1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/codegen.h>
#include <sstream>
namespace torch {
namespace jit {
namespace tensorexpr {
CodeGen::CodeGen(
StmtPtr stmt,
std::vector<BufferArg> buffer_args,
at::Device device,
std::string kernel_func_name)
: stmt_(std::move(stmt)),
buffer_args_(std::move(buffer_args)),
device_(device),
kernel_func_name_(std::move(kernel_func_name)) {
ExtCallMemoryReuse extCallMemoryReuse(buffer_args_);
apply_mutator(&extCallMemoryReuse);
allocIntermediateBufs();
}
RegisterCodeGenList::StmtFactoryMethod RegisterCodeGenList::
FindStmtFactoryMethod(const std::string& name) {
auto iter = stmt_factory_methods_.find(name);
if (iter == stmt_factory_methods_.end()) {
std::ostringstream oss;
oss << "Invalid stmt codegen name: " << name << ". ";
oss << "Existing codegen names: [";
int index = 0;
for (auto& entry : stmt_factory_methods_) {
if (index != 0) {
oss << ", ";
}
oss << entry.first;
index++;
}
oss << "]";
throw std::runtime_error(oss.str());
}
return iter->second;
}
void RegisterCodeGenList::AddStmtFactoryMethod(
const std::string& name,
const StmtFactoryMethod& stmt_factory_method) {
stmt_factory_methods_[name] = stmt_factory_method;
}
std::unique_ptr<CodeGen> CreateCodeGen(
const std::string& name,
StmtPtr stmt,
const std::vector<CodeGen::BufferArg>& params,
at::Device device,
const std::string& kernel_func_name) {
RegisterCodeGenList::StmtFactoryMethod method =
RegisterCodeGenList::GetInstance().FindStmtFactoryMethod(name);
return method(stmt, params, device, kernel_func_name);
}
ExprPtr GenericIntrinsicsExpander::mutate(IntrinsicsPtr v) {
if (v->op_type() == kSigmoid) {
auto x = v->param(0)->accept_mutator(this);
auto one = expr_to_vec(
ExprHandle(getImmediateByType(v->dtype(), 1.0)), v->dtype().lanes());
auto zero = expr_to_vec(
ExprHandle(getImmediateByType(v->dtype(), 0.0)), v->dtype().lanes());
ExprHandle y = one / (one + exp(zero - ExprHandle(x)));
return y.node();
}
return IRMutator::mutate(v);
}
void* CodeGen::argToPtr(const BufferArg& bufferArg, const CallArg& callArg) {
if (!bufferArg.isVar()) {
return callArg.data();
}
switch (bufferArg.dtype().scalar_type()) {
#define TYPE_CASE(_1, Name) \
case ScalarType::Name: \
return callArg.Name##Ptr();
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
return nullptr;
}
void CodeGen::call_with_numel(void** args, int64_t numel) {
TORCH_INTERNAL_ASSERT(
false, "This codegen backend does not implement call_with_numel");
}
c10::optional<size_t> bufSize(BufPtr buf) {
size_t size = elementSize(buf->dtype().scalar_type()) * buf->dtype().lanes();
for (auto& d : buf->dims()) {
if (!d->isConstant()) {
return c10::nullopt;
}
size = size * (*intValue(d));
}
return size;
}
// This algorithm takes the list of intermediate buffers and their liveness
// ranges, and returns the allocations of these buffers. A buffer 'A' can be
// allocated in the memory (appears as a pair of 'A's in the allocation results)
// or reuse another buffer such as 'B' (appears as ('A', 'B')). Specifically, we
// linearly scan the intermediate buffers by the time they appear, and try to
// assign it an existing non-occupied memory allocation. If there are no such
// allocations available, we'll create memory for it. Once we are beyond the
// liveness range of this buffer, we'll mark its corresponding memory allocation
// as "up for grabs" for future reuse.
std::vector<std::pair<BufPtr, BufPtr>> AllocBufsWithMemReuse(
const std::unordered_set<BufPtr>& bufs,
const std::unordered_map<BufPtr, std::tuple<int32_t, int32_t>>& buf_ranges,
const std::unordered_set<BufPtr>& bufs_external_allocs) {
// Sort buffers by the time they appear.
std::vector<BufPtr> bufs_sorted(bufs.begin(), bufs.end());
auto sorting_function_by_start_time = [&buf_ranges](
BufPtr b1, BufPtr b2) -> bool {
return std::get<0>(buf_ranges.at(b1)) < std::get<0>(buf_ranges.at(b2));
};
std::sort(
bufs_sorted.begin(), bufs_sorted.end(), sorting_function_by_start_time);
// Map intermediate buffers to the most recently used memory if any.
std::list<BufPtr> mem_up_for_grabs;
std::unordered_map<BufPtr, BufPtr> buf_mem_map;
std::vector<std::pair<BufPtr, BufPtr>> buf_allocs;
auto sorting_function_by_end_time = [&buf_ranges](
BufPtr b1, BufPtr b2) -> bool {
return std::get<1>(buf_ranges.at(b1)) < std::get<1>(buf_ranges.at(b2));
};
for (auto buf : bufs_sorted) {
// If the buf has dynamic shapes, we'll skip it (i.e., allocate memory for
// it, and there are no future reuses on its memory).
// TODO: reuse memory for bufs with dynamic shapes
if (!bufSize(buf)) {
buf_allocs.emplace_back(std::make_pair(buf, buf));
continue;
}
auto start = std::get<0>(buf_ranges.at(buf));
// Release memory for buffers whose liveness range ends before the creation
// time of this buf.
// TODO: optimize in-place opererations and copy operations
std::vector<BufPtr> buf_to_release;
for (auto& mapped : buf_mem_map) {
auto buf_mapped = mapped.first;
auto end_buf_mapped = std::get<1>(buf_ranges.at(buf_mapped));
if (end_buf_mapped < start) {
buf_to_release.push_back(buf_mapped);
}
}
// Sort the buffers in the order of used time so the head of the release
// list contains the most recently used buf.
std::sort(
buf_to_release.begin(),
buf_to_release.end(),
sorting_function_by_end_time);
for (auto& buf_rl : buf_to_release) {
mem_up_for_grabs.push_front(buf_mem_map.at(buf_rl));
buf_mem_map.erase(buf_rl);
}
bool allocated = false;
if (bufs_external_allocs.find(buf) == bufs_external_allocs.end()) {
// Check whether there are free memories that this buf can reuse.
for (auto it = mem_up_for_grabs.begin(); it != mem_up_for_grabs.end();
it++) {
auto m = *it;
if (bufSize(m) >= bufSize(buf)) {
buf_mem_map[buf] = m;
buf_allocs.emplace_back(buf, m);
allocated = true;
mem_up_for_grabs.erase(it);
break;
}
}
}
// If there are no memories to reuse, we'll have to allocate new memory for
// it.
if (!allocated) {
buf_mem_map[buf] = buf;
buf_allocs.emplace_back(std::make_pair(buf, buf));
}
}
return buf_allocs;
}
StmtPtr insertAllocFree(
std::vector<std::pair<BufPtr, BufPtr>>& buf_allocs,
const std::unordered_set<BufPtr>& bufs_external_allocs,
StmtPtr stmt) {
BlockPtr b = to<Block>(stmt);
if (!b) {
b = alloc<Block>(std::vector<StmtPtr>({stmt}));
}
std::vector<BufPtr> bufs_ext_to_free;
// Insert allocations and frees for temporary buffers at global scope.
for (auto rit = buf_allocs.rbegin(); rit != buf_allocs.rend(); ++rit) {
if (rit->first == rit->second) {
BufPtr buf = rit->first;
if (bufs_external_allocs.find(buf) == bufs_external_allocs.end()) {
b->prepend_stmt(alloc<Allocate>(buf));
b->append_stmt(alloc<Free>(buf));
} else {
bufs_ext_to_free.push_back(buf);
}
} else {
b->prepend_stmt(alloc<PlacementAllocate>(rit->first, rit->second));
}
}
b->append_stmt(alloc<FreeExt>(bufs_ext_to_free));
return b;
}
std::unordered_map<std::string, std::string> ExtCallMemoryReuse::
makeExtCallFuncNameMap() {
return {
{"nnc_aten_quantize_per_tensor", "nnc_aten_quantize_per_tensor_out"},
{"nnc_aten_dequantize", "nnc_aten_dequantize_out"},
{"nnc_aten_quantized_mul", "nnc_aten_quantized_mul_out"},
{"nnc_aten_quantized_conv2d", "nnc_aten_quantized_conv2d_out"},
{"nnc_aten_quantized_conv2d_relu", "nnc_aten_quantized_conv2d_relu_out"},
{"nnc_aten_quantized_mul", "nnc_aten_quantized_mul_out"},
{"nnc_aten_quantized_sigmoid", "nnc_aten_quantized_sigmoid_out"},
{"nnc_aten_upsample_nearest2d", "nnc_aten_upsample_nearest2d_out"},
{"nnc_aten_quantized_linear", "nnc_aten_quantized_linear_out"},
{"nnc_aten_quantized_conv1d", "nnc_aten_quantized_conv1d_out"},
{"nnc_aten_quantized_mul_scalar", "nnc_aten_quantized_mul_scalar_out"},
{"nnc_aten_max_red", "nnc_aten_max_red_out"},
{"nnc_aten_conv1d", "nnc_aten_conv1d_out"},
};
}
const std::unordered_map<std::string, std::string>
ExtCallMemoryReuse::extCallFuncNameMap_ = makeExtCallFuncNameMap();
ExtCallMemoryReuse::ExtCallMemoryReuse(
const std::vector<CodeGen::BufferArg>& bufferArgs) {
for (const auto& ba : bufferArgs) {
if (ba.buf()) {
bufferArgs_.insert(ba.buf());
}
}
}
StmtPtr ExtCallMemoryReuse::mutate(ExternalCallPtr v) {
if (extCallFuncNameMap_.count(v->func_name()) &&
bufferArgs_.count(v->buf()) == 0) {
std::vector<BufPtr> buf_out_args = {v->buf()};
return alloc<ExternalCallWithAlloc>(
extCallFuncNameMap_.at(v->func_name()),
buf_out_args,
v->buf_args(),
v->args());
}
return v;
}
// We allocate intermediate buffers by inserting Allocate/Free or
// PlacementAllocate stmts. Allocate/Free stmts will allocate memory at runtime,
// and PlacementAllocate stmt reuses the memory of one buffer for another
// buffer. In current implementation, we use linear scan for memory reuses.
// TODO: try more memory reuse algorithms and compare their memory efficiency.
void CodeGen::allocIntermediateBufs() {
// Identify intermediate buffers that are not allocated yet.
auto bufs = NodeFinder<Buf>::find(stmt_);
std::unordered_set<BufPtr> bufs_allocated;
for (auto b : buffer_args_) {
bufs_allocated.insert(b.buf());
}
auto allocs = NodeFinder<Allocate>::find(stmt_);
for (auto a : allocs) {
bufs_allocated.insert(a->buf());
}
std::unordered_set<BufPtr> interm_bufs;
std::unordered_map<BufPtr, std::tuple<int32_t, int32_t>> interm_buf_ranges;
for (auto buf : bufs) {
if (!bufs_allocated.count(buf) && !interm_bufs.count(buf)) {
interm_bufs.insert(buf);
// Identify the access stmts to each unallocated intermeiate buffer.
auto range = BufLiveRange::liveRange(stmt_, buf);
interm_buf_ranges.emplace(buf, range);
}
}
const auto bufs_external_allocs = ExternalAllocBufFinder::find(stmt_);
// For each intermediate buffer, we reuse the memory of an old buffer whose
// liveness range does not overlap with the current buffer, or allocate memory
// if reusing buffer is impossible.
auto buf_allocs = AllocBufsWithMemReuse(
interm_bufs, interm_buf_ranges, bufs_external_allocs);
// Insert memory allocation/mapping nodes.
if (buf_allocs.size() > 0) {
auto stmt_new = insertAllocFree(buf_allocs, bufs_external_allocs, stmt_);
set_stmt(stmt_new);
}
GRAPH_DEBUG("\nMemory Allocation:\n\n", *stmt(), "\n");
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|