File: bounds_inference.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (374 lines) | stat: -rw-r--r-- 10,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#include <torch/csrc/jit/tensorexpr/bounds_inference.h>

#include <torch/csrc/jit/tensorexpr/bounds_overlap.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_visitor.h>
#include <torch/csrc/jit/tensorexpr/stmt.h>

#include <c10/util/irange.h>

namespace torch {
namespace jit {
namespace tensorexpr {

using namespace analysis;

template <typename Container>
BoundsInfo mergeTensorAccesses(
    const Container& accesses,
    const std::unordered_map<VarPtr, BufPtr>& varToBuf,
    bool distinctAccessKinds) {
  BoundsInfo ret;
  for (auto& access : accesses) {
    if (access->type() == AccessType::Input ||
        access->type() == AccessType::Output) {
      continue;
    }

    auto vtbIt = varToBuf.find(access->var());
    TORCH_INTERNAL_ASSERT(vtbIt != varToBuf.end(), buildErrorMessage());
    BufPtr buf = vtbIt->second;
    std::vector<TensorAccessBoundsInfo>& infos = ret[buf];

    bool added = false;
    // This loop should be small, max of 2 (kLoad, kStore).
    for (auto& TABI : infos) {
      TensorAccessKind kind = access->isWrite() ? kStore : kLoad;
      if (!distinctAccessKinds || kind == TABI.kind) {
        TORCH_INTERNAL_ASSERT(
            TABI.start.size() == access->bounds().size(), buildErrorMessage());
        TORCH_INTERNAL_ASSERT(
            TABI.stop.size() == access->bounds().size(), buildErrorMessage());
        for (size_t i = 0; i < TABI.start.size(); ++i) {
          TABI.start[i] = IRSimplifier::simplify(
              alloc<Min>(TABI.start[i], access->bounds()[i].start, true));
          TABI.stop[i] = IRSimplifier::simplify(
              alloc<Max>(TABI.stop[i], access->bounds()[i].end, true));
          added = true;

          if (kind != TABI.kind) {
            TABI.kind = kMutate;
          }
        }
      }
    }

    if (!added) {
      TensorAccessBoundsInfo info;
      info.kind = access->isWrite() ? kStore : kLoad;

      for (auto& b : access->bounds()) {
        info.start.push_back(b.start);
        info.stop.push_back(b.end);
      }

      infos.push_back(info);
    }
  }

  return ret;
}

std::unordered_map<VarPtr, BufPtr> getAllBufs(StmtPtr s) {
  std::unordered_map<VarPtr, BufPtr> varToBuf;

  auto bufs = NodeFinder<Buf>::find(s);
  for (auto b : bufs) {
    varToBuf[b->base_handle()] = b;
  }
  return varToBuf;
}

std::unordered_map<VarPtr, BufPtr> getAllBufs(ExprPtr e) {
  std::unordered_map<VarPtr, BufPtr> varToBuf;

  auto bufs = NodeFinder<Buf>::find(e);
  for (auto b : bufs) {
    varToBuf[b->base_handle()] = b;
  }
  return varToBuf;
}

BoundsInfo inferBounds(StmtPtr s, bool distinctAccessKinds) {
  auto varToBuf = getAllBufs(s);

  MemDependencyChecker checker;
  s->accept(&checker);

  return mergeTensorAccesses(
      checker.getHistory(), varToBuf, distinctAccessKinds);
}

BoundsInfo getInferredBounds(
    MemDependencyChecker& analyzer,
    StmtPtr s,
    bool distinctAccessKinds) {
  return mergeTensorAccesses(
      analyzer.accessesWithin(s), getAllBufs(s), distinctAccessKinds);
}

BoundsInfo getInferredBounds(
    MemDependencyChecker& analyzer,
    ExprPtr e,
    bool distinctAccessKinds) {
  return mergeTensorAccesses(
      analyzer.accessesWithin(e), getAllBufs(e), distinctAccessKinds);
}

void printBoundsInfo(const BoundsInfo& v) {
  std::cerr << "Access vector {\n";
  for (auto& pair : v) {
    std::cerr << *pair.first << " in [";
    bool first = true;
    for (auto& b : pair.second) {
      if (!first) {
        std::cerr << ", ";
      }
      std::cerr << ((b.kind == kLoad) ? "LOAD" : "STORE") << "(";
      int i = 0;
      if (b.start.empty()) {
        std::cerr << "0";
      }
      for (auto& s : b.start) {
        if (i != 0) {
          std::cerr << ", ";
        }
        std::cerr << *s;
        i++;
      }
      std::cerr << "; ";
      i = 0;
      if (b.stop.empty()) {
        std::cerr << "0";
      }
      for (auto& s : b.stop) {
        if (i != 0) {
          std::cerr << ", ";
        }
        std::cerr << *s;
        i++;
      }
      std::cerr << ")";
      first = false;
    }
    std::cerr << "]\n";
  }
  std::cerr << "}\n";
}

std::vector<ExprPtr> getBoundExtents(
    const std::vector<TensorAccessBoundsInfo>& infos) {
  std::vector<ExprPtr> starts;
  std::vector<ExprPtr> stops;

  // Find the safe size of the temprorary buffer by determining the outer
  // extents of a union of all bounds.
  for (const TensorAccessBoundsInfo& p : infos) {
    for (const auto i : c10::irange(p.start.size())) {
      if (starts.size() <= i) {
        starts.push_back(p.start[i]);
      } else {
        starts[i] =
            IRSimplifier::simplify(alloc<Min>(starts[i], p.start[i], true));
      }

      if (stops.size() <= i) {
        stops.push_back(p.stop[i]);
      } else {
        stops[i] =
            IRSimplifier::simplify(alloc<Max>(stops[i], p.stop[i], true));
      }
    }
  }

  std::vector<ExprPtr> extents;
  for (size_t i = 0; i < starts.size(); ++i) {
    ExprPtr dim = IRSimplifier::simplify(
        alloc<Add>(alloc<Sub>(stops[i], starts[i]), immLike(stops[i], 1)));

    extents.push_back(dim);
  }

  return extents;
}

using BoundSet = std::unordered_set<Bound, BoundHash>;

BoundSet convertBounds(
    const std::vector<TensorAccessBoundsInfo>& bounds,
    TensorAccessKind filter = kMutate) {
  BoundSet ret;
  for (auto& TABI : bounds) {
    if (filter == kMutate || TABI.kind == filter) {
      for (size_t i = 0; i < TABI.start.size(); ++i) {
        ret.insert(Bound(TABI.start[i], TABI.stop[i]));
      }
    }
  }
  return ret;
}

BoundSet convertBounds(
    BoundsInfo& bounds,
    BufPtr buf,
    TensorAccessKind filter = kMutate) {
  auto it = bounds.find(buf);
  if (it == bounds.end()) {
    return BoundSet();
  }

  return convertBounds(it->second, filter);
}

HazardKind getPotentialHazards(
    MemDependencyChecker& analyzer,
    StmtPtr A,
    StmtPtr B) {
  BoundsInfo aBounds = getInferredBounds(analyzer, A, true);
  BoundsInfo bBounds = getInferredBounds(analyzer, B, true);

  BoundSet aWrites;
  BoundSet aReads;

  for (auto& pair : bBounds) {
    BufPtr buf = pair.first;
    if (aBounds.find(buf) == aBounds.end()) {
      continue;
    }

    auto aWrites = convertBounds(aBounds, buf, kStore);
    auto aReads = convertBounds(aBounds, buf, kLoad);

    auto bWrites = convertBounds(pair.second, kStore);
    auto bReads = convertBounds(pair.second, kLoad);

    // First, RAW.
    for (auto& bR : bReads) {
      for (auto& aW : aWrites) {
        if (boundOverlap(bR, aW) != OverlapKind::NoOverlap) {
          return HazardKind::ReadAfterWrite;
        }
      }
    }

    // Then WAR.
    for (auto& bW : bWrites) {
      for (auto& aR : aReads) {
        if (boundOverlap(bW, aR) != OverlapKind::NoOverlap) {
          return HazardKind::WriteAfterRead;
        }
      }
    }

    // Then WAW.
    for (auto& bW : bWrites) {
      for (auto& aW : aWrites) {
        if (boundOverlap(bW, aW) != OverlapKind::NoOverlap) {
          return HazardKind::WriteAfterWrite;
        }
      }
    }
  }

  return HazardKind::NoDependency;
}

IndexBounds getIndexBounds(const TensorAccessBoundsInfo& tabi) {
  TORCH_INTERNAL_ASSERT(
      tabi.start.size() == tabi.stop.size(), buildErrorMessage());
  IndexBounds ret(tabi.start.size());
  if (tabi.start.empty()) {
    return ret;
  }
  for (size_t i = 0; i < tabi.start.size(); ++i) {
    ret[i] = Bound(tabi.start[i], tabi.stop[i]);
  }
  return ret;
}

std::vector<IndexBounds> getIndexBounds(
    const std::vector<TensorAccessBoundsInfo>& vTABI,
    TensorAccessKind filter = kMutate) {
  std::vector<IndexBounds> bounds;
  for (auto& TABI : vTABI) {
    if (filter == kMutate || TABI.kind == filter) {
      bounds.push_back(getIndexBounds(TABI));
    }
  }
  return bounds;
}

bool hasConflictingOverlap(
    const BoundsInfo& aBounds,
    const BoundsInfo& bBounds,
    TensorAccessKind aFilter = kMutate,
    TensorAccessKind bFilter = kMutate) {
  using IndexBoundsInfo = std::unordered_map<BufPtr, std::vector<IndexBounds>>;
  IndexBoundsInfo aIndexBoundsInfo;
  for (auto& aBound : aBounds) {
    aIndexBoundsInfo[aBound.first] = getIndexBounds(aBound.second, aFilter);
  }
  IndexBoundsInfo bIndexBoundsInfo;
  for (auto& bBound : bBounds) {
    bIndexBoundsInfo[bBound.first] = getIndexBounds(bBound.second, bFilter);
  }

  for (auto& aBound : aBounds) {
    auto bIt = bBounds.find(aBound.first);
    if (bIt == bBounds.end()) {
      continue;
    }
    auto aIndexBounds = aIndexBoundsInfo[aBound.first];
    auto bIndexBounds = bIndexBoundsInfo[bIt->first];
    auto aTABIs = aBound.second;
    auto bTABIs = bIt->second;
    for (size_t i = 0; i < aTABIs.size(); ++i) {
      for (size_t j = 0; j < bTABIs.size(); ++j) {
        auto aTABI = aTABIs[i];
        auto bTABI = bTABIs[j];
        if (aTABI.kind == kLoad && bTABI.kind == kLoad) {
          continue;
        }
        auto overlap = overlaps(aIndexBounds[i], bIndexBounds[j]);
        if (overlap != OverlapKind::NoOverlap) {
          return true;
        }
      }
    }
  }
  return false;
}

bool hasConflictingOverlap(
    analysis::MemDependencyChecker& analyzer,
    StmtPtr A,
    StmtPtr B) {
  BoundsInfo aBounds = getInferredBounds(analyzer, A, true);
  BoundsInfo bBounds = getInferredBounds(analyzer, B, true);
  return hasConflictingOverlap(aBounds, bBounds);
}

bool isOverlapping(
    analysis::MemDependencyChecker& analyzer,
    StorePtr S1,
    StorePtr S2) {
  BoundsInfo s1Bounds = getInferredBounds(analyzer, S1, true);
  BoundsInfo s2Bounds = getInferredBounds(analyzer, S2, true);
  return hasConflictingOverlap(s1Bounds, s2Bounds, kStore, kStore);
}

bool isOverlapping(
    analysis::MemDependencyChecker& analyzer,
    StorePtr S,
    LoadPtr L) {
  BoundsInfo sBounds = getInferredBounds(analyzer, S, true);
  BoundsInfo lBounds = getInferredBounds(analyzer, L, true);
  return hasConflictingOverlap(sBounds, lBounds, kStore, kLoad);
}

} // namespace tensorexpr
} // namespace jit
} // namespace torch