File: cpp_codegen.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (408 lines) | stat: -rw-r--r-- 11,442 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#include <algorithm>
#include <type_traits>
#include <vector>

#include <torch/csrc/jit/tensorexpr/cpp_codegen.h>
#include <torch/csrc/jit/tensorexpr/cpp_intrinsics.h>
#include <torch/csrc/jit/tensorexpr/external_functions_registry.h>
#include <torch/csrc/jit/tensorexpr/types.h>

namespace torch {
namespace jit {
namespace tensorexpr {

// Rewrites the variables' name according to valid C++ naming convention.
// E.g. in Graph IR, variable name may contain '.', in C++, they are replaced
// with '_'.
class CppVarNameRewriter : public IRVisitor {
 public:
  void visit(VarPtr v) override {
    constexpr char kDot = '.';
    constexpr char kUnderscore = '_';
    if (v->name_hint().find(kDot) == std::string::npos) {
      return;
    }
    std::string name = v->name_hint();
    std::replace(name.begin(), name.end(), kDot, kUnderscore);
    v->set_name_hint(std::move(name));
  }

  void visit(BufPtr v) override {
    v->base_handle()->accept(this);
  }
};

static std::string declareExternalFunction(const std::string& func_name) {
  return "void " + func_name +
      "("
      "int64_t bufs_num, "
      "void** buf_data, "
      "int64_t* buf_ranks, "
      "int64_t* buf_dims, "
      "int8_t* buf_dtypes, "
      "int64_t args_num, "
      "int64_t* extra_args);";
}

CppPrinter::CppPrinter(std::ostream* os) : IRPrinter(*os), lane_(0) {}

CppPrinter::~CppPrinter() = default;

void CppPrinter::printPrologue() {
  os() << "#include <cassert>" << std::endl;
  os() << "#include <cmath>" << std::endl;
  os() << "#include <algorithm>" << std::endl;
  os() << "#include <type_traits>" << std::endl;
  os() << std::endl;

  os() << "#define POS_INFINITY INFINITY" << std::endl;
  os() << "#define NEG_INFINITY -INFINITY" << std::endl;
  os() << std::endl;

  os() << cpp_intrinsics_definition << std::endl;
  os() << std::endl;

  os() << "namespace torch {" << std::endl;
  os() << "namespace jit {" << std::endl;
  os() << "namespace tensorexpr {" << std::endl;
  for (auto const& it : getNNCFunctionRegistry()) {
    os() << declareExternalFunction(it.first) << std::endl;
  }
  os() << "} // namespace tensorexpr" << std::endl;
  os() << "} // namespace jit" << std::endl;
  os() << "} // namespace torch" << std::endl;
  os() << std::endl;

  os() << "using namespace torch::jit::tensorexpr;" << std::endl;
  os() << std::endl;
}

template <typename T>
inline typename std::enable_if<!std::is_floating_point<T>::value, void>::type
visit_mod(std::ostream& os, const ExprPtr lhs, const ExprPtr rhs) {
  os << *lhs << " % " << *rhs;
}

template <typename T>
inline typename std::enable_if<std::is_floating_point<T>::value, void>::type
visit_mod(std::ostream& os, const ExprPtr lhs, const ExprPtr rhs) {
  os << "std::fmod(" << *lhs << ", " << *rhs << ")";
}

template <typename T>
inline typename std::enable_if<
    std::is_floating_point<T>::value || std::is_integral<T>::value,
    void>::type
visit_max(std::ostream& os, const ExprPtr lhs, const ExprPtr rhs) {
  os << "std::max(" << *lhs << ", " << *rhs << ")";
}

template <typename T>
inline typename std::enable_if<
    !std::is_floating_point<T>::value && !std::is_integral<T>::value,
    void>::type
visit_max(std::ostream& os, const ExprPtr lhs, const ExprPtr rhs) {
  os << "(" << *lhs << " < " << *rhs << ") ? " << *rhs << " : " << *lhs;
}

template <typename T>
inline typename std::enable_if<
    std::is_floating_point<T>::value || std::is_integral<T>::value,
    void>::type
visit_min(std::ostream& os, const ExprPtr lhs, const ExprPtr rhs) {
  os << "std::min(" << *lhs << ", " << *rhs << ")";
}

template <typename T>
inline typename std::enable_if<
    !std::is_floating_point<T>::value && !std::is_integral<T>::value,
    void>::type
visit_min(std::ostream& os, const ExprPtr lhs, const ExprPtr rhs) {
  os << *lhs << " < " << *rhs << " ? " << *lhs << " : " << *rhs;
}

template <typename T>
void visit_binary_op(
    std::ostream& os,
    const ExprPtr lhs,
    const ExprPtr rhs,
    IRNodeType op_type) {
  switch (op_type) {
    case IRNodeType::kMod:
      visit_mod<T>(os, lhs, rhs);
      break;
    case IRNodeType::kMax:
      visit_max<T>(os, lhs, rhs);
      break;
    case IRNodeType::kMin:
      visit_min<T>(os, lhs, rhs);
      break;
    default:
      throw std::runtime_error("invalid op type");
  }
}

template <typename Op>
void dispatch_binary_op(std::ostream& os, const BinaryOpNode<Op>* v) {
  switch (v->lhs()->dtype().scalar_type()) {
#define TYPE_CASE(Type, Name)                                      \
  case ScalarType::Name:                                           \
    visit_binary_op<Type>(os, v->lhs(), v->rhs(), v->expr_type()); \
    break;
    AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
    default:
      throw unsupported_dtype();
  }
}

void CppPrinter::visit(RampPtr v) {
  visit(alloc<Add>(v->base(), alloc<Mul>(alloc<IntImm>(lane_), v->stride())));
}

void CppPrinter::visit(BroadcastPtr v) {
  v->value()->accept(this);
}

void CppPrinter::visit(ModPtr v) {
  dispatch_binary_op(os(), v.get());
}

void CppPrinter::visit(MaxPtr v) {
  dispatch_binary_op(os(), v.get());
}

void CppPrinter::visit(MinPtr v) {
  dispatch_binary_op(os(), v.get());
}

void CppPrinter::visit(CompareSelectPtr v) {
  os() << "((" << *v->lhs() << " "
       << IRPrinter::to_string(v->compare_select_op()) << " " << *v->rhs()
       << ") ? " << *v->ret_val1() << " : " << *v->ret_val2() << ")";
}

void CppPrinter::visit(IfThenElsePtr v) {
  os() << "((" << *v->condition() << ") ? " << *v->true_value() << " : "
       << *v->false_value() << ")";
}

void CppPrinter::visit(AllocatePtr v) {
  size_t size = v->dtype().byte_size();
  for (const auto& dim : v->dims()) {
    IntImmPtr d = to<IntImm>(dim);
    if (d) {
      size *= d->value();
    } else {
      throw std::runtime_error("Only IntImm dimensions are supported for now");
    }
  }

  emitIndent();
  os() << v->dtype().ToCppString() << "* " << (*v->buffer_var())
       << " = static_cast<" << v->dtype().ToCppString() << "*>(malloc(" << size
       << "));" << std::endl;
}

void CppPrinter::visit(FreePtr v) {
  emitIndent();
  os() << "free(" << *v->buffer_var() << ");" << std::endl;
}

void CppPrinter::visit(LoadPtr v) {
  auto flat_idx =
      flatten_index(v->buf()->dims(), v->indices(), v->buf()->strides());
  os() << *v->base_handle() << "[" << *flat_idx << "]";
}

void CppPrinter::visit(StorePtr v) {
  auto flat_idx =
      flatten_index(v->buf()->dims(), v->indices(), v->buf()->strides());
  const int lanes = v->value()->dtype().lanes();
  for (int lane = 0; lane < lanes; lane++) {
    lane_ = lane;
    emitIndent();
    os() << *v->base_handle() << "[" << *flat_idx << "] = " << *v->value()
         << ";" << std::endl;
  }
}

void CppPrinter::visit(CastPtr v) {
  os() << "static_cast<" << v->dtype().ToCppString() << ">(" << *v->src_value()
       << ")";
}

void CppPrinter::visit(BitCastPtr v) {
  os() << "std::bitcast<" << v->src_value()->dtype().ToCppString() << ", "
       << v->dtype().ToCppString() << ">(" << *v->src_value() << ")";
}

void CppPrinter::visit(IntrinsicsPtr v) {
  if (v->op_type() == kRand || v->op_type() == kSigmoid) {
    throw std::runtime_error("kRand and kSigmoid are not supported");
  }

  os() << "std::" << v->func_name() << "(";
  for (int i = 0; i < v->nparams(); i++) {
    if (i > 0) {
      os() << ", ";
    }
    os() << *v->param(i);
  }
  os() << ")";
}

void CppPrinter::visit(ExternalCallPtr v) {
  // The generated code needs to link against functions defined
  // in external_functions.cpp.

  auto& func_registry = getNNCFunctionRegistry();
  if (!func_registry.count(v->func_name())) {
    throw unimplemented_lowering(v);
  }

  std::vector<BufPtr> bufs(v->buf_args());
  bufs.insert(bufs.begin(), v->buf());
  auto for_buf = [&](const std::function<void(const BufPtr)>& print_buf) {
    for (size_t i = 0; i < bufs.size(); i++) {
      if (i > 0) {
        os() << ", ";
      }
      print_buf(bufs[i]);
    }
  };

  emitIndent();
  os() << "{" << std::endl;
  indent_++;

  emitIndent();
  os() << "void* buf_ptrs[]{";
  for_buf([&](const BufPtr b) { os() << *b->base_handle(); });
  os() << "};" << std::endl;

  emitIndent();
  os() << "int64_t buf_ranks[]{";
  for_buf([&](const BufPtr b) { os() << b->ndim(); });
  os() << "};" << std::endl;

  emitIndent();
  os() << "int64_t buf_dims[]{";
  for_buf([&](const BufPtr buf) {
    for (size_t i = 0; i < buf->ndim(); i++) {
      if (i > 0) {
        os() << ", ";
      }
      os() << *buf->dim(i);
    }
  });
  os() << "};" << std::endl;

  emitIndent();
  os() << "int8_t buf_dtypes[]{";
  for_buf([&](const BufPtr buf) {
    os() << static_cast<int>(buf->dtype().scalar_type());
  });
  os() << "};" << std::endl;

  emitIndent();
  os() << "int64_t extra_args[]{";
  for (size_t i = 0; i < v->args().size(); i++) {
    if (i > 0) {
      os() << ", ";
    }
    os() << *v->args()[i];
  }
  os() << "};" << std::endl;

  emitIndent();
  os() << v->func_name() << "(" << std::endl;
  emitIndent();
  os() << "    " << bufs.size() << "," << std::endl;
  emitIndent();
  os() << "    buf_ptrs," << std::endl;
  emitIndent();
  os() << "    buf_ranks," << std::endl;
  emitIndent();
  os() << "    buf_dims," << std::endl;
  emitIndent();
  os() << "    buf_dtypes," << std::endl;
  emitIndent();
  os() << "    " << v->args().size() << "," << std::endl;
  emitIndent();
  os() << "    extra_args);" << std::endl;

  indent_--;
  emitIndent();
  os() << "}" << std::endl;
}

void CppPrinter::visit(LetPtr v) {
  if (v->var()->dtype().lanes() == 1) {
    emitIndent();
    os() << v->var()->dtype().ToCppString() << " " << *v->var() << " = "
         << *v->value() << ";" << std::endl;
  } else {
    vector_vars_[v->var()] = v->value();
  }
}

void CppPrinter::visit(VarPtr v) {
  if (v->dtype().lanes() == 1) {
    os() << name_manager()->get_unique_name(v);
  } else {
    os() << *vector_vars_.at(v);
  }
}

CppCodeGen::CppCodeGen(
    StmtPtr stmt,
    const std::vector<BufferArg>& buffer_args,
    at::Device device,
    const std::string& kernel_func_name)
    : CodeGen(stmt, buffer_args, device, kernel_func_name) {
  init();
}

void CppCodeGen::init() {
  printer_ = std::make_unique<CppPrinter>(&oss_);
  var_name_rewriter_ = std::make_unique<CppVarNameRewriter>();

  apply_visitor(var_name_rewriter_.get());

  printer_->printPrologue();
  os() << "void " << kernel_func_name() << "(";
  const std::vector<BufferArg> buffer_args = this->buffer_args();
  for (size_t i = 0; i < buffer_args.size(); i++) {
    if (i > 0) {
      os() << ", ";
    }
    const BufferArg& buffer_arg = buffer_args[i];
    const VarPtr var = buffer_arg.var();
    Dtype dtype = buffer_arg.dtype();
    os() << dtype.ToCppString() << (buffer_arg.isVar() ? " " : "* ") << *var;
  }
  os() << ")";
  stmt()->accept(printer_.get());
  os() << std::endl;
}

CppCodeGen::~CppCodeGen() = default;

void CppCodeGen::call(const std::vector<CallArg>& args) {
  // TODO: compile the generated C++ kernel into a library,
  // and call the library here.
  os() << "int main() {}" << std::endl;
}

void CppCodeGen::call_raw(const std::vector<void*>& args) {
  // TODO: compile the generated C++ kernel into a library,
  // and call the library here.
  os() << "int main() {}" << std::endl;
}

RegisterCodeGen<CppCodeGen> cpp_codegen_reg("cpp_codegen");

} // namespace tensorexpr
} // namespace jit
} // namespace torch