()->annotation_str(type_printer_) << "\n";
        }
      }
    } else if (auto interfaceType = type->cast<InterfaceType>()) {
      body_ << "class " << interfaceType->name()->name();
      if (interfaceType->is_module()) {
        body_ << "(ModuleInterface):\n";
      } else {
        body_ << "(Interface):\n";
      }
      {
        auto guard = WithIndented();
        for (const FunctionSchema& method : interfaceType->methods()) {
          indent();
          body_ << "def " << method.name() << "(self";
          TORCH_INTERNAL_ASSERT(
              method.arguments().size() > 0 &&
              method.arguments().at(0).name() == "self");
          for (const Argument& arg :
               at::ArrayRef<Argument>(method.arguments()).slice(1)) {
            const auto& arg_type = arg.type();
            registerClassDependencies(arg_type);
            body_ << ", " << arg.name() << ": "
                  << arg_type->annotation_str(type_printer_);
          }
          auto return_type = method.returns().at(0).type();
          registerClassDependencies(return_type);
          body_ << ") -> " << return_type->annotation_str(type_printer_)
                << ":\n";
          indent();
          body_ << "  pass\n";
        }
      }
    } else if (auto enumType = type->cast<EnumType>()) {
      body_ << "class " << enumType->qualifiedClassName().name() << "(Enum):\n";

      std::string value_wrapper = "";
      if (enumType->getValueType() == StringType::get()) {
        value_wrapper = "\"";
      }

      {
        auto guard = WithIndented();
        for (const auto& name_value : enumType->enumNamesValues()) {
          indent();
          body_ << name_value.first << " = " << value_wrapper
                << name_value.second << value_wrapper << "\n";
        }
      }
    } else {
      TORCH_INTERNAL_ASSERT(false, "Unhandled NamedType");
    }
  }

  ~PythonPrintImpl() = default;

  TaggedStringStream body_;
  // When printing this node, is it safe to write it inline (i.e. without
  // assigning a temporary variable
  std::unordered_set<Node*> output_inline_;

  // see [reordering of inlines]
  // used to track parts of an inline statement we already scanned
  // for splitting long lines, so that we do not revisit them causing n^2
  // behavior. stores the maximum offset into inputs that has already been
  // scanned for the node.
  std::unordered_map<Node*, int64_t> visited_split_inline_uses_;

  // what valid identifiers are in use for the current function
  std::unordered_set<std::string> used_names_;

  // constants are written to this table, and given then named CONSTANTS.cN
  // where N is the index into this table.
  std::vector<at::IValue>& constant_table_;

  // Any NamedTypes (classes, functions, NamedTuples) used are written to this
  // table.
  PrintDepsTable& deps_table_;

  // We need to preserve Union/Optional type annotations, but we should
  // only print the annotation on variable declaration (not on any
  // following uses). This set tracks the Value*s that we've already
  // printed with annotations
  std::unordered_set<Value*> annotated_unions_;

  // A function that, given a named type, returns us the correct string to print
  // for it.
  c10::TypePrinter type_printer_;

  // when we print this, should we error if the resulting output would
  // not be able to be reparsed?
  bool enforce_importable_;

  // The least version that supports all printed ops
  uint64_t min_version_ = caffe2::serialize::kMinSupportedFileFormatVersion;
};

PythonPrint::PythonPrint(
    std::vector<at::IValue>& constant_table,
    PrintDepsTable& deps_table,
    c10::TypePrinter type_printer,
    bool enforce_importable)
    : pImpl(std::make_shared<PythonPrintImpl>(
          constant_table,
          deps_table,
          std::move(type_printer),
          enforce_importable)) {}

void PythonPrint::printNamedType(const c10::NamedTypePtr& type) {
  pImpl->printNamedType(type);
}

void PythonPrint::printFunction(const Function& func) {
  pImpl->printFunction(func);
}

void PythonPrint::printMethod(const Function& func) {
  pImpl->printMethod(func);
}

std::string PythonPrint::str() const {
  return pImpl->body_.str();
}

const SourceRangeRecords& PythonPrint::ranges() const {
  return pImpl->body_.ranges();
}

uint64_t PythonPrint::minVersion() const {
  return pImpl->min_version_;
}

PythonPrint::~PythonPrint() = default;

std::vector<IValue> traverseIValueAndGetObjects(IValue ivalue) {
  std::vector<IValue> result;
  std::vector<IValue> stack;
  stack.emplace_back(ivalue);
  while (!stack.empty()) {
    IValue head = stack.back();
    stack.pop_back();
    if (head.isObject()) {
      result.push_back(head);
      auto obj = head.toObject();
      ClassTypePtr type = obj->type();
      if (type->hasMethod("__getstate__")) {
        Function& getstate = type->getMethod("__getstate__");
        stack.emplace_back(getstate({obj}));
      } else {
        for (size_t i = 0, n = type->numAttributes(); i < n; ++i) {
          stack.emplace_back(obj->getSlot(i));
        }
      }
    } else if (ivalue.isGenericDict()) {
      for (const auto& kv : ivalue.toGenericDict()) {
        // skip key because key cannot be an object
        stack.emplace_back(kv.value());
      }
    } else if (ivalue.isList()) {
      for (const auto& v : ivalue.toList()) {
        stack.emplace_back(v);
      }
    } else if (ivalue.isTuple()) {
      for (const auto& v : ivalue.toTuple()->elements()) {
        stack.emplace_back(v);
      }
    }
  }
  return result;
}

c10::optional<std::string> printType(
    const c10::Type& type,
    torch::jit::TypeNameUniquer& type_name_uniquer) {
  if (auto dyn = type.castRaw<c10::DynamicType>()) {
    return dyn->fallback()->annotation_str(
        [&](auto&& t) { return printType(t, type_name_uniquer); });
  }
  auto namedType = type.cast<c10::NamedType>();
  if (namedType && namedType->name()) {
    return type_name_uniquer.getUniqueName(namedType).qualifiedName();
  }
  return c10::nullopt;
}

void jitModuleToPythonCodeAndConstants(
    const Module& module,
    ExtraFilesMap* jit_sources, // output
    std::vector<IValue>* constants // output
) {
  std::vector<IValue> objects = traverseIValueAndGetObjects(module._ivalue());
  std::unordered_set<c10::QualifiedName> visited;
  PrintDepsTable class_deps;
  TypeNameUniquer uniquer;
  auto type_printer = [&](const c10::Type& t) { return printType(t, uniquer); };

  // Group by prefix; because every prefix is a file.
  std::unordered_map<std::string, PythonPrint> grouped_by_prefix;
  for (const IValue& obj : objects) {
    ObjectPtr obj_ptr = obj.toObject();
    ClassTypePtr class_type = obj_ptr->type();
    class_deps.add(class_type);
  }

  for (int i = 0; i < class_deps.size(); ++i) {
    auto type = class_deps[i];
    auto qualname = uniquer.getUniqueName(type);
    std::string qualifier = qualname.prefix();
    auto pp_iter = grouped_by_prefix.find(qualifier);
    if (pp_iter == grouped_by_prefix.end()) {
      pp_iter = grouped_by_prefix
                    .emplace(
                        qualifier,
                        PythonPrint(
                            *constants,
                            class_deps,
                            type_printer,
                            /*enforce_importable=*/true))
                    .first;
    }
    pp_iter->second.printNamedType(type);
  }
  for (const auto& kv : grouped_by_prefix) {
    (*jit_sources)[kv.first] = kv.second.str();
  }
}

} // namespace jit
} // namespace torch