1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
|
#include <ATen/ATen.h>
#include <ATen/core/Dict.h>
#ifdef USE_RPC
#include <torch/csrc/distributed/rpc/rref_context.h>
#endif
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <torch/csrc/jit/serialization/storage_context.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <string>
namespace torch {
namespace jit {
using ::c10::IValue;
static void restoreAccurateTypeTagsIfPossible(const IValue& root) {
if (root.isObject()) {
restoreAccurateTypeTags(root, root.type());
}
}
// Pickled objects are stored in a form compatible with Python pickling.
// In torchscript List[T]/Dict[K, V] are statically typed and contain
// dynamic type tags that allow T, K, and V to be recovered. But this
// info is not stored in the Python pickling information. However, we
// can recover this information from the static type of the top-level
// object being unpickled, because we have a record of the type of the
// objects it contains as attributes.
// `IfPossible` - we can only do this recovery when we have an object as
// the top-level unpickled thing (which is guaranteed for Modules, but
// not for torch.load/torch.save). Otherwise we do not know the types
// of the contained objects and cannot restore the tags.
void restoreAccurateTypeTags(const IValue& root, const TypePtr& type_tag) {
struct Work {
TypePtr type;
IValue value;
};
std::vector<Work> to_process = {{type_tag, root}};
std::unordered_set<const void*> scanned;
while (!to_process.empty()) {
Work w = std::move(to_process.back());
to_process.pop_back();
// ensure we only scan each pointer value once, otherwise this
// can become exponential (and if we allow recursive data in the future,
// it would not terminiate).
if (w.value.isPtrType()) {
const void* key = w.value.internalToPointer();
auto it = scanned.find(key);
if (it != scanned.end()) {
continue;
}
scanned.emplace_hint(it, key);
}
auto kind = w.type->kind();
if (auto dyn = w.type->castRaw<c10::DynamicType>()) {
kind = dyn->dynamicKind();
}
switch (kind) {
case TensorType::Kind:
case StorageType::Kind:
case NumberType::Kind:
case FloatType::Kind:
case ComplexType::Kind:
case IntType::Kind:
case NoneType::Kind:
case GeneratorType::Kind:
case QuantizerType::Kind:
case BoolType::Kind:
case VarType::Kind:
case CapsuleType::Kind:
case PyObjectType::Kind:
case StringType::Kind:
case FunctionType::Kind:
case DeviceObjType::Kind:
case StreamObjType::Kind:
case QSchemeType::Kind:
case LayoutType::Kind:
case MemoryFormatType::Kind:
case ScalarTypeType::Kind:
case RRefType::Kind:
case AnyType::Kind:
case AnyListType::Kind:
case AnyTupleType::Kind:
case AnyClassType::Kind:
case AnyEnumType::Kind:
// no op, there is nothing to tag
break;
case c10::SymIntType::Kind:
TORCH_CHECK(!w.value.toSymInt().is_symbolic());
// no op, there is nothing to tag
break;
case c10::SymFloatType::Kind:
TORCH_CHECK(!w.value.toSymFloat().is_symbolic());
// no op, there is nothing to tag
break;
case DynamicType::Kind:
case UnionType::Kind:
case EnumType::Kind:
// TODO(gmagogsfm): Implement serialization/deserialization of Enum.
TORCH_INTERNAL_ASSERT(false);
case TupleType::Kind: {
auto t = w.value.toTuple();
for (size_t i = 0; i < w.type->containedTypeSize(); ++i) {
Work elem = {w.type->containedType(i), t->elements().at(i)};
to_process.emplace_back(std::move(elem));
}
} break;
case FutureType::Kind: {
auto f = w.value.toFuture();
if (f->completed()) {
Work elem = {w.type->containedType(0), f->value()};
to_process.emplace_back(std::move(elem));
}
} break;
case OptionalType::Kind: {
if (!w.value.isNone()) {
Work elem = {w.type->containedType(0), w.value};
to_process.emplace_back(std::move(elem));
}
} break;
case ListType::Kind: {
// specialized lists do not need their type refined, so we can exit
// early here
if (!w.value.isList()) {
break;
}
auto elem_type = w.type->containedType(0);
auto lst = w.value.toList();
lst.unsafeSetElementType(elem_type);
for (const IValue item : lst) {
Work elem = {elem_type, item};
to_process.emplace_back(std::move(elem));
}
} break;
case DictType::Kind: {
auto d = w.value.toGenericDict();
auto keyType = w.type->containedType(0);
auto valType = w.type->containedType(1);
d.unsafeSetKeyType(keyType);
d.unsafeSetValueType(valType);
for (const auto& item : d) {
Work kelem = {keyType, item.key()};
Work velem = {valType, item.value()};
to_process.emplace_back(std::move(kelem));
to_process.emplace_back(std::move(velem));
}
} break;
// in both cases the dynamic type is a class, and we are going to tag with
// the dynamic type
case InterfaceType::Kind:
case ClassType::Kind: {
auto obj = w.value.toObject();
auto typ = obj->type(); // note: intentionally using the dynamic type,
// the static type is potentially less accurate
for (size_t i = 0; i < typ->numAttributes(); ++i) {
Work elem = {typ->getAttribute(i), obj->getSlot(i)};
to_process.emplace_back(std::move(elem));
}
};
}
}
}
namespace {
template <typename T>
bool is(const Type& type) {
if (type.kind() == T::Kind) {
return true;
}
if (auto dyn = type.castRaw<c10::DynamicType>()) {
return dyn->tag() == c10::DynamicTypeTrait<T>::tagValue();
}
return false;
}
} // namespace
void restoreContainerTypeTags(const IValue& ivalue, const TypePtr& type) {
if (is<DictType>(*type)) {
auto dict = ivalue.toGenericDict();
dict.unsafeSetKeyType(type->containedType(0));
dict.unsafeSetValueType(type->containedType(1));
} else if (is<ListType>(*type)) {
ivalue.toList().unsafeSetElementType(type->containedType(0));
} else {
AT_ERROR("Unknown type for tag restoration: " + type->annotation_str());
}
}
IValue Unpickler::parse_ivalue() {
run();
TORCH_CHECK(
stack_.size() == 1,
"Unpickler expected 1 element on the stack, but found ",
stack_.size());
if (version_ <= 2) {
// See [type tag serialization]
restoreAccurateTypeTagsIfPossible(stack_[0]);
}
return stack_[0];
}
double Unpickler::readFloat() {
AT_ASSERT(sizeof(double) == 8);
double big_endian = read<double>();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
double little_endian;
// Pickle floats are big endian, so reverse the bytes
auto big_endian_ptr = reinterpret_cast<const char*>(&big_endian);
std::reverse_copy(
big_endian_ptr,
big_endian_ptr + sizeof(big_endian),
reinterpret_cast<char*>(&little_endian));
return little_endian;
}
void Unpickler::run() {
// Expect a PROTO opcode and protocol number at the start of blob
auto opcode = readOpCode();
TORCH_CHECK(
opcode == PickleOpCode::PROTO,
"Expected PROTO opcode at the start"
" of pickle archive, found ",
int(static_cast<uint8_t>(opcode)));
uint8_t protocol = read<uint8_t>();
TORCH_CHECK(
protocol == 2,
"Only Pickle protocol 2 is supported, found protocol = ",
protocol);
while (true) {
PickleOpCode opcode = readInstruction();
if (opcode == PickleOpCode::STOP) {
return;
}
}
}
void Unpickler::setInput(size_t memo_id) {
AT_ASSERT(!stack_.empty());
if (memo_id >= memo_table_.size()) {
memo_table_.insert(
memo_table_.end(), memo_id - memo_table_.size(), IValue());
memo_table_.push_back(stack_.back());
} else {
memo_table_[memo_id] = stack_.back();
}
}
// emplace_back on bool vectors does not exist on some systems
// avoid it by calling push_back for bool
template <typename T>
inline void append(std::vector<T>& a, T&& e) {
a.emplace_back(std::forward<T>(e));
}
template <>
inline void append<bool>(std::vector<bool>& a, bool&& e) {
a.push_back(e);
}
static std::vector<int64_t> tupleToIntList(const IValue& v) {
return fmap(v.toTupleRef().elements(), [](const IValue& v) -> int64_t {
return v.toInt();
});
}
// note we cannot use toIntList, toDoubleList because during unpickling the
// lists are not yet tagged
template <typename T>
static std::vector<T> convertList(const IValue& v) {
return fmap(v.toListRef(), [](const IValue& elem) { return elem.to<T>(); });
}
PickleOpCode Unpickler::readInstruction() {
auto opcode = readOpCode();
switch (opcode) {
case PickleOpCode::EMPTY_LIST: {
stack_.emplace_back(c10::impl::GenericList(AnyType::get()));
} break;
case PickleOpCode::EMPTY_TUPLE: {
if (empty_tuple_.isNone()) {
// we only need one object, since tuples are not mutable.
empty_tuple_ = c10::ivalue::Tuple::create(std::vector<IValue>());
}
stack_.emplace_back(empty_tuple_);
} break;
case PickleOpCode::BINPUT: {
size_t memo_id = read<uint8_t>();
setInput(memo_id);
} break;
case PickleOpCode::LONG_BINPUT: {
TORCH_CHECK(
std::numeric_limits<size_t>::max() >=
std::numeric_limits<uint32_t>::max(),
"Found a LONG_BINPUT opcode, but size_t on this system is "
"not big enough to decode it");
size_t memo_id = read<uint32_t>();
setInput(memo_id);
} break;
case PickleOpCode::MARK: {
// Mark location of the container ivalue in the stack
marks_.push_back(stack_.size());
} break;
case PickleOpCode::NEWTRUE: {
stack_.emplace_back(true);
} break;
case PickleOpCode::NEWFALSE: {
stack_.emplace_back(false);
} break;
case PickleOpCode::NONE: {
stack_.emplace_back(IValue());
} break;
case PickleOpCode::BININT1: {
uint8_t value = read<uint8_t>();
stack_.emplace_back(int64_t(value));
} break;
case PickleOpCode::BININT2: {
uint16_t value = read<uint16_t>();
stack_.emplace_back(int64_t(value));
} break;
case PickleOpCode::BININT: {
int32_t value = read<int32_t>();
stack_.emplace_back(int64_t(value));
} break;
case PickleOpCode::LONG1: {
// Only read LONG1s with 8 as the length
uint8_t length = read<uint8_t>();
TORCH_CHECK(length == 8, "Expected length to be 8, got ", int(length));
stack_.emplace_back(int64_t(read<int64_t>()));
} break;
case PickleOpCode::BINUNICODE: {
uint32_t length = read<uint32_t>();
stack_.emplace_back(readBytes(length));
} break;
case PickleOpCode::BINFLOAT:
stack_.emplace_back(readFloat());
break;
case PickleOpCode::TUPLE: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
marks_.pop_back();
std::vector<IValue> elements;
const auto tupleSize = stack_.size() - start;
switch (tupleSize) {
case 3: {
auto e3 = pop(stack_);
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(c10::ivalue::Tuple::create(
std::move(e1), std::move(e2), std::move(e3)));
break;
}
case 2: {
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(
c10::ivalue::Tuple::create(std::move(e1), std::move(e2)));
break;
}
case 1:
stack_.emplace_back(c10::ivalue::Tuple::create(pop(stack_)));
break;
default: {
elements.reserve(stack_.size() - start);
auto start_it = stack_.begin() + start;
for (auto it = start_it; it != stack_.end(); ++it) {
elements.emplace_back(std::move(*it));
}
stack_.erase(start_it, stack_.end());
stack_.emplace_back(c10::ivalue::Tuple::create(std::move(elements)));
break;
}
}
} break;
case PickleOpCode::TUPLE1: {
stack_.emplace_back(c10::ivalue::Tuple::create(pop(stack_)));
} break;
case PickleOpCode::TUPLE2: {
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(
c10::ivalue::Tuple::create(std::move(e1), std::move(e2)));
} break;
case PickleOpCode::TUPLE3: {
auto e3 = pop(stack_);
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(c10::ivalue::Tuple::create(
std::move(e1), std::move(e2), std::move(e3)));
} break;
case PickleOpCode::EMPTY_DICT:
stack_.emplace_back(
c10::impl::GenericDict(AnyType::get(), AnyType::get()));
break;
case PickleOpCode::APPENDS: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
TORCH_CHECK(
start > 0 && start <= stack_.size(),
"Parsing error: wrong start index for stack_");
auto list_ivalue = stack_.at(start - 1);
readList(list_ivalue);
} break;
case PickleOpCode::LIST: {
IValue list_ivalue = c10::impl::GenericList(AnyType::get());
readList(list_ivalue);
stack_.push_back(std::move(list_ivalue));
} break;
case PickleOpCode::DICT: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
marks_.pop_back();
auto dict = c10::impl::GenericDict(AnyType::get(), AnyType::get());
for (size_t i = start; i < stack_.size(); i += 2) {
dict.insert_or_assign(stack_[i], stack_[i + 1]);
}
stack_.erase(stack_.begin() + start, stack_.end());
stack_.emplace_back(std::move(dict));
} break;
case PickleOpCode::SETITEMS: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
marks_.pop_back();
TORCH_CHECK(
start > 0 && start <= stack_.size(),
"Parsing error: wrong start index for stack_");
auto dict = stack_.at(start - 1).toGenericDict();
for (size_t i = start; i < stack_.size(); i += 2) {
dict.insert_or_assign(stack_[i], stack_[i + 1]);
}
stack_.erase(stack_.begin() + start, stack_.end());
} break;
case PickleOpCode::BINGET: {
stack_.push_back(memo_table_.at(read<uint8_t>()));
} break;
case PickleOpCode::LONG_BINGET: {
stack_.push_back(memo_table_.at(read<uint32_t>()));
} break;
case PickleOpCode::STOP:
break;
case PickleOpCode::GLOBAL: {
// Module name, it's not needed for anything
auto module_name = readString();
auto class_name = readString();
readGlobal(module_name, class_name);
} break;
case PickleOpCode::NEWOBJ: {
// pop empty tuple, the actual action is stored in the globals_stack_
stack_.pop_back();
} break;
// because we have NEWOBJ do nothing, BUILD and REDUCE end up doing
// the same thing
case PickleOpCode::BUILD:
case PickleOpCode::REDUCE: {
// stack is: <functor_idx> <functor_arg>
// extract <functor_idx> and remove from the stack:
std::swap(*(stack_.end() - 2), *(stack_.end() - 1));
size_t idx = stack_.back().toInt();
stack_.pop_back();
// stack is: <functor_arg>
TORCH_CHECK(
idx < globals_.size(),
"Parsing error: out of bounds access to globals_");
globals_.at(idx)();
} break;
case PickleOpCode::BINPERSID: {
auto tuple = pop(stack_).toTuple();
const auto& args = tuple->elements();
AT_ASSERT(
args.at(0).toStringRef() == "storage",
"unknown PERSID key ",
args.at(0).toStringRef());
at::ScalarType type = args.at(1).toScalarType();
const std::string& key = args.at(2).toStringRef();
at::Device device(args.at(3).toStringRef());
if (device_) {
device = *device_;
}
at::Storage storage;
if (storage_context_ != nullptr && storage_context_->hasStorage(key)) {
// for torch.package logic where storage may be loaded already
storage = storage_context_->getStorage(key);
} else {
int64_t numel = args.at(4).toInt();
caffe2::TypeMeta dtype = at::CPU(type).typeMeta();
at::DataPtr storage_ptr;
if (numel > 0) {
// If there are no elements in the tensor, there's no point in
// reading a zero (0) byte file from the input stream and paying
// that cost.
storage_ptr = read_record_(key);
}
storage = at::Storage(
c10::Storage::use_byte_size_t(),
numel * dtype.itemsize(),
std::move(storage_ptr),
/*allocator=*/nullptr,
/*resizable=*/false); // NB: we didn't set any allocator for the
// tensor
if (storage_context_ != nullptr) {
storage_context_->addStorage(key, storage);
}
}
auto options = at::CPU(type).options();
if (use_storage_device_) {
options = options.device(storage.device());
device = storage.device();
}
at::Tensor tensor;
if (options.backend() == c10::Backend::QuantizedCPU) {
tensor = at::_empty_affine_quantized({}, options, 0, 0)
.set_(storage, 0, {}, {});
} else {
tensor = at::empty({0}, options).set_(storage);
}
if (device.is_cuda() || device.is_xpu() || device.is_meta() ||
device.is_hpu()) {
tensor = tensor.to(device, tensor.scalar_type());
} else if (device.type() != DeviceType::CPU) {
AT_ERROR(
"supported devices include CPU, CUDA and HPU, however got ",
DeviceTypeName(device.type(), false));
}
stack_.emplace_back(std::move(tensor));
} break;
default: {
AT_ERROR(
"Unknown opcode for unpickling at ",
reinterpret_cast<void*>(opcode),
": ",
int(static_cast<uint8_t>(opcode)));
} break;
}
return opcode;
}
void Unpickler::readGlobal(
const std::string& module_name,
const std::string& class_name) {
// TODO [unpickler refactor] __main__ isn't used by the pickler anymore, this
// is only here for bc-compatibility reasons
if (module_name == "__main__") {
if (class_name == "TensorID") {
globals_.emplace_back([this] {
auto setitem_data = stack_.back();
stack_.pop_back();
TORCH_INTERNAL_ASSERT(
!tensor_table_.empty(),
"Pickler tried to write a tensor but had no tensor table to write to");
stack_.emplace_back(tensor_table_.at(setitem_data.toInt()));
});
} else if (class_name == "IntList") {
globals_.emplace_back([this] {
stack_.back().toList().unsafeSetElementType(IntType::get());
});
} else {
AT_ERROR("Unknown pickler class id", class_name);
}
} else if (module_name == "torch.jit._pickle") {
if (class_name == "build_tensor_from_id") {
globals_.emplace_back([this] {
// Pop reduce arg off the stack
auto data = stack_.back().toTupleRef().elements().at(0);
stack_.pop_back();
TORCH_CHECK(
!tensor_table_.empty(),
"Found a tensor table reference but Unpickler"
" has no tensor table\n");
stack_.emplace_back(tensor_table_.at(data.toInt()));
});
} else if (class_name == "restore_type_tag") {
globals_.emplace_back([this] {
auto tuple = stack_.back().toTuple();
const auto& data = tuple->elements();
auto type_str = data.at(1).toStringRef();
stack_.pop_back();
TypePtr type = nullptr;
auto entry = type_cache_.find(type_str);
if (entry != type_cache_.end()) {
type = entry->second;
} else {
if (type_resolver_ == nullptr) {
// If we haven't injected a custom way of retrieving types from
// names, use a barebones type parser.
type = type_parser_(type_str);
} else {
type = type_resolver_(type_str).type_;
}
type_cache_[type_str] = type;
}
// TODO: Use lookahead to avoid creating the tuple and immediately
// destroying it here
restoreContainerTypeTags(data.at(0), type);
stack_.emplace_back(data.at(0));
});
} else {
TypePtr elem_type = nullptr;
if (class_name == "build_intlist") {
elem_type = IntType::get();
} else if (class_name == "build_tensorlist") {
elem_type = TensorType::get();
} else if (class_name == "build_doublelist") {
elem_type = FloatType::get();
} else if (class_name == "build_boollist") {
elem_type = BoolType::get();
} else {
AT_ERROR("Unknown pickler class id ", class_name);
}
// Unpickle a list specialization (e.g. List[Tensor], List[int], ...)
globals_.emplace_back([this, elem_type] {
// Pop reduce arg off the stack
auto data = stack_.back().toTupleRef().elements().at(0).toList();
stack_.pop_back();
data.unsafeSetElementType(elem_type);
stack_.emplace_back(std::move(data));
});
}
} else if (
module_name == "torch._utils" &&
(class_name == "_rebuild_tensor_v2" ||
class_name == "_rebuild_qtensor")) {
// Unpickle a tensor
bool quantized = class_name == "_rebuild_qtensor";
rebuildTensor(quantized);
} else if (
module_name == "torch._utils" && class_name == "_rebuild_sparse_tensor") {
rebuildSparseTensor();
} else if (module_name == "builtins" && class_name == "complex") {
globals_.emplace_back([this] {
auto tuple = pop(stack_).toTuple();
const auto& elems = tuple->elements();
AT_ASSERT(elems.size() == 2);
auto complex =
c10::complex<double>(elems.at(0).toDouble(), elems.at(1).toDouble());
stack_.emplace_back(complex);
});
} else if (module_name == "collections" && class_name == "OrderedDict") {
// collections.OrderedDict is used in tensor serialization for a tensor's
// backward hooks (but they are not actually saved with this Pickler)
globals_.emplace_back([this] {
// drop the Tuple that was argument to OrderedDict, and replace it
// with None OrderedDicts only appear in tensor deserialization and
// their value is never used
stack_.back() = IValue();
});
} else if (module_name == "torch" && class_name == "device") {
globals_.emplace_back([this] {
auto device_string = stack_.back().toTupleRef().elements().at(0);
stack_.pop_back();
stack_.emplace_back(c10::Device(device_string.toStringRef()));
});
stack_.emplace_back(int64_t(globals_.size() - 1));
return;
} else if (module_name == "torch.distributed.rpc" && class_name == "rref") {
#ifdef USE_RPC
return rebuildRRef();
#else
TORCH_INTERNAL_ASSERT(
false,
"RRef unpickling is only supported with the distributed package");
#endif
} else if (module_name == "torch") {
// Try to manually resolve several global enums
// NOTE: this does not put a global into the global table,
// like the other branches here because no REDUCE or BUILD will
// be called on this value. Instead, we just put it on the stack
// and return early
c10::optional<c10::ScalarType> scalar_type;
#define CHECK_SCALAR(_, name) \
if (class_name == #name "Storage") { \
scalar_type = c10::k##name; \
}
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(CHECK_SCALAR)
#undef CHECK_SCALAR
if (scalar_type.has_value()) {
stack_.emplace_back(int64_t(*scalar_type));
return;
}
c10::optional<at::QScheme> qscheme;
for (int i = 0; i < at::COMPILE_TIME_NUM_QSCHEMES; ++i) {
if (class_name == toString(static_cast<at::QScheme>(i))) {
qscheme = static_cast<at::QScheme>(i);
}
}
if (qscheme.has_value()) {
stack_.emplace_back(int64_t(*qscheme));
return;
}
TORCH_CHECK(
false,
"Unpickler found unknown torch global, 'torch.",
class_name,
"'");
} else {
TORCH_CHECK(
type_resolver_,
"Unpickler found unknown type ",
module_name,
".",
class_name);
at::StrongTypePtr type =
type_resolver_(c10::QualifiedName(module_name, class_name));
if (auto enum_type = type.type_->cast<c10::EnumType>()) {
globals_.emplace_back([this, enum_type] {
auto val = stack_.back();
stack_.pop_back();
for (const auto& p : enum_type->enumNamesValues()) {
if (p.second == val) {
auto enum_holder = c10::make_intrusive<at::ivalue::EnumHolder>(
enum_type, p.first, p.second);
stack_.emplace_back(std::move(enum_holder));
return;
}
}
});
} else {
// Otherwise, global is a class/object type.
globals_.emplace_back([this, type] {
auto val = stack_.back();
stack_.pop_back();
auto obj = obj_loader_(type, val);
stack_.emplace_back(std::move(obj));
});
}
}
stack_.emplace_back(int64_t(globals_.size() - 1));
}
void Unpickler::rebuildSparseTensor() {
globals_.emplace_back([this] {
auto tup = pop(stack_).toTuple();
const auto& elements = tup->elements();
size_t idx = 0;
auto layout = elements.at(idx++).toInt();
at::Tensor result;
switch (layout) {
case static_cast<int>(c10::Layout::Sparse): {
std::vector<int64_t> size = tupleToIntList(elements.at(idx++));
bool requires_grad = elements.at(idx++).toBool();
auto& indices_tensor = elements.at(idx++).toTensor();
auto& values_tensor = elements.at(idx++).toTensor();
auto options = values_tensor.options()
.layout(c10::Layout::Sparse)
.requires_grad(requires_grad);
result = at::_sparse_coo_tensor_unsafe(
indices_tensor, values_tensor, size, options);
result = autograd::make_variable(result, options.requires_grad());
break;
}
case static_cast<int>(c10::Layout::SparseCsr): {
std::vector<int64_t> size = tupleToIntList(elements.at(idx++));
bool requires_grad = elements.at(idx++).toBool();
auto& crow_indices = elements.at(idx++).toTensor();
auto& col_indices = elements.at(idx++).toTensor();
auto& values_tensor = elements.at(idx++).toTensor();
auto options = values_tensor.options()
.layout(c10::Layout::SparseCsr)
.requires_grad(requires_grad);
result = at::_sparse_csr_tensor_unsafe(
crow_indices, col_indices, values_tensor, size, options);
result =
autograd::make_variable(std::move(result), options.requires_grad());
break;
}
default:
TORCH_CHECK(
false,
"Unsupported sparse tensor layout type in serialization ",
static_cast<c10::Layout>(layout));
break;
}
stack_.emplace_back(std::move(result));
});
}
void Unpickler::rebuildTensor(bool quantized) {
globals_.emplace_back([this, quantized] {
auto tup = pop(stack_).toTuple();
const auto& elements = tup->elements();
size_t idx = 0;
auto& storage_tensor = elements.at(idx++).toTensor();
int64_t storage_offset = elements.at(idx++).toInt();
std::vector<int64_t> size = tupleToIntList(elements.at(idx++));
std::vector<int64_t> stride = tupleToIntList(elements.at(idx++));
at::Tensor result;
if (quantized) {
auto qparams_tuple = elements.at(idx++).toTuple();
const auto& qparams = qparams_tuple->elements();
auto qscheme = static_cast<at::QScheme>(qparams.at(0).toInt());
switch (qscheme) {
case at::kPerTensorAffine: {
double q_scale = qparams.at(1).toDouble();
int64_t q_zero_point = qparams.at(2).toInt();
result = at::_empty_affine_quantized(
{0}, storage_tensor.options(), q_scale, q_zero_point);
} break;
case at::kPerChannelAffineFloatQParams:
case at::kPerChannelAffine: {
const auto& scales = qparams.at(1).toTensor();
const auto& zero_points = qparams.at(2).toTensor();
int64_t axis = qparams.at(3).toInt();
result = at::_empty_per_channel_affine_quantized(
{0}, scales, zero_points, axis, storage_tensor.options());
} break;
default:
TORCH_CHECK(
false,
"Unsupported tensor quantization type in serialization ",
toString(qscheme));
break;
}
} else {
result = at::empty({0}, storage_tensor.options());
}
bool requires_grad = elements.at(idx).toBool();
// elements[idx++] is empty backwards hooks
at::TensorImpl* impl = result.unsafeGetTensorImpl();
impl->set_storage_keep_dtype(storage_tensor.storage());
impl->set_storage_offset(storage_offset);
impl->set_sizes_and_strides(size, stride);
result = autograd::make_variable(result, requires_grad);
stack_.emplace_back(std::move(result));
});
}
#ifdef USE_RPC
void Unpickler::rebuildRRef() {
globals_.emplace_back([this] {
// It is the same as how rref is unpickled in python,
// see PyRRef::unpickle
auto tuple = std::move(stack_.back()).toTuple();
const auto& args = tuple->elements();
stack_.pop_back();
TORCH_INTERNAL_ASSERT(
args.size() == distributed::rpc::RFD_TUPLE_SIZE,
"Pickled RRefForkData must contain 7 numbers.");
auto ownerId =
static_cast<int16_t>(args.at(distributed::rpc::OWNER_IDX).toInt());
// const reference will extend the lifetime of the temporary variable
const auto& rrefId = distributed::rpc::RRefId(
static_cast<int16_t>(args.at(distributed::rpc::RREFID_ON_IDX).toInt()),
static_cast<int64_t>(args.at(distributed::rpc::RREFID_ID_IDX).toInt()));
const auto& forkId = distributed::rpc::RRefId(
static_cast<int16_t>(args.at(distributed::rpc::FORKID_ON_IDX).toInt()),
static_cast<int64_t>(args.at(distributed::rpc::FORKID_ID_IDX).toInt()));
auto parent =
static_cast<int16_t>(args.at(distributed::rpc::PARENT_IDX).toInt());
const auto& typeStr = static_cast<std::string>(
args.at(distributed::rpc::TYPE_IDX).toStringRef());
auto rrefForkData = distributed::rpc::RRefForkData(
ownerId, rrefId, forkId, parent, typeStr);
auto& ctx = distributed::rpc::RRefContext::getInstance();
c10::intrusive_ptr<distributed::rpc::RRef> rref;
TORCH_INTERNAL_ASSERT(
type_resolver_ != nullptr, "type_resolver_ is nullptr.");
at::StrongTypePtr type = type_resolver_(c10::QualifiedName(typeStr));
rref = ctx.getOrCreateRRef(rrefForkData, type.type_);
ctx.notifyOwnerAndParentOfFork(
rrefForkData.forkId_, rrefForkData.parent_, rref);
stack_.emplace_back(
c10::static_intrusive_pointer_cast<c10::RRefInterface>(rref));
});
stack_.emplace_back(int64_t(globals_.size() - 1));
return;
}
#endif
void Unpickler::readSlowWithBuffer(char* dest, size_t sz) {
// First, read any partial from buffer (may be 0).
// We explicitly assume that sz > buffer_remaining_,
// and that sz is never bigger than buffer_.size().
AT_ASSERT(sz > buffer_remaining_);
const size_t from_old_buf = buffer_remaining_;
if (from_old_buf != 0) {
memcpy(dest, buffer_.data() + buffer_pos_, from_old_buf);
}
const size_t needed = sz - from_old_buf;
// Full read into the buffer. The calls here all explicitly
// assume that one buffer will be enough for any sz.
AT_ASSERT(sz <= buffer_.size());
buffer_remaining_ = reader_(buffer_.data(), buffer_.size());
if (buffer_remaining_ < needed) {
AT_ERROR("Unexpected end of pickler archive.");
}
memcpy(dest + from_old_buf, buffer_.data(), needed);
buffer_pos_ = needed; // assignment (0'ed from read)
buffer_remaining_ -= needed;
}
// Read a number of bytes from the input stream
std::string Unpickler::readBytes(size_t length) {
std::string data;
static const size_t kSmallString = 64;
if (length <= buffer_remaining_) {
// Fast-path: entirely in buffer.
data.assign(buffer_.data() + buffer_pos_, length);
buffer_pos_ += length;
buffer_remaining_ -= length;
} else if (length <= kSmallString) {
// If the string is smallish, do a full buffer read,
// and read out of that buffer.
data.resize(length);
readSlowWithBuffer(&data[0], length);
} else {
// Otherwise, for larger strings, read what we can from
// the buffer, and then read directly to the destination.
const size_t from_old_buf = buffer_remaining_;
if (from_old_buf != 0) {
data.reserve(length);
data.append(buffer_.data() + buffer_pos_, from_old_buf);
}
data.resize(length);
const size_t needed = length - from_old_buf;
size_t nread = reader_(&data[from_old_buf], needed);
if (nread != needed) {
AT_ERROR("Unexpected end of pickler archive.");
}
buffer_remaining_ = 0;
// buffer_pos_ has no meaning with buffer_remaining_ == 0.
}
return data;
}
// Pop all the list items off of the stack and append them to the list at
// the corresponding MARK
void Unpickler::readList(IValue list_ivalue) {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
marks_.pop_back();
auto num_elements = stack_.size() - start;
auto elements = c10::ArrayRef<IValue>(stack_).slice(start);
if (list_ivalue.isIntList()) {
auto list = std::move(list_ivalue).toIntList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem.toInt());
}
} else if (list_ivalue.isTensorList()) {
auto list = std::move(list_ivalue).toTensorList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem.toTensor());
}
} else if (list_ivalue.isDoubleList()) {
auto list = std::move(list_ivalue).toDoubleList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem.toDouble());
}
} else if (list_ivalue.isBoolList()) {
auto list = std::move(list_ivalue).toBoolList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.push_back(elem.toBool());
}
} else if (list_ivalue.isList()) {
auto list = std::move(list_ivalue).toList();
list.reserve(num_elements);
for (const auto& elem : elements) {
list.emplace_back(elem);
}
} else {
AT_ERROR("Unknown IValue list kind: ", list_ivalue.tagKind());
}
stack_.erase(stack_.begin() + start, stack_.end());
}
inline bool is_valid_python_id_char(char c) {
return c == '_' || c == '.' || (c >= '0' && c <= '9') ||
(c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
}
// Read a newline terminated string
std::string Unpickler::readString() {
std::string ss;
while (true) {
auto* const bufferStart = buffer_.data() + buffer_pos_;
const auto bufferLeft = buffer_.size() - buffer_pos_;
char* const newlinePtr =
static_cast<char*>(memchr(bufferStart, '\n', bufferLeft));
if (newlinePtr) {
// read up to newline and we are done.
auto const charsRead = newlinePtr - bufferStart;
ss.append(bufferStart, charsRead);
buffer_remaining_ -= charsRead + 1;
buffer_pos_ += charsRead + 1;
break;
} else {
// read whole buffer, refill
for (const char* p = bufferStart; p < bufferStart + bufferLeft; ++p) {
// Simple check just in case there is no terminating '\n'
TORCH_CHECK(
is_valid_python_id_char(*p),
"Found character '",
int(uint8_t(*p)),
"' in string, ",
"strings must be qualified Python identifiers");
}
ss.append(bufferStart, bufferLeft);
buffer_remaining_ = reader_(buffer_.data(), buffer_.size());
buffer_pos_ = 0;
}
}
return ss;
}
} // namespace jit
} // namespace torch
|