File: cuda_codegen.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1395 lines) | stat: -rw-r--r-- 44,623 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
#include <torch/csrc/jit/tensorexpr/cuda_codegen.h>
#include <torch/csrc/jit/tensorexpr/half_support.h>

#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/executor_utils.h>
#include <torch/csrc/jit/codegen/fuser/cuda/fused_kernel.h>
#include <torch/csrc/jit/codegen/fuser/cuda/resource_strings.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/cuda_random.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/exceptions.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/registerizer.h>

namespace torch {
namespace jit {
namespace tensorexpr {

// A RAII wrapper to manage a variable and name pair in the look-up table.
// TODO: move this to a more shared place.
class ScopedVarName {
 public:
  ScopedVarName(VarNameMap* mapping, VarPtr var, const std::string& name)
      : mapping_(mapping), var_(var) {
    auto iter = mapping->find(var);
    if (iter != mapping->end()) {
      throw std::runtime_error("Duplicate var entry: " + var->name_hint());
    }
    mapping->insert(std::make_pair(var, name));
  }

  ScopedVarName(UniqueNameManager* manager, VarPtr var, const std::string& name)
      : ScopedVarName(&manager->unique_name_mapping_, var, name) {}

  ScopedVarName(const ScopedVarName&) = delete;
  ScopedVarName& operator=(const ScopedVarName&) = delete;

  ~ScopedVarName() noexcept(false) {
    mapping_->erase(var_);
  }

 private:
  VarNameMap* mapping_ = nullptr;
  VarPtr var_ = nullptr;
};

static bool is_zero(ExprPtr expr) {
  auto v = intValue(expr);
  return v && *v == 0;
}

static const at::cuda::NVRTC& nvrtc() {
  return at::globalContext().getNVRTC();
}

std::string CudaPrinter::dtypeToCppString(const Dtype& dtype) {
  switch (dtype.scalar_type()) {
    case ScalarType::Bool:
      return "bool";
    case ScalarType::Half:
      return "half";
    case ScalarType::BFloat16:
      return "__nv_bfloat16";
    case ScalarType::Char:
      return "char";
    case ScalarType::Byte:
      return "unsigned char";
    case ScalarType::Short:
      return "short";
    case ScalarType::Long:
      return "long long";
    default:
      return dtype.ToCppString();
  }
}

void CudaAnalysis::visit(FreePtr v) {
  if (thread_local_bufs_.count(v->buffer_var()) == 0 &&
      cross_block_bufs_.count(v->buffer_var()) == 0) {
    throw std::runtime_error("Global free not supported yet");
  }
}

void CudaAnalysis::visit(AllocatePtr v) {
  StmtPtr p = v->get_parent();
  while (p) {
    ForPtr for_v = to<For>(p);
    if (for_v) {
      // NOLINTNEXTLINE(bugprone-branch-clone)
      if (for_v->loop_options().is_gpu_block_index()) {
        // TODO: This isn't right if there's a thread index at a higher level
        // than this.
        cross_block_bufs_.insert(v->buffer_var());
        return;
      } else if (for_v->loop_options().is_gpu_thread_index()) {
        thread_local_bufs_.insert(v->buffer_var());
        return;
      }
    }
    p = p->get_parent();
  }
  throw std::runtime_error("Global alloc not supported yet");
}

void CudaAnalysis::visit(PlacementAllocatePtr v) {
  throw std::runtime_error("Memory reuse not supported yet");
}

void CudaAnalysis::visit(ForPtr v) {
  // Recurse first.
  v->body()->accept(this);

  const LoopOptions& loop_options = v->loop_options();
  if (loop_options.is_gpu_block_index()) {
    int gpu_block_index = loop_options.gpu_block_index();
    if (gpu_block_index >= 3) {
      throw std::runtime_error("support only 3D gpu_block_index");
    }
    ExprPtr prev = nullptr;
    // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
    // NOLINTNEXTLINE(bugprone-branch-clone)
    if (gpu_block_extents_.size() <= gpu_block_index) {
      gpu_block_extents_.resize(gpu_block_index + 1);
    } else {
      prev = gpu_block_extents_[gpu_block_index];
    }
    if (!is_zero(v->start())) {
      throw std::runtime_error(
          "start must be zero for gpu_block_index: " +
          std::to_string(v->start()));
    }

    // NOLINTNEXTLINE(bugprone-branch-clone)
    if (prev == nullptr) {
      gpu_block_extents_[gpu_block_index] = v->stop();
    } else if (prev->isConstant() && immediateEquals(prev, 1)) {
      // extents must be positive so if the current extent is 1 then even if the
      // stop is symbolic it's the max.
      gpu_block_extents_[gpu_block_index] = v->stop();
    } else {
      gpu_block_extents_[gpu_block_index] =
          IRSimplifier::simplify(alloc<Max>(prev, v->stop(), true));
    }
  } else if (loop_options.is_gpu_thread_index()) {
    int gpu_thread_index = loop_options.gpu_thread_index();
    if (gpu_thread_index >= 3) {
      throw std::runtime_error("support only 3D gpu_thread_index");
    }
    ExprPtr prev = nullptr;
    // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
    // NOLINTNEXTLINE(bugprone-branch-clone)
    if (gpu_thread_extents_.size() <= gpu_thread_index) {
      gpu_thread_extents_.resize(gpu_thread_index + 1);
    } else {
      prev = gpu_thread_extents_[gpu_thread_index];
    }
    if (!is_zero(v->start())) {
      throw std::runtime_error(
          "start must be zero for gpu_thread_index: " +
          std::to_string(v->start()));
    }

    // NOLINTNEXTLINE(bugprone-branch-clone)
    if (prev == nullptr) {
      gpu_thread_extents_[gpu_thread_index] = v->stop();
    } else if (prev->isConstant() && immediateEquals(prev, 1)) {
      // extents must be positive so if the current extent is 1 then even if the
      // stop is symbolic it's the max.
      gpu_thread_extents_[gpu_thread_index] = v->stop();
    } else {
      gpu_thread_extents_[gpu_thread_index] =
          IRSimplifier::simplify(alloc<Max>(prev, v->stop(), true));
    }
  }
}

void CudaPrinter::print_flat_alloc(AllocatePtr alloc) {
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<ExprPtr> dims = alloc->dims();
  // TODO: this should be merged with the storage flattener.
  int64_t flat_size = 1;
  for (auto dim : dims) {
    auto dim_i = intValue(dim);
    if (dim_i) {
      flat_size *= *dim_i;
    } else {
      throw std::runtime_error("Only integer dimensions are supported for now");
    }
  }
  os() << dtypeToCppString(alloc->dtype()) << " " << (*alloc->buffer_var())
       << "[" << flat_size << "];" << std::endl;
}

void CudaPrinter::visit(AllocatePtr v) {
  // TODO: handle dynamic shapes here.
  if (cuda_analysis_->cross_block_bufs().count(v->buffer_var()) != 0) {
    emitIndent();
    os() << "__shared__ ";
    print_flat_alloc(v);
    return;
  }

  if (cuda_analysis_->thread_local_bufs().count(v->buffer_var()) != 0) {
    emitIndent();
    print_flat_alloc(v);
    return;
  }

  throw std::runtime_error("Encountered Alloc not local to block or thread");
}

void CudaPrinter::visit(FreePtr v) {
  // do nothing
}

void CudaPrinter::visit(ForPtr v) {
  IRPrinter::visit(v);
}

void CudaPrinter::visit(CastPtr v) {
  std::string castFn = v->dtype().scalar_type() == ScalarType::Half
      ? "__float2half"
      : v->dtype().scalar_type() == ScalarType::BFloat16 ? "__float2bfloat16"
      : v->src_value()->dtype().scalar_type() == ScalarType::Half
      ? "__half2float"
      : v->src_value()->dtype().scalar_type() == ScalarType::BFloat16
      ? "__bfloat162float"
      : ("(" + dtypeToCppString(v->dtype()) + ")");
  os() << castFn << "(";
  v->src_value()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(IntrinsicsPtr v) {
  if (v->op_type() == IntrinsicsOp::kRand) {
    os() << "Uint32ToFloat(" << *rand_func_ << "())";
    return;
  }

  std::string func_name = v->func_name();

  // get type of resulting expression.
  ScalarType returnType = v->param(0)->dtype().scalar_type();
  for (int i = 1; i < v->nparams(); ++i) {
    returnType = promoteTypes(returnType, v->param(i)->dtype().scalar_type());
  }

  if (returnType == ScalarType::Half || returnType == ScalarType::Float) {
    func_name = func_name + "f";
  }
  if (v->op_type() == IntrinsicsOp::kAbs &&
      !c10::isIntegralType(returnType, true)) {
    // since kAbs's func_name is `abs`, prefix `f` for floating point
    func_name = "f" + func_name;
  }
  if (v->op_type() == IntrinsicsOp::kIsNan) {
    func_name = "isnan";
  }

  os() << func_name << "(";
  for (const auto i : c10::irange(v->nparams())) {
    if (i > 0) {
      os() << ", ";
    }
    os() << *v->param(i);
  }
  os() << ")";
}

void CudaPrinter::visit(ExternalCallPtr v) {
  throw unimplemented_lowering(v);
}

void CudaPrinter::visit(LoadPtr v) {
  // TODO: find a better metric in using ldg or not. Support different dtypes.
  // Detects whether the load target is also a store target.
  // TODO: this is currently too wide. It detects whether a store-target
  // exists within the program. In fact, this check is only necessary within a
  // kernel.
  if (v->indices().empty()) {
    os() << *v->base_handle();
    return;
  }
  if (v->dtype().scalar_type() == ScalarType::Bool ||
      v->dtype().scalar_type() == ScalarType::Half ||
      v->dtype().scalar_type() == ScalarType::BFloat16) {
    // There's no __ldg overload for bool or half.
    os() << *v->base_handle() << "[" << *v->flat_index() << "]";
    return;
  }
  if (cuda_analysis_->is_buf_store_target(v->buf())) {
    // Cuda __ldg can only be applied on read-only buffers.
    os() << *v->base_handle() << "[" << *v->flat_index() << "]";
    return;
  }
  os() << "__ldg(" << *v->base_handle() << " + " << *v->flat_index() << ")";
}

// TODO: maybe this should be a more shared location?
// TODO: investigate how "ExprPtr" can be implicitly converted to "ExprHandle"
// as a bool.
static bool CheckEqual(ExprPtr lhs, ExprPtr rhs) {
  // The fast path. Checks if the pointers are the same.
  if (lhs == rhs) {
    return true;
  }
  ExprHandle diff = Sub::make(ExprHandle(lhs), ExprHandle(rhs));
  ExprHandle diff_s = IRSimplifier::simplify(diff);
  return immediateEquals(diff_s.node(), 0);
}

class AtomicAddFuser : public IRMutator {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  AtomicAddFuser(
      const std::unordered_set<VarPtr>& thread_local_bufs,
      const GPUMetaVarRewriter& metavars)
      : thread_local_bufs_(thread_local_bufs) {
    const std::vector<ExprPtr>& block_extents = metavars.gpu_block_extents();
    const std::vector<VarPtr>& block_vars = metavars.gpu_block_vars();
    for (size_t i = 0; i < block_extents.size(); ++i) {
      MetaVarExtent extent{block_extents[i], false};
      if (extent.expr->isConstant() && immediateEquals(extent.expr, 1)) {
        extent.trivial = true;
      } else {
        nontrivial_metavars_.insert(block_vars[i]);
      }
      metavars_[block_vars[i]] = extent;
    }

    const std::vector<ExprPtr>& thread_extents = metavars.gpu_thread_extents();
    const std::vector<VarPtr>& thread_vars = metavars.gpu_thread_vars();
    for (size_t i = 0; i < thread_extents.size(); ++i) {
      MetaVarExtent extent{thread_extents[i], false};
      if (extent.expr->isConstant() && immediateEquals(extent.expr, 1)) {
        extent.trivial = true;
      } else {
        nontrivial_metavars_.insert(thread_vars[i]);
      }
      metavars_[thread_vars[i]] = extent;
    }
  }

  StmtPtr mutate(StorePtr v) override {
    BufPtr buf = v->buf();

    // Thread locals never need to be atomic.
    if (thread_local_bufs_.count(buf->base_handle()) != 0) {
      return v;
    }

    ScalarType dtype = v->value()->dtype().scalar_type();
    if (dtype != ScalarType::Float && dtype != ScalarType::Double) {
      return v;
    }
    AddPtr add_v = to<Add>(v->value());
    if (!add_v) {
      return v;
    }
    LoadPtr load_v = to<Load>(add_v->lhs());
    if (!load_v) {
      return v;
    }
    if (v->base_handle() != load_v->base_handle()) {
      return v;
    }
    if (v->indices().empty() && load_v->indices().empty()) {
      return v;
    }
    bool index_equal = CheckEqual(v->flat_index(), load_v->flat_index());
    if (!index_equal) {
      return v;
    }

    // TODO: this checks that the metavars occur directly as an index, but this
    // is pessimistic, blockIdx.x + 1 is fine too if there is no overlapping.
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    std::unordered_set<VarPtr> vars_to_find = nontrivial_metavars_;
    for (ExprPtr e : v->indices()) {
      if (VarPtr v = to<Var>(e)) {
        vars_to_find.erase(v);
      }
    }

    if (vars_to_find.empty()) {
      // All metavars accounted for.
      return v;
    }

    return alloc<AtomicAdd>(buf, v->indices(), add_v->rhs());
  }

 private:
  const std::unordered_set<VarPtr>& thread_local_bufs_;
  struct MetaVarExtent {
    ExprPtr expr{nullptr};
    bool trivial{false};
  };
  std::unordered_map<VarPtr, MetaVarExtent> metavars_;
  std::unordered_set<VarPtr> nontrivial_metavars_;
};

void CudaPrinter::visit(StorePtr v) {
  emitIndent();
  if (v->indices().empty()) {
    os() << *v->base_handle() << " = ";
  } else {
    os() << *v->base_handle() << "[" << *v->flat_index() << "] = ";
  }
  os() << *v->value() << ";";
  os() << std::endl;
}

void CudaPrinter::visit(AtomicAddPtr v) {
  emitIndent();
  if (cuda_analysis_->thread_local_bufs().count(v->base_handle()) > 0) {
    // atomicAdd only works on global and shared memory
    os() << *v->base_handle() << "[" << *v->flat_index()
         << "] += " << *v->value() << ";";
  } else {
    os() << "atomicAdd(&" << *v->base_handle() << "[" << *v->flat_index() << "]"
         << ", " << *v->value() << ");";
  }
  os() << std::endl;
}

void CudaPrinter::visit(MaxPtr v) {
  if (v->dtype().is_integral()) {
    os() << "max(";
  } else {
    os() << "maximum(";
  }
  v->lhs()->accept(this);
  os() << ",";
  v->rhs()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(MinPtr v) {
  if (v->dtype().is_integral()) {
    os() << "min(";
  } else {
    os() << "minimum(";
  }
  v->lhs()->accept(this);
  os() << ",";
  v->rhs()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(IfThenElsePtr v) {
  os() << "((";
  v->condition()->accept(this);
  os() << ") ? ";
  v->true_value()->accept(this);
  os() << " : ";
  v->false_value()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(BlockPtr v) {
  os() << "{" << std::endl;
  indent_++;

  for (StmtPtr s : v->stmts()) {
    s->accept(this);
  }

  indent_--;
  emitIndent();
  os() << "}";
}

void CudaPrinter::visit(LetPtr v) {
  emitIndent();
  os() << dtypeToCppString(v->var()->dtype());
  os() << " " << *v->var() << " = ";
  v->value()->accept(this);
  os() << ";" << std::endl;
}

// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
class PrioritizeLoad : public IRMutator {
 public:
  ExprPtr mutate(LoadPtr v) override {
    // Look at the declaration of this variable for more details.
    if (nested_if_then_else_ > 0) {
      return IRMutator::mutate(v);
    }
    if (nested_let_) {
      return IRMutator::mutate(v);
    }
    if (thread_local_bufs_.count(v->base_handle()) > 0) {
      return IRMutator::mutate(v);
    }
    if (v->indices().size() == 0) {
      return IRMutator::mutate(v);
    }
    if (nested_store_) {
      if (v->base_handle() == nested_store_->buf()->base_handle() &&
          v->indices().size() == nested_store_->indices().size()) {
        // also check indices
        bool same = true;
        // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
        for (int i = 0; i < v->indices().size(); ++i) {
          if (!exprEquals(v->indices()[i], nested_store_->indices()[i])) {
            same = false;
            break;
          }
        }
        if (same) {
          return IRMutator::mutate(v);
        }
      } else if (nested_store_->indices().empty()) {
        return IRMutator::mutate(v);
      }
    }

    MemLoadList& load_list = load_stack_.back();
    VarPtr load_new_var = alloc<Var>("v", v->dtype());
    ExprPtr new_value = IRMutator::mutate(v);
    load_list.push_back(std::make_pair(load_new_var, new_value));

    return load_new_var;
  }

  ExprPtr mutate(CastPtr v) override {
    LoadPtr src_load = to<Load>(v->src_value());
    ExprPtr new_src = v->src_value()->accept_mutator(this);
    VarPtr new_var = to<Var>(new_src);
    if (!src_load || !new_var) {
      return alloc<Cast>(v->dtype(), new_src);
    }

    // We just did the prioritize load, let's fold in the Cast.
    MemLoadList& load_list = load_stack_.back();
    assert(!load_list.empty());
    auto pair = load_list.back();
    assert(pair.first == new_var);
    load_list.pop_back();

    new_var = alloc<Var>("v", v->dtype());
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    ExprPtr new_value = alloc<Cast>(v->dtype(), pair.second);
    load_list.push_back(std::make_pair(new_var, new_value));
    return new_var;
  }

  StmtPtr mutate(StorePtr v) override {
    StorePtr last = nested_store_;
    nested_store_ = v;
    StmtPtr s = IRMutator::mutate(v);
    nested_store_ = last;
    return s;
  }

  StmtPtr mutate(LetPtr v) override {
    nested_let_ = true;
    StmtPtr s = IRMutator::mutate(v);
    nested_let_ = false;
    return s;
  }

  StmtPtr mutate(BlockPtr v) override {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    std::list<StmtPtr> stmts = v->stmts();
    for (StmtPtr stmt : stmts) {
      PushList();
      StmtPtr stmt_new = stmt->accept_mutator(this);

      AddMemLoadsFromList(v, stmt);
      PopList();

      if (stmt_new == stmt) {
        continue;
      }
      v->replace_stmt(stmt, stmt_new);
    }
    return v;
  }

  ExprPtr mutate(IfThenElsePtr v) override {
    nested_if_then_else_++;
    ExprPtr new_v = IRMutator::mutate(v);
    nested_if_then_else_--;
    return new_v;
  }

 private:
  using MemLoadEntry = std::pair<VarPtr, ExprPtr>;
  using MemLoadList = std::vector<MemLoadEntry>;
  using MemoryLoadStack = std::vector<MemLoadList>;

  void PushList() {
    load_stack_.push_back(MemLoadList());
  }

  void PopList() {
    load_stack_.pop_back();
  }

  void AddMemLoadsFromList(BlockPtr block, StmtPtr last) {
    MemLoadList& load_list = load_stack_.back();
    if (load_list.empty()) {
      return;
    }

    for (auto& pair : load_list) {
      StmtPtr news = alloc<Let>(pair.first, pair.second);
      block->insert_stmt_before(news, last);
    }
  }

  MemoryLoadStack load_stack_;
  // TODO: For now, we are not moving the loads with the IfThenElse.
  // Eventually, we should switch to a more generic structure like:
  // int v2 = IfThenElse(cond, true_v, false_v) + 2 ->
  //
  // int v;
  // if (cond) {
  //   v = true_v;
  // } else {
  //   v = false_v;
  // }
  // int v2 = v + 2;
  int nested_if_then_else_{0};
  StorePtr nested_store_{nullptr};
  bool nested_let_{false};
  std::unordered_set<VarPtr> thread_local_bufs_;
};

std::string CudaCodeGen::GetUniqueFuncName(const std::string& func_prefix) {
  int64_t counter = 0;
  std::string name = func_prefix;
  while (taken_func_names.count(name)) {
    name = func_prefix + "_" + std::to_string(counter++);
  }

  taken_func_names.insert(name);
  return name;
}

bool GPUMetaVarRewriter::isFullExtent() {
  {
    auto& extents = cuda_analysis_->gpu_block_extents();
    for (int i = 0; i < 3; ++i) {
      if (!exprEquals(current_block_reach_[i], extents[i])) {
        return false;
      }
    }
  }

  {
    auto& extents = cuda_analysis_->gpu_thread_extents();
    for (int i = 0; i < 3; ++i) {
      if (!exprEquals(current_thread_reach_[i], extents[i])) {
        return false;
      }
    }
  }

  return true;
}

StmtPtr GPUMetaVarRewriter::mutate(ForPtr v) {
  StmtPtr body = v->body();
  ExprPtr old_reach = nullptr;
  const LoopOptions& loop_options = v->loop_options();
  if (loop_options.is_gpu_block_index()) {
    int gpu_block_index = loop_options.gpu_block_index();
    if (gpu_block_index >= 3) {
      throw std::runtime_error("support only 3D gpu_block_index");
    }
    old_reach = current_block_reach_[gpu_block_index];

    // Extents must be positive, assume >= 1.
    // NOLINTNEXTLINE(bugprone-branch-clone)
    if (old_reach->isConstant() && immediateEquals(old_reach, 1)) {
      current_block_reach_[gpu_block_index] = v->stop();
    } else {
      current_block_reach_[gpu_block_index] =
          IRSimplifier::simplify(alloc<Max>(old_reach, v->stop(), true));
    }

    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    VarPtr metaVar = gpu_block_vars_[gpu_block_index];
    body = Substitute(Stmt::clone(body), {{v->var(), metaVar}});
  } else if (loop_options.is_gpu_thread_index()) {
    int gpu_thread_index = loop_options.gpu_thread_index();
    if (gpu_thread_index >= 3) {
      throw std::runtime_error("support only 3D gpu_thread_index");
    }
    old_reach = current_thread_reach_[gpu_thread_index];

    // Extents must be positive, assume >= 1.
    // NOLINTNEXTLINE(bugprone-branch-clone)
    if (old_reach->isConstant() && immediateEquals(old_reach, 1)) {
      current_thread_reach_[gpu_thread_index] = v->stop();
    } else {
      current_thread_reach_[gpu_thread_index] =
          IRSimplifier::simplify(alloc<Max>(old_reach, v->stop(), true));
    }

    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    VarPtr metaVar = gpu_thread_vars_[gpu_thread_index];
    body = Substitute(Stmt::clone(body), {{v->var(), metaVar}});
  }

  // Recurse into body block.
  body = Stmt::clone(body->accept_mutator(this));

  // pop the internal reach off the stack.
  // NOLINTNEXTLINE(bugprone-branch-clone)
  if (loop_options.is_gpu_block_index()) {
    current_block_reach_[loop_options.gpu_block_index()] = old_reach;
    return body;
  } else if (loop_options.is_gpu_thread_index()) {
    current_thread_reach_[loop_options.gpu_thread_index()] = old_reach;
    return body;
  }

  return v->cloneWithNewBody(body);
}

StmtPtr GPUMetaVarRewriter::mutate(BlockPtr v) {
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<Segment> innerSegments;
  Segment current;

  auto pushAndReset = [&](bool mask) {
    if (!current.empty()) {
      innerSegments.push_back(current);
    }
    current.reset(mask);
  };

  // Here's we're slicing the Block's contents into segments that should have
  // the same launch reach. Segments are comprised of all statements that aren't
  // loops - which are their own segments. Some operations, such as threading
  // and memory ops should never be masked and so also get their own segment.
  for (StmtPtr stmt : *v) {
    StmtPtr stmt_new = stmt->accept_mutator(this);
    if (stmt == stmt_new) {
      stmt_new = Stmt::clone(stmt_new);
    }

    // Likewise, Allocate and Free should never be masked.
    if (to<Allocate>(stmt) || to<Free>(stmt)) {
      pushAndReset(false);
    }

    // If the current stmt *was* a loop, it's a segment boundary.
    if (ForPtr f = to<For>(stmt)) {
      pushAndReset(false);
    }

    current.stmts().push_back(stmt_new);
    // if the current segment should not be masked, it's a segment boundary on
    // the far side as well.
    if (!current.mask()) {
      pushAndReset(true);
    }
  }

  if (!current.empty()) {
    innerSegments.push_back(current);
  }

  // We are max extent in all dimensions, so need no masks at this level.
  if (isFullExtent()) {
    // flatten inner segments.
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    std::vector<StmtPtr> stmts;
    for (auto& v : innerSegments) {
      for (auto s : v.stmts()) {
        stmts.push_back(s);
      }
    }

    return alloc<Block>(stmts);
  }

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<StmtPtr> stmts;
  for (auto& segment : innerSegments) {
    bool need_sync = false;
    // We never mask loops, they'll mask their contents.
    if (!segment.mask()) {
      TORCH_INTERNAL_ASSERT(segment.stmts().size() == 1, buildErrorMessage());
      stmts.push_back(segment.stmts()[0]);
      continue;
    }

    // If we get here, we must mask since we're not full reach and our direct
    // child isn't a For.
    StmtPtr inner = alloc<Block>(segment.stmts());
    // threads inside blocks.
    auto& thread_extents = cuda_analysis_->gpu_thread_extents();
    for (size_t i = 0; i < gpu_thread_vars_.size(); ++i) {
      if (!exprEquals(current_thread_reach_[i], thread_extents[i])) {
        need_sync = true;
        // Mask it against the current dimensions.
        inner = alloc<Cond>(
            alloc<CompareSelect>(
                gpu_thread_vars_[i],
                current_thread_reach_[i],
                CompareSelectOperation::kLT),
            inner,
            nullptr);
      }
    }
    auto& block_extents = cuda_analysis_->gpu_block_extents();
    for (size_t i = 0; i < gpu_block_vars_.size(); ++i) {
      if (!exprEquals(current_block_reach_[i], block_extents[i])) {
        // Mask it against the current dimensions.
        inner = alloc<Cond>(
            alloc<CompareSelect>(
                gpu_block_vars_[i],
                current_block_reach_[i],
                CompareSelectOperation::kLT),
            inner,
            nullptr);
      }
    }

    if (need_sync) {
      stmts.push_back(alloc<SyncThreads>());
    }
    stmts.push_back(inner);
    if (need_sync) {
      stmts.push_back(alloc<SyncThreads>());
    }
  }

  return alloc<Block>(stmts);
}

static std::ostream& operator<<(
    std::ostream& out,
    const std::vector<ExprPtr>& exprs) {
  size_t i = 0;
  for (auto expr : exprs) {
    if (i++ > 0) {
      out << ", ";
    }
    out << *expr;
  }
  return out;
}

static const char* device_resource_string = R"(
#define NAN __int_as_float(0x7fffffff)
#define POS_INFINITY __int_as_float(0x7f800000)
#define NEG_INFINITY __int_as_float(0xff800000)

)";

static const char* shared_resource_string = R"(
template<typename T>
__device__ T maximum(T a, T b) {
  return isnan(a) ? a : (a > b ? a : b);
}

template<typename T>
__device__ T minimum(T a, T b) {
  return isnan(a) ? a : (a < b ? a : b);
}

)";

void CudaCodeGen::Initialize() {
  // TODO: handle multiple kernels.
  // TODO: handle dynamic dimension.
  // TODO: call nvrtc.
  // TODO: merge HasRand with CudaAnalysis.
  GenericIntrinsicsExpander intrinsics_expander;
  apply_mutator(&intrinsics_expander);

  HasRand has_rand_func(stmt());
  has_random_ = has_rand_func.has_rand();
  cuda_analysis_ = std::make_unique<CudaAnalysis>();
  printer_ =
      std::make_unique<CudaPrinter>(&oss_, cuda_analysis_.get(), has_random_);
  metavar_rewriter_ =
      std::make_unique<GPUMetaVarRewriter>(cuda_analysis_.get());

  // Check whether the statement uses the Half type, if so add the
  // half_support_literal.
  StmtPtr stmt_v = stmt();
  HalfChecker halfChecker(buffer_args());
  stmt_v->accept(&halfChecker);

#if defined(USE_ROCM)
#if ROCM_VERSION < 40200
  os() << "#include <hip/hip_runtime.h>" << std::endl;
  if (halfChecker.hasHalf()) {
    os() << "#include <hip/hip_fp16.h>" << std::endl;
  }
#endif
#endif
  os() << device_resource_string << shared_resource_string;

  if (has_random_) {
    os() << philox_random_string << std::endl;
  }

  if (halfChecker.hasHalf()) {
    os() << fuser::cuda::half_support_literal << std::endl;
  }
  if (halfChecker.hasBFloat16()) {
    os() << fuser::cuda::bfloat16_support_literal << std::endl;
  }

  std::string func_name = GetUniqueFuncName(kernel_func_name());
  os() << "extern \"C\" __global__" << std::endl;
#if defined(USE_ROCM)
  // CUDA has a default limit of threads per block (=flat work group size)
  // of 1024, but ROCm uses 256 by default. At the time of writing
  // (#45506), I am unaware of a stricter limit that TensorExpr imposes
  // (maybe for perf),so I use 1024 as maximum flat work group size.
  // We put a minimum value of 1, this is also used by hip (ROCm 3.8) in
  // the __launch_bound__ implementation. The arguments for the attribute
  // are (min, max), for details see the documentation at
  // https://clang.llvm.org/docs/AttributeReference.html#amdgpu-flat-work-group-size
  os() << "__attribute__((amdgpu_flat_work_group_size(1, 1024)))" << std::endl;
#endif
  os() << "void " << func_name << "(";
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  const std::vector<BufferArg> buffer_args = this->buffer_args();
  for (size_t i = 0; i < buffer_args.size(); i++) {
    if (i > 0) {
      os() << ", ";
    }
    const BufferArg& buffer_arg = buffer_args[i];
    VarPtr var = buffer_arg.var();
    Dtype dtype = buffer_arg.dtype();

    os() << printer_->dtypeToCppString(dtype)
         << (buffer_arg.isVar() ? " " : "* ")
         << name_manager()->get_unique_name(var);
  }
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  VarPtr rand_seed;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  VarPtr rand_offset;
  if (has_random_) {
    // TODO: switch to kUint64 when it is available.
    rand_seed = alloc<Var>("rand_seed", kInt);
    rand_offset = alloc<Var>("rand_offset", kInt);
    std::string uint64_str = "unsigned long long";
    os() << ", " << uint64_str << " " << *rand_seed << ", " << uint64_str << " "
         << *rand_offset;
  }
  os() << ") {";
  os() << std::endl;

  if (has_random_) {
    VarPtr idx = alloc<Var>("idx", kInt);
    os() << "int " << *idx << " = blockIdx.x*blockDim.x + threadIdx.x;"
         << std::endl;
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    VarPtr rand_func = printer_->rand_func();
    os() << "Philox " << *rand_func << "(" << *rand_seed << ", " << *idx << ", "
         << *rand_offset << ");" << std::endl;
    os() << std::endl;
  }

  stmt_v->accept(cuda_analysis_.get());

  stmt_v = stmt_v->accept_mutator(metavar_rewriter_.get());

  AtomicAddFuser atomic_add_fuser(
      cuda_analysis_->thread_local_bufs(), *metavar_rewriter_.get());
  stmt_v = stmt_v->accept_mutator(&atomic_add_fuser);

  stmt_v = registerize(stmt_v);

  PrioritizeLoad prioritize_load;
  stmt_v = stmt_v->accept_mutator(&prioritize_load);

  // The registerizer might insert half-type scalars, we don't want this.
  HalfRewriter hsFix;
  stmt_v = stmt_v->accept_mutator(&hsFix);

  stmt_v = IRSimplifier::simplify(stmt_v);
  set_stmt(stmt_v);

  stmt_v->accept(printer_.get());
  os() << std::endl;
  os() << "}";

  // Check that all block extents had been set.
  const std::vector<ExprPtr>& gpu_block_extents =
      metavar_rewriter_->gpu_block_extents();
  for (size_t i = 0; i < gpu_block_extents.size(); i++) {
    if (!gpu_block_extents[i]) {
      throw std::runtime_error("Missing gpu_block_index: " + std::to_string(i));
    }
  }

  // Precompute block and thread extents for call_with_numel().  If
  // precomputation can't be done (block/thread extents aren't
  // constant), then disallow call_with_numel.
  auto block_extents = metavar_rewriter_->gpu_block_extents();
  auto thread_extents = metavar_rewriter_->gpu_thread_extents();
  bool canCallWithNumel =
      !has_random_ && block_extents.size() > 0 && thread_extents.size() > 0;
  for (size_t i = 1; i < block_extents.size() && canCallWithNumel; i++) {
    canCallWithNumel = canCallWithNumel && block_extents[i]->isConstant() &&
        immediateAs<int>(block_extents[i]) == 1;
  }
  for (size_t i = 1; i < thread_extents.size() && canCallWithNumel; i++) {
    canCallWithNumel = canCallWithNumel && thread_extents[i]->isConstant() &&
        immediateAs<int>(thread_extents[i]) == 1;
  }
  if (canCallWithNumel && thread_extents[0]->isConstant()) {
    // We assume block_extents[0] is output.numel()/thread_block_size_.
    thread_block_size_ = immediateAs<int>(thread_extents[0]);
  } else {
    // Disable call_with_numel.
    thread_block_size_ = -1;
  }

  // Build an LLVM based eval expression for the extents
  block_extents_eval_.reserve(block_extents.size());
  std::vector<BufferArg> extents_buffer_args;

  // We need to extract the args that are used in the thread and block extents
  // from bufferArgs and only use those for the `ExprEval` below. Without this,
  // bufferArgs might contain arbitrary types that are not handled by LLVM and
  // hence would result in an error.
  std::unordered_set<VarPtr> vars_in_extents;
  for (const auto& be : block_extents) {
    auto v = VarFinder::find(be);
    vars_in_extents.insert(v.begin(), v.end());
  }
  for (const auto& te : thread_extents) {
    auto v = VarFinder::find(te);
    vars_in_extents.insert(v.begin(), v.end());
  }
  for (const size_t i : c10::irange(buffer_args.size())) {
    if (vars_in_extents.count(buffer_args[i].var())) {
      extents_buffer_args.push_back(buffer_args[i]);
      arg_pos_in_extents_.push_back(true);
    } else {
      arg_pos_in_extents_.push_back(false);
    }
  }
  for (const auto& be : block_extents) {
#ifdef TORCH_ENABLE_LLVM
    block_extents_eval_.emplace_back(
        ExprEval<LLVMCodeGen>(ExprHandle(be), extents_buffer_args));
#else
    block_extents_eval_.emplace_back(
        ExprEval<SimpleIREvaluator>(ExprHandle(be), extents_buffer_args));
#endif
  }
  thread_extents_eval_.reserve(thread_extents.size());
  for (const auto& te : thread_extents) {
#ifdef TORCH_ENABLE_LLVM
    thread_extents_eval_.emplace_back(
        ExprEval<LLVMCodeGen>(ExprHandle(te), extents_buffer_args));
#else
    thread_extents_eval_.emplace_back(
        ExprEval<SimpleIREvaluator>(ExprHandle(te), extents_buffer_args));
#endif
  }

  GRAPH_DEBUG(
      "Fused TE CUDA kernel:\n",
      oss_.str(),
      "\n",
      "gpu_block_extents: (",
      metavar_rewriter_->gpu_block_extents(),
      ")\n",
      "gpu_thread_extents: (",
      metavar_rewriter_->gpu_thread_extents(),
      ")");

  CompileToNVRTC(oss_.str(), func_name);
}

void CudaCodeGen::call_with_numel(void** args, int64_t numel) {
  if (C10_UNLIKELY(numel == 0)) {
    return;
  }
  if (C10_UNLIKELY(thread_block_size_ <= 0)) {
    TORCH_INTERNAL_ASSERT(
        thread_block_size_ >= 0,
        "call_with_numel() requires a precomputed thread block size");
  }

  auto const& buffer_args = this->buffer_args();
  size_t gpu_block_extents =
      (numel + thread_block_size_ - 1) / thread_block_size_;
  size_t gpu_thread_extents = thread_block_size_;

  // In CUDA we need to pass pointers to pointers for buffers, thus we need to
  // go over args and add an extra indirection for such non-scalar
  // arguments.
  // Why? See some details here:
  // https://stackoverflow.com/questions/34388712/cannot-understand-how-jcuda-culaunchkernel-work
  std::vector<void*> ptr_to_args(buffer_args.size());
  for (size_t i = 0; i < buffer_args.size(); i++) {
    ptr_to_args[i] =
        // NOLINTNEXTLINE: const_cast
        buffer_args[i].isVar() ? args[i] : const_cast<void**>(&args[i]);
  }

  const auto device = this->device().index();
  const auto prior_device = at::cuda::current_device();
  if (prior_device != device) {
    at::cuda::set_device(device);
  }

  auto stream = at::cuda::getCurrentCUDAStream();
  fuser::cuda::executor_utils::initializeCudaContext();
  AT_CUDA_DRIVER_CHECK(nvrtc().cuLaunchKernel(
      function_,
      gpu_block_extents,
      1,
      1,
      gpu_thread_extents,
      1,
      1,
      0,
      stream,
      ptr_to_args.data(),
      nullptr));

  if (prior_device != device) {
    at::cuda::set_device(prior_device);
  }
}

void CudaCodeGen::call_raw(const std::vector<void*>& raw_args) {
  auto const& buffer_args = this->buffer_args();

  // TODO: move as much of this into the constructors.
  const std::vector<ExprPtr>& gpu_block_extents =
      metavar_rewriter_->gpu_block_extents();
  const std::vector<ExprPtr>& gpu_thread_extents =
      metavar_rewriter_->gpu_thread_extents();
  if (gpu_block_extents.size() > 3 || gpu_thread_extents.size() > 3) {
    throw malformed_input(
        "cuda_codegen: block or thread extent greater than 3D");
  }

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<int> gpu_block_extents_v(3, 1);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<int> gpu_thread_extents_v(3, 1);

  // evaluate all the block/thread extents into values
  // TODO: eventually, codegen these calculations and make them part of the
  // module.
  std::vector<void*> extent_args;
  size_t raw_args_size = raw_args.size();
  extent_args.reserve(raw_args_size);
  for (size_t i = 0; i < raw_args_size; ++i) {
    if (arg_pos_in_extents_[i]) {
      extent_args.push_back(raw_args[i]);
    }
  }
  for (size_t i = 0; i < gpu_block_extents.size(); i++) {
    if (gpu_block_extents[i]->isConstant()) {
      gpu_block_extents_v[i] = immediateAs<int64_t>(gpu_block_extents[i]);
      continue;
    }
    {
      // invocation of block_extents_eval_ isn't thread safe and this function
      // may be invoked by multiple threads
      std::lock_guard<std::mutex> guard(eval_lock_);
      gpu_block_extents_v[i] =
          block_extents_eval_[i].value<int64_t>(extent_args);
    }
  }
  for (size_t i = 0; i < gpu_thread_extents.size(); i++) {
    if (gpu_thread_extents[i]->isConstant()) {
      gpu_thread_extents_v[i] = immediateAs<int64_t>(gpu_thread_extents[i]);
      continue;
    }
    {
      std::lock_guard<std::mutex> guard(eval_lock_);
      gpu_thread_extents_v[i] =
          thread_extents_eval_[i].value<int64_t>(extent_args);
    }
  }

  // Skip launching the kernel if there are no elements to process.
  for (int extent : gpu_block_extents_v) {
    if (extent == 0) {
      return;
    }
  }

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  int ptr_count = buffer_args.size();
  // If the kernel has a rand call in it, add two extra arguments for random
  // seed and offset.
  if (has_random_) {
    ptr_count += 2;
  }
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<void*> ptr_to_args(ptr_count);

  // In CUDA we need to pass pointers to pointers for buffers, thus we need to
  // go over raw_args and add an extra indirection for such non-scalar
  // arguments.
  // Why? See some details here:
  // https://stackoverflow.com/questions/34388712/cannot-understand-how-jcuda-culaunchkernel-work
  for (size_t i = 0; i < buffer_args.size(); i++) {
    ptr_to_args[i] =
        buffer_args[i].isVar() ? raw_args[i] : const_cast<void**>(&raw_args[i]);
  }

  if (has_random_) {
    uint64_t rand_seed = uint64_t(-1);
    uint64_t rand_offset = uint64_t(-1);
    auto gen = at::cuda::detail::getDefaultCUDAGenerator();
    // TODO: total hack. Switch to numel when it is available.
    int64_t total_elements_per_thread = (1LL << 28);
    {
      std::lock_guard<std::mutex> lock(gen.mutex());
      auto philox_engine_inputs =
          at::check_generator<at::CUDAGeneratorImpl>(gen)->philox_engine_inputs(
              total_elements_per_thread);
      rand_seed = philox_engine_inputs.first;
      rand_offset = philox_engine_inputs.second;
    }
    ptr_to_args[buffer_args.size()] = &rand_seed;
    ptr_to_args[buffer_args.size() + 1] = &rand_offset;
  }

  auto prior_device = at::cuda::current_device();
  if (prior_device != this->device().index()) {
    at::cuda::set_device(this->device().index());
  }
  // Launch the kernels
  auto stream = at::cuda::getCurrentCUDAStream();
  fuser::cuda::executor_utils::initializeCudaContext();
  AT_CUDA_DRIVER_CHECK(nvrtc().cuLaunchKernel(
      function_,
      gpu_block_extents_v[0],
      gpu_block_extents_v[1],
      gpu_block_extents_v[2],
      gpu_thread_extents_v[0],
      gpu_thread_extents_v[1],
      gpu_thread_extents_v[2],
      0,
      stream,
      ptr_to_args.data(),
      nullptr));

  if (prior_device != this->device().index()) {
    at::cuda::set_device(prior_device);
  }
}

void CudaCodeGen::call(const std::vector<CallArg>& args) {
  if (args.size() != buffer_args().size()) {
    throw malformed_input("cuda_codegen: wrong number of args in call");
  }

  auto const& buffer_args = this->buffer_args();
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<void*> raw_args(buffer_args.size());
  for (size_t i = 0; i < buffer_args.size(); i++) {
    auto const& bufferArg = buffer_args[i];
    auto const& callArg = args[i];
    raw_args[i] = argToPtr(bufferArg, callArg);
  }
  call_raw(raw_args);
}

at::Tensor CudaCodeGen::empty_strided(
    c10::IntArrayRef size,
    c10::IntArrayRef stride,
    c10::optional<c10::ScalarType> dtype_opt,
    c10::optional<c10::Layout> layout_opt,
    c10::optional<c10::Device> device_opt,
    c10::optional<bool> pin_memory_opt) {
  c10::DeviceGuard device_guard(device_opt.value());
  return at::native::empty_strided_cuda(
      size, stride, dtype_opt, layout_opt, device_opt, pin_memory_opt);
}

void CudaCodeGen::CompileToNVRTC(
    const std::string& code,
    const std::string& func_name) {
  fuser::cuda::executor_utils::initializeCudaContext();
  // Note: hacked at::DeviceGuard since at::DeviceGuard was failing to work
  // properly in some scenarios
  auto prior_device = at::cuda::current_device();
  if (prior_device != this->device().index()) {
    at::cuda::set_device(this->device().index());
  }
  // Acquires device and NVRTC properties (for compile arch and occupancy
  // calculations)
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  int major, minor;
  bool compile_to_sass = false;
  fuser::cuda::codegenOutputQuery(prop, major, minor, compile_to_sass);

  // Creates the NVRTC program
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  nvrtcProgram program;
  AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcCreateProgram(
      &program, code.c_str(), nullptr, 0, nullptr, nullptr));

#if defined(USE_ROCM)
  std::vector<const char*> args = {"--std=c++14"};
#if ROCM_VERSION >= 40200
  args.push_back("-hip-pch");
#endif
#else
  const std::string compute = std::string("--gpu-architecture=") +
#if defined(CUDA_VERSION) && CUDA_VERSION >= 11010
      // CUDA 11.1 allows going directly to SASS (sm_) instead of PTX (compute_)
      // which gives better backwards compatibility to work on older driver,
      // (since older driver doesn't necessrily recognize PTX emitted by new
      // toolkit);
      // Meanwhile, for forward compatibility (future device with
      // `compile_to_sass==false`), since SASS are not necessarily compatible,
      // we fallback to PTX instead.
      (compile_to_sass ? "sm_" : "compute_") +
#else
      "compute_" +
#endif
      std::to_string(major) + std::to_string(minor);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  const std::vector<const char*> args = {
      "--std=c++14", compute.c_str(), "-default-device"};
#endif

  auto result = nvrtc().nvrtcCompileProgram(program, args.size(), args.data());
  if (result != NVRTC_SUCCESS) {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    size_t logsize;
    AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLogSize(program, &logsize));
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    std::vector<char> log(logsize);
    AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLog(program, log.data()));
    std::stringstream cu;
    cu << log.data() << std::endl;
    cu << "nvrtc compilation failed: " << std::endl;
    cu << code << std::endl;
    throw std::runtime_error(cu.str());
  }
  ResourceGuard holdProgram(
      [&] { AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcDestroyProgram(&program)); });
  AT_CUDA_NVRTC_CHECK(result);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  size_t ptx_size;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<char> ptx;
#if defined(CUDA_VERSION) && CUDA_VERSION >= 11010
  // compile_to_sass determines whether we are generating SASS or PTX, hence
  // the different API.
  auto getSize = compile_to_sass
      ? at::globalContext().getNVRTC().nvrtcGetCUBINSize
      : at::globalContext().getNVRTC().nvrtcGetPTXSize;
  auto getFunc = compile_to_sass ? at::globalContext().getNVRTC().nvrtcGetCUBIN
                                 : at::globalContext().getNVRTC().nvrtcGetPTX;
#else
  auto getSize = at::globalContext().getNVRTC().nvrtcGetPTXSize;
  auto getFunc = at::globalContext().getNVRTC().nvrtcGetPTX;
#endif
  AT_CUDA_NVRTC_CHECK(getSize(program, &ptx_size));
  ptx.resize(ptx_size);
  AT_CUDA_NVRTC_CHECK(getFunc(program, ptx.data()));

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  CUmodule module;
  AT_CUDA_DRIVER_CHECK(nvrtc().cuModuleLoadData(&module, ptx.data()));
  AT_CUDA_DRIVER_CHECK(
      nvrtc().cuModuleGetFunction(&function_, module, func_name.c_str()));

  if (prior_device != this->device().index()) {
    at::cuda::set_device(prior_device);
  }
}

CudaCodeGen::~CudaCodeGen() = default;

RegisterCodeGen<CudaCodeGen> cuda_codegen_reg("cuda_codegen");

} // namespace tensorexpr
} // namespace jit
} // namespace torch