1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
#include <torch/csrc/jit/tensorexpr/bounds_overlap.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_visitor.h>
#include <torch/csrc/jit/tensorexpr/stmt.h>
namespace torch {
namespace jit {
namespace tensorexpr {
namespace analysis {
// Returns true if the given expression is guaranteed to be positive.
bool mustBePositive(ExprPtr e) {
if (e->isConstant()) {
int e_val = immediateAs<int>(e);
return e_val > 0;
}
return false;
}
// Returns true if the given expression is guaranteed to be negative.
bool mustBeNegative(ExprPtr e) {
if (e->isConstant()) {
int e_val = immediateAs<int>(e);
return e_val < 0;
}
return false;
}
// Returns true if the given expression is guaranteed to be zero.
bool mustBeZero(ExprPtr e) {
if (e->isConstant()) {
int e_val = immediateAs<int>(e);
return e_val == 0;
}
return false;
}
void Bound::print() const {
std::cout << "(" << *start << ", " << *end << ")";
}
bool Bound::equals(const Bound& other) const {
return exprEquals(start, other.start) && exprEquals(end, other.end);
}
bool Bound::operator==(const Bound& other) const {
if (equals(other)) {
auto ret_expr = IRSimplifier::simplify(alloc<Sub>(start, end));
return mustBeZero(ret_expr);
}
return false;
}
bool Bound::operator!=(const Bound& other) const {
return (*this < other) || (*this > other);
}
bool Bound::operator>=(const Bound& other) const {
if (*this == other) {
return true;
}
auto ret_expr = IRSimplifier::simplify(alloc<Sub>(start, other.end));
return mustBePositive(ret_expr) || mustBeZero(ret_expr);
}
bool Bound::operator>(const Bound& other) const {
auto ret_expr = IRSimplifier::simplify(alloc<Sub>(start, other.end));
return mustBePositive(ret_expr);
}
bool Bound::operator<=(const Bound& other) const {
if (*this == other) {
return true;
}
auto ret_expr = IRSimplifier::simplify(alloc<Sub>(end, other.start));
return mustBeNegative(ret_expr) || mustBeZero(ret_expr);
}
bool Bound::operator<(const Bound& other) const {
auto ret_expr = IRSimplifier::simplify(alloc<Sub>(end, other.start));
return mustBeNegative(ret_expr);
}
OverlapKind boundOverlap(Bound a, Bound b) {
// If they're equal they're equal.
bool startEqual = exprEquals(a.start, b.start);
bool endEqual = exprEquals(a.end, b.end);
if (startEqual && endEqual) {
return OverlapKind::ContainedOrEqual;
}
// We have to figure out if the bounds fall under the following 2 cases:
// 1. a is before b
// a.start ... a.end ... b.start ... b.end
// 2. b is before a
// b.start ... b.end ... a.start ... a.end
//
// So, we compute "a.start - b.end" and "b.start - a.end". If even one of
// those is positive, then it is guaranteed that the bounds do not overlap.
//
// If the diff is a constant, then we can directly check if the constant is
// positive. If the diff is not a constant, then it will be made of
// variables that correspond to the bounds of buffers involved. These buffer
// bounds can never be negative. So, we check if the given expression is
// guaranteed to be positive under the assumption that the variables involved
// are never negative.
ExprPtr lowDiff = IRSimplifier::simplify(alloc<Sub>(a.start, b.end));
ExprPtr highDiff = IRSimplifier::simplify(alloc<Sub>(b.start, a.end));
if (mustBePositive(lowDiff)) {
return OverlapKind::NoOverlap;
}
if (mustBePositive(highDiff)) {
return OverlapKind::NoOverlap;
}
ExprPtr diff_start = IRSimplifier::simplify(alloc<Sub>(b.start, a.start));
ExprPtr diff_end = IRSimplifier::simplify(alloc<Sub>(b.end, a.end));
// If one side fully encloses the other, they're adjacent.
if (diff_start->isConstant() && diff_end->isConstant()) {
int start = immediateAs<int>(diff_start);
int end = immediateAs<int>(diff_end);
// If diff_start and diff_end have different signs they are enclosing.
if (start <= 0 && end >= 0) {
return OverlapKind::ContainedOrEqual;
}
if (start >= 0 && end <= 0) {
return OverlapKind::Contains;
}
}
// We can't be sure there's no overlap so the conservative answer is
// partial.
return OverlapKind::PartialOverlap;
}
CmpEvalResult TORCH_API compareBound(
const Bound& a,
const Bound& b,
const CompareSelectOperation& cmp_op) {
switch (cmp_op) {
case CompareSelectOperation::kGT:
return (a > b)
? CmpEvalResult::True
: (a <= b ? CmpEvalResult::False : CmpEvalResult::NotDetermined);
case CompareSelectOperation::kGE:
return (a >= b)
? CmpEvalResult::True
: (a < b ? CmpEvalResult::False : CmpEvalResult::NotDetermined);
case CompareSelectOperation::kLT:
return (a < b)
? CmpEvalResult::True
: (a >= b ? CmpEvalResult::False : CmpEvalResult::NotDetermined);
case CompareSelectOperation::kLE:
return (a <= b)
? CmpEvalResult::True
: (a > b ? CmpEvalResult::False : CmpEvalResult::NotDetermined);
case CompareSelectOperation::kNE:
return (a != b)
? CmpEvalResult::True
: (a == b ? CmpEvalResult::False : CmpEvalResult::NotDetermined);
default:
TORCH_INTERNAL_ASSERT(cmp_op == CompareSelectOperation::kEQ)
return (a == b)
? CmpEvalResult::True
: (a != b ? CmpEvalResult::False : CmpEvalResult::NotDetermined);
}
}
bool indexBoundsEquals(const IndexBounds& A, const IndexBounds& B) {
if (A.size() != B.size()) {
return false;
}
for (size_t i = 0; i != A.size(); ++i) {
if (!A[i].equals(B[i])) {
return false;
}
}
return true;
}
Bound flattenBounds(const IndexBounds& a) {
if (a.empty()) {
return Bound();
}
Bound ret = a[0];
for (size_t i = 1; i < a.size(); ++i) {
ret.start = alloc<Mul>(ret.start, a[i].start);
ret.end = alloc<Mul>(ret.end, a[i].end);
}
ret.start = IRSimplifier::simplify(ret.start);
ret.end = IRSimplifier::simplify(ret.end);
return ret;
}
OverlapKind overlaps(const IndexBounds& a, const IndexBounds& b) {
if (a.empty() && b.empty()) {
return OverlapKind::ContainedOrEqual;
}
// All accesses to a buf must have the same dimensionality.
if (a.size() != b.size()) {
return boundOverlap(flattenBounds(a), flattenBounds(b));
}
TORCH_INTERNAL_ASSERT(a.size() == b.size());
OverlapKind overlap = boundOverlap(a[0], b[0]);
for (size_t i = 1; i < a.size(); ++i) {
OverlapKind bOverlap = boundOverlap(a[i], b[i]);
if (bOverlap == OverlapKind::NoOverlap) {
return OverlapKind::NoOverlap;
}
if (overlap == OverlapKind::ContainedOrEqual &&
bOverlap == OverlapKind::Contains) {
overlap = OverlapKind::Contains;
}
if (overlap == OverlapKind::Contains &&
bOverlap == OverlapKind::ContainedOrEqual) {
continue;
}
if (bOverlap != overlap) {
overlap = OverlapKind::PartialOverlap;
break;
}
}
return overlap;
}
std::vector<Bound> subtractBound(Bound a, Bound b) {
OverlapKind overlap = boundOverlap(a, b);
if (overlap == OverlapKind::NoOverlap) {
return {a};
}
if (overlap == OverlapKind::ContainedOrEqual) {
return {};
}
// The bounds must overlap.
std::vector<Bound> res;
if (a.start->isConstant() != b.start->isConstant() ||
a.end->isConstant() != b.end->isConstant()) {
return {a};
}
ExprPtr lowDiff = IRSimplifier::simplify(alloc<Sub>(b.start, a.start));
ExprPtr highDiff = IRSimplifier::simplify(alloc<Sub>(b.end, a.end));
// If the diff has only a single var, we can try to guess sign.
if (!lowDiff->isConstant()) {
auto vars = VarFinder::find(lowDiff);
if (vars.size() == 1) {
lowDiff = IRSimplifier::simplify(alloc<Sub>(
SubstituteInClone(b.start, {{*vars.begin(), immLike(b.start, 1)}}),
SubstituteInClone(a.start, {{*vars.begin(), immLike(a.start, 1)}})));
}
}
if (!highDiff->isConstant()) {
auto vars = VarFinder::find(highDiff);
if (vars.size() == 1) {
highDiff = IRSimplifier::simplify(alloc<Sub>(
SubstituteInClone(b.end, {{*vars.begin(), immLike(b.end, 1)}}),
SubstituteInClone(a.end, {{*vars.begin(), immLike(a.end, 1)}})));
}
}
bool hasHead = lowDiff->isConstant() && immediateAs<int>(lowDiff) > 0;
bool hasTail = highDiff->isConstant() && immediateAs<int>(highDiff) < 0;
bool constantExtents = lowDiff->isConstant() && highDiff->isConstant();
if (!constantExtents) {
// If we can't infer the bound lengths, there's no way to create a safe
// subset. Just bail out.
return {a};
}
if (hasHead) {
res.emplace_back(
a.start,
IRSimplifier::simplify(alloc<Sub>(b.start, immLike(b.start, 1))));
}
if (hasTail) {
ExprPtr tailStart =
IRSimplifier::simplify(alloc<Add>(b.end, immLike(b.end, 1)));
res.emplace_back(tailStart, a.end);
}
return res;
}
std::vector<IndexBounds> subtractIndicesBounds(
const IndexBounds& A,
const IndexBounds& B,
OverlapKind overlap) {
if (overlap == OverlapKind::NoOverlap) {
return {A};
}
if (overlap == OverlapKind::ContainedOrEqual) {
return {};
}
// All accesses to a buf must have the same dimensionality.
TORCH_INTERNAL_ASSERT(A.size() == B.size(), buildErrorMessage());
// Each dimension can be sliced into multiple bound segments.
std::vector<IndexBounds> boundSlices;
std::vector<Bound> remainingOuterBounds;
for (size_t i = 0; i < A.size(); ++i) {
auto slices = subtractBound(A[i], B[i]);
Bound remaining = A[i];
for (auto slice : slices) {
IndexBounds newRegion;
newRegion.reserve(A.size());
TORCH_INTERNAL_ASSERT(
remainingOuterBounds.size() == i, buildErrorMessage());
for (size_t j = 0; j < i; ++j) {
newRegion.push_back(remainingOuterBounds[j]);
}
newRegion.push_back(slice);
for (size_t j = i + 1; j < A.size(); ++j) {
newRegion.push_back(A[j]);
}
boundSlices.push_back(newRegion);
if (slice.equals(A[i])) {
remaining = A[i];
} else {
auto remainingSlices = subtractBound(remaining, slice);
// In some cases, we might end up with empty remainingSlices due to the
// optimization done in subtraction while handling diff expressions
// that have a single variable in `subtractBound()`.
if (!remainingSlices.empty()) {
TORCH_INTERNAL_ASSERT(
remainingSlices.size() == 1, buildErrorMessage());
remaining = remainingSlices[0];
}
}
}
remainingOuterBounds.push_back(remaining);
}
return boundSlices;
}
std::vector<IndexBounds> TORCH_API
subtractIndicesBounds(const IndexBounds& A, const IndexBounds& B) {
return subtractIndicesBounds(A, B, overlaps(A, B));
}
} // namespace analysis
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|