File: ir.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (922 lines) | stat: -rw-r--r-- 22,755 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
#pragma once

#include <string>
#include <vector>

#include <c10/util/string_utils.h>
#include <torch/csrc/jit/tensorexpr/exceptions.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/fwd_decls.h>
#include <torch/csrc/jit/tensorexpr/stmt.h>

#include <ATen/core/ivalue.h>

namespace torch {
namespace jit {
namespace tensorexpr {

enum CompareSelectOperation {
  kEQ = 0,
  kGT,
  kGE,
  kLT,
  kLE,
  kNE,
};

enum CompareSelectBias {
  kUnbiased,
  kLikely,
  kUnlikely,
};

inline int getPrecedence(IRNodeType ty) {
  // Match C++ operator precedence rules, since some pretty-print expressions to
  // C++. SEE: https://en.cppreference.com/w/cpp/language/operator_precedence
  switch (ty) {
    case kPrimitive:
      return 0;
    case kCast:
    case kBitCast:
      return 2;
    case kAdd:
    case kSub:
      return 6;
    case kMul:
    case kDiv:
    case kMod:
      return 5;
    case kMax:
    case kMin:
      return 99;
    case kAnd:
      return 11;
    case kOr:
      return 13;
    case kLshift:
    case kRshift:
      return 7;
    case kXor:
      return 12;
    case kCompareSelect:
      return 16;
    default:
      return 99;
  }
}

class TORCH_API Cast : public ExprNode<Cast> {
 public:
  ExprPtr src_value() const {
    return src_value_;
  }

  void set_src_value(ExprPtr src_value) {
    src_value_ = src_value;
  }

  static ExprHandle make(Dtype dtype, const ExprHandle& src_value) {
    return ExprHandle(alloc<Cast>(dtype, src_value.node()));
  }
  Cast(Dtype dtype, ExprPtr src_value)
      : ExprNodeBase(dtype, kCast), src_value_(src_value) {}

  bool isConstant() const override {
    return src_value_->isConstant();
  }

 private:
  ExprPtr src_value_;
};

template <typename T>
ExprHandle cast(const ExprHandle& src_value) {
  return Cast::make(Dtype(ToDtype<T>(), src_value.dtype().lanes()), src_value);
}

// This is a bitwise cast, akin to bitcast in LLVM
class TORCH_API BitCast : public ExprNode<BitCast> {
 public:
  ExprPtr src_value() const {
    return src_value_;
  }

  void set_src_value(ExprPtr src_value) {
    src_value_ = src_value;
  }

  static ExprHandle make(Dtype dtype, const ExprHandle& src_value) {
    return ExprHandle(alloc<BitCast>(dtype, src_value.node()));
  }
  BitCast(Dtype dtype, ExprPtr src_value)
      : ExprNodeBase(dtype, kBitCast), src_value_(src_value) {
    TORCH_CHECK(src_value_->dtype().byte_size() == dtype.byte_size());
  }

  bool isConstant() const override {
    return src_value_->isConstant();
  }

 private:
  ExprPtr src_value_;
};

template <typename T>
ExprHandle bitcast(const ExprHandle& src_value) {
  return BitCast::make(
      Dtype(ToDtype<T>(), src_value.dtype().lanes()), src_value);
}

// Represent the expression node for binary operators.
// A CRTP pattern to share common code among the operators.
template <typename Op>
class BinaryOpNode : public ExprNode<Op> {
 public:
  ExprPtr lhs() const {
    return this->lhs_;
  }
  ExprPtr rhs() const {
    return this->rhs_;
  }

  void set_lhs(ExprPtr lhs) {
    lhs_ = lhs;
  }

  void set_rhs(ExprPtr rhs) {
    rhs_ = rhs;
  }

  static ExprHandle make(const ExprHandle& lhs, const ExprHandle& rhs) {
    return ExprHandle(alloc<Op>(lhs.node(), rhs.node()));
  }

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  BinaryOpNode(
      ExprPtr lhs_v,
      ExprPtr rhs_v,
      IRNodeType expr_type,
      ScalarType ret_type = ScalarType::Undefined)
      : ExprNode<Op>(
            // NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
            BinaryOpDtype(lhs_v->dtype(), rhs_v->dtype(), ret_type),
            expr_type),
        lhs_(CastIfNeeded(lhs_v, ExprNode<Op>::dtype())),
        rhs_(CastIfNeeded(rhs_v, ExprNode<Op>::dtype())) {}

 private:
  static ExprPtr CastIfNeeded(ExprPtr expr, Dtype dst_dtype) {
    if (expr->dtype() == dst_dtype) {
      return expr;
    }
    return Cast::make(dst_dtype, ExprHandle(expr)).node();
  }

  ExprPtr lhs_;
  ExprPtr rhs_;
};

namespace detail {
template <typename T>
void bin_op_deducer(BinaryOpNode<T>);
bool bin_op_deducer(...);
} // namespace detail

class TORCH_API Add : public BinaryOpNode<Add> {
 public:
  Add(ExprPtr lhs, ExprPtr rhs) : BinaryOpNode(lhs, rhs, IRNodeType::kAdd) {}
};

class TORCH_API Sub : public BinaryOpNode<Sub> {
 public:
  Sub(ExprPtr lhs, ExprPtr rhs) : BinaryOpNode(lhs, rhs, IRNodeType::kSub) {}
};

class TORCH_API Mul : public BinaryOpNode<Mul> {
 public:
  Mul(ExprPtr lhs, ExprPtr rhs) : BinaryOpNode(lhs, rhs, IRNodeType::kMul) {}
};

class TORCH_API Div : public BinaryOpNode<Div> {
 public:
  Div(ExprPtr lhs, ExprPtr rhs) : BinaryOpNode(lhs, rhs, IRNodeType::kDiv) {}
};

class TORCH_API Mod : public BinaryOpNode<Mod> {
 public:
  Mod(ExprPtr lhs, ExprPtr rhs) : BinaryOpNode(lhs, rhs, IRNodeType::kMod) {}
};

template <typename Op>
class BitwiseOpNode : public BinaryOpNode<Op> {
 public:
  BitwiseOpNode(ExprPtr lhs, ExprPtr rhs, IRNodeType type)
      : BinaryOpNode<Op>(lhs, rhs, type) {}

  static ExprHandle make(const ExprHandle& lhs, const ExprHandle& rhs) {
    if (!lhs.dtype().is_integral()) {
      throw unsupported_dtype();
    }
    if (lhs.dtype() != rhs.dtype()) {
      throw malformed_input("lhs/rhs dtype mismatch");
    }
    return BinaryOpNode<Op>::make(lhs, rhs);
  }
};

class TORCH_API And : public BitwiseOpNode<And> {
 public:
  And(ExprPtr lhs, ExprPtr rhs) : BitwiseOpNode(lhs, rhs, IRNodeType::kAnd) {}
};

class TORCH_API Or : public BitwiseOpNode<Or> {
 public:
  Or(ExprPtr lhs, ExprPtr rhs) : BitwiseOpNode(lhs, rhs, IRNodeType::kOr) {}
};

class TORCH_API Xor : public BitwiseOpNode<Xor> {
 public:
  Xor(ExprPtr lhs, ExprPtr rhs) : BitwiseOpNode(lhs, rhs, IRNodeType::kXor) {}
};

class TORCH_API Lshift : public BitwiseOpNode<Lshift> {
 public:
  Lshift(ExprPtr lhs, ExprPtr rhs)
      : BitwiseOpNode(lhs, rhs, IRNodeType::kLshift) {}
};

class TORCH_API Rshift : public BitwiseOpNode<Rshift> {
 public:
  Rshift(ExprPtr lhs, ExprPtr rhs)
      : BitwiseOpNode(lhs, rhs, IRNodeType::kRshift) {}
};

// TODO: add TORCH_API
// Currently adding it results in a compilation error on Windows
class Max : public BinaryOpNode<Max> {
 private:
  bool propagate_nans_;

 public:
  Max(ExprPtr lhs, ExprPtr rhs, bool propagate_nans)
      : BinaryOpNode(lhs, rhs, IRNodeType::kMax),
        propagate_nans_(propagate_nans) {}

  bool propagate_nans() const {
    return propagate_nans_;
  }

  static ExprHandle make(const ExprHandle& lhs, const ExprHandle& rhs) = delete;
  static ExprHandle make(
      const ExprHandle& lhs,
      const ExprHandle& rhs,
      bool propagate_nans) {
    return ExprHandle(alloc<Max>(lhs.node(), rhs.node(), propagate_nans));
  }
};

// TODO: add TORCH_API
// Currently adding it results in a compilation error on Windows
class Min : public BinaryOpNode<Min> {
 private:
  bool propagate_nans_;

 public:
  Min(ExprPtr lhs, ExprPtr rhs, bool propagate_nans)
      : BinaryOpNode(lhs, rhs, IRNodeType::kMin),
        propagate_nans_(propagate_nans) {}

  bool propagate_nans() const {
    return propagate_nans_;
  }

  static ExprHandle make(const ExprHandle& lhs, const ExprHandle& rhs) = delete;
  static ExprHandle make(
      const ExprHandle& lhs,
      const ExprHandle& rhs,
      bool propagate_nans) {
    return ExprHandle(alloc<Min>(lhs.node(), rhs.node(), propagate_nans));
  }
};

// Encode typed immediate values e.g. IntImm, FloatImm.
#define IMM_DECLARE(Type, Name)                               \
  class TORCH_API Name##Imm : public ExprNode<Name##Imm> {    \
   public:                                                    \
    Name##Imm(Type value)                                     \
        : ExprNodeBase(k##Name, kPrimitive), value_(value) {} \
    bool isConstant() const override {                        \
      return true;                                            \
    }                                                         \
    Type value() const {                                      \
      return value_;                                          \
    }                                                         \
    static ExprHandle make(Type value) {                      \
      return ExprHandle(alloc<Name##Imm>(value));             \
    }                                                         \
                                                              \
   private:                                                   \
    Type value_;                                              \
  };
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, IMM_DECLARE);
#undef IMM_DECLARE

// Get immediate by ScalarType.
template <typename T>
ExprPtr getImmediateByType(ScalarType immType, T initialVal) {
  switch (immType) {
#define TYPE_CASE(Type, Name) \
  case ScalarType::Name:      \
    return alloc<Name##Imm>(Type(initialVal));
    // NOLINTNEXTLINE(bugprone-branch-clone)
    AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
    default:
      throw unsupported_dtype();
  }
  return nullptr;
}

template <typename T>
ExprPtr getImmediateByType(Dtype dtype, T initialVal) {
  return getImmediateByType<T>(dtype.scalar_type(), initialVal);
}

template <typename T>
ExprPtr immLike(ExprPtr e, T v) {
  return getImmediateByType<T>(e->dtype(), v);
}

template <typename T>
ExprPtr immLike(ExprHandle e, T v) {
  return immLike(e.node(), v);
}

inline c10::optional<int64_t> intValue(ExprPtr e) {
#define TYPE_CASE(Type, Name)      \
  if (auto v = to<Name##Imm>(e)) { \
    return v->value();             \
  }
  AT_FORALL_INT_TYPES(TYPE_CASE);
#undef TYPE_CASE
  return c10::nullopt;
}

inline c10::optional<int64_t> intValue(ExprHandle e) {
  return intValue(e.node());
}

template <typename T>
T immediateAs(ExprPtr e) {
#define TYPE_CASE(Type, Name)                \
  if (Name##ImmPtr imm = to<Name##Imm>(e)) { \
    return imm->value();                     \
  }
  AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
  throw unsupported_dtype();
  return 0;
}

template <typename T>
T immediateAs(ExprHandle e) {
  return immediateAs<T>(e.node());
}

template <typename T>
bool immediateEquals(ExprPtr e, T val) {
#define TYPE_CASE(Type, Name)                \
  if (Name##ImmPtr imm = to<Name##Imm>(e)) { \
    return imm->value() == val;              \
  }
  AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
  throw unsupported_dtype();
  return false;
}

TORCH_API bool immediateIsNegative(ExprPtr e);

TORCH_API bool immediateIsPositive(ExprPtr e);

TORCH_API bool immediateIsZero(ExprPtr e);

// Represents a ramp vector node:
//     [base, base + 1 * stride, ... , base + (lanes - 1) * stride]
class TORCH_API Ramp : public ExprNode<Ramp> {
 public:
  ExprPtr base() const {
    return base_;
  }
  ExprPtr stride() const {
    return stride_;
  }

  void set_base(ExprPtr base) {
    base_ = base;
  }

  void set_stride(ExprPtr stride) {
    stride_ = stride;
  }

  static ExprHandle make(
      const ExprHandle& base,
      const ExprHandle& stride,
      int lanes) {
    if (stride.dtype() != base.dtype()) {
      throw malformed_input("Bad stride in Ramp");
    }
    return ExprHandle(alloc<Ramp>(base.node(), stride.node(), lanes));
  }
  int lanes() const {
    return lanes_;
  }

  Ramp(ExprPtr base, ExprPtr stride, int lanes)
      : ExprNodeBase(Dtype(base->dtype(), lanes)),
        base_(base),
        stride_(stride),
        lanes_(lanes) {}

 private:
  ExprPtr base_;
  ExprPtr stride_;
  int lanes_;
};

class TORCH_API Load : public ExprNode<Load> {
 public:
  VarPtr base_handle() const {
    return buf_->base_handle();
  }
  std::vector<ExprPtr> indices() const {
    return indices_;
  }
  ExprPtr flat_index() const {
    TORCH_CHECK(indices_.size() == 1, "Indices haven't been flattened.");
    return indices_[0];
  }
  BufPtr buf() const {
    return buf_;
  }

  void set_buf(BufPtr buf) {
    buf_ = buf;
  }

  void set_indices(std::vector<ExprPtr> indices) {
    indices_ = indices;
  }

  static ExprHandle make(
      Dtype dtype,
      const BufHandle& buf,
      const std::vector<ExprHandle>& indices);
  static ExprHandle make(
      const BufHandle& buf,
      const std::vector<ExprHandle>& indices);

  Load(Dtype dtype, BufPtr base_handle, std::vector<ExprPtr> indices);
  Load(BufPtr base_handle, const std::vector<ExprPtr>& indices);

 private:
  BufPtr buf_;
  std::vector<ExprPtr> indices_;
};

class TORCH_API Broadcast : public ExprNode<Broadcast> {
 public:
  ExprPtr value() const {
    return value_;
  }

  void set_value(ExprPtr value) {
    value_ = value;
  }

  int lanes() const {
    return lanes_;
  }
  static ExprHandle make(const ExprHandle& value, int lanes) {
    return ExprHandle(alloc<Broadcast>(value.node(), lanes));
  }
  Broadcast(ExprPtr value, int lanes)
      : ExprNodeBase(Dtype(value->dtype(), lanes)),
        value_(value),
        lanes_(lanes) {}

 private:
  ExprPtr value_;
  int lanes_;
};

class TORCH_API IfThenElse : public ExprNode<IfThenElse> {
 public:
  ExprPtr condition() const {
    return condition_;
  }

  // Lazily evaluated only if condition is true
  ExprPtr true_value() const {
    return true_;
  }

  // Lazily evaluated only if condition is false
  ExprPtr false_value() const {
    return false_;
  }

  void set_condition(ExprPtr condition) {
    condition_ = condition;
  }

  void set_true_value(ExprPtr true_value) {
    true_ = true_value;
  }

  void set_false_value(ExprPtr false_value) {
    false_ = false_value;
  }

  static ExprHandle make(
      const ExprHandle& c,
      const ExprHandle& t,
      const ExprHandle& f) {
    if (!c.dtype().is_integral()) {
      throw unsupported_dtype();
    }
    if (c.dtype().lanes() != 1) {
      throw unsupported_dtype();
    }
    if (t.dtype() != f.dtype()) {
      throw malformed_input("Bad dtype in IfThenElse");
    }
    return ExprHandle(alloc<IfThenElse>(c.node(), t.node(), f.node()));
  }

  IfThenElse(ExprPtr c, ExprPtr t, ExprPtr f)
      : ExprNodeBase(t->dtype()), condition_(c), true_(t), false_(f) {}

 private:
  ExprPtr condition_;
  ExprPtr true_;
  ExprPtr false_;
};

class TORCH_API CompareSelect : public ExprNode<CompareSelect> {
 public:
  CompareSelectOperation compare_select_op() const {
    return compare_op_;
  }
  ExprPtr lhs() const {
    return this->lhs_;
  }
  ExprPtr rhs() const {
    return this->rhs_;
  }
  ExprPtr ret_val1() const {
    return this->ret_val1_;
  }
  ExprPtr ret_val2() const {
    return this->ret_val2_;
  }

  void set_lhs(ExprPtr lhs) {
    lhs_ = lhs;
  }

  void set_rhs(ExprPtr rhs) {
    rhs_ = rhs;
  }

  void set_ret_val1(ExprPtr ret_val1) {
    ret_val1_ = ret_val1;
  }

  void set_ret_val2(ExprPtr ret_val2) {
    ret_val2_ = ret_val2;
  }

  CompareSelectBias bias() const {
    return bias_;
  }

  static ExprHandle make(
      const ExprHandle& lhs,
      const ExprHandle& rhs,
      CompareSelectOperation cmp_op,
      CompareSelectBias bias = kUnbiased) {
    if (lhs.dtype() != rhs.dtype()) {
      throw malformed_input("bad dtype in CompareSelect");
    }
    return ExprHandle(alloc<CompareSelect>(
        lhs.node(),
        rhs.node(),
        IntImm::make(1).node(),
        IntImm::make(0).node(),
        cmp_op,
        bias));
  }

  static ExprHandle make(
      const ExprHandle& lhs,
      const ExprHandle& rhs,
      const ExprHandle& ret_val1,
      const ExprHandle& ret_val2,
      CompareSelectOperation cmp_op,
      CompareSelectBias bias = kUnbiased) {
    if (lhs.dtype() != rhs.dtype() || ret_val1.dtype() != ret_val2.dtype()) {
      throw malformed_input("bad dtype in CompareSelect");
    }
    return ExprHandle(alloc<CompareSelect>(
        lhs.node(),
        rhs.node(),
        ret_val1.node(),
        ret_val2.node(),
        cmp_op,
        bias));
  }

  CompareSelect(
      ExprPtr lhs,
      ExprPtr rhs,
      ExprPtr ret_val1,
      ExprPtr ret_val2,
      CompareSelectOperation cmp_op,
      CompareSelectBias bias = kUnbiased)
      : ExprNodeBase(ret_val1->dtype()),
        lhs_(lhs),
        rhs_(rhs),
        ret_val1_(ret_val1),
        ret_val2_(ret_val2),
        compare_op_(cmp_op),
        bias_(bias) {}

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  CompareSelect(
      ExprPtr lhs,
      ExprPtr rhs,
      CompareSelectOperation cmp_op,
      CompareSelectBias bias = kUnbiased)
      : ExprNodeBase(kInt),
        lhs_(lhs),
        rhs_(rhs),
        ret_val1_(alloc<IntImm>(1)),
        ret_val2_(alloc<IntImm>(0)),
        compare_op_(cmp_op),
        bias_(bias) {}

 private:
  ExprPtr lhs_;
  ExprPtr rhs_;
  ExprPtr ret_val1_;
  ExprPtr ret_val2_;
  CompareSelectOperation compare_op_;
  CompareSelectBias bias_;
};

enum IntrinsicsOp {
  kSin,
  kCos,
  kTan,
  kAsin,
  kAcos,
  kAtan,
  kAtan2,
  kSinh,
  kCosh,
  kTanh,
  kSigmoid,
  kExp,
  kExpm1,
  kAbs,
  kLog,
  kLog2,
  kLog10,
  kLog1p,
  kErf,
  kErfc,
  kSqrt,
  kRsqrt,
  kPow,
  kCeil,
  kFloor,
  kRound,
  kTrunc,
  kFmod,
  kRemainder,
  kLgamma,
  kFrac,
  kIsNan,
  kRand, // We need more discussions on this. Should we consider stateful?
  kMaxIntrinsicsOp,
};

class TORCH_API Intrinsics : public ExprNode<Intrinsics> {
 public:
  static ExprHandle make(IntrinsicsOp op_type, const ExprHandle& v1) {
    return ExprHandle(alloc<Intrinsics>(op_type, v1.node()));
  }

  static ExprHandle make(
      IntrinsicsOp op_type,
      const ExprHandle& v1,
      const ExprHandle& v2) {
    return ExprHandle(alloc<Intrinsics>(op_type, v1.node(), v2.node()));
  }

  static ExprHandle make(
      IntrinsicsOp op_type,
      const std::vector<ExprHandle>& params) {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    std::vector<ExprPtr> params_nodes(params.size());
    for (size_t i = 0; i < params.size(); i++) {
      params_nodes[i] = params[i].node();
    }
    return ExprHandle(alloc<Intrinsics>(op_type, params_nodes));
  }

  static ExprHandle make(IntrinsicsOp op_type, Dtype dtype) {
    return ExprHandle(alloc<Intrinsics>(op_type, dtype));
  }

  IntrinsicsOp op_type() const {
    return op_type_;
  }

  std::string func_name() const {
    switch (op_type()) {
      case kSin:
        return "sin";
      case kCos:
        return "cos";
      case kTan:
        return "tan";
      case kAsin:
        return "asin";
      case kAcos:
        return "acos";
      case kAtan:
        return "atan";
      case kAtan2:
        return "atan2";
      case kSinh:
        return "sinh";
      case kCosh:
        return "cosh";
      case kTanh:
        return "tanh";
      case kSigmoid:
        return "sigmoid";
      case kExp:
        return "exp";
      case kAbs:
        return "abs";
      case kLog:
        return "log";
      case kLog2:
        return "log2";
      case kLog10:
        return "log10";
      case kLog1p:
        return "log1p";
      case kErf:
        return "erf";
      case kSqrt:
        return "sqrt";
      case kRsqrt:
        return "rsqrt";
      case kPow:
        return "pow";
      case kCeil:
        return "ceil";
      case kFloor:
        return "floor";
      case kRound:
        return "round";
      case kTrunc:
        return "trunc";
      case kRand:
        return "rand";
      case kFmod:
        return "fmod";
      case kRemainder:
        return "remainder";
      case kLgamma:
        return "lgamma";
      case kExpm1:
        return "expm1";
      case kErfc:
        return "erfc";
      case kFrac:
        return "frac";
      case kIsNan:
        return "isnan";
      default:
        throw std::runtime_error(
            "invalid op_type: " + c10::to_string(op_type()));
    }
  }

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  Intrinsics(IntrinsicsOp op_type, Dtype dtype)
      : ExprNodeBase(IntrinsicsDtype(op_type, dtype)),
        params_({}),
        op_type_(op_type) {
    if (OpArgCount(op_type) != 0) {
      throw malformed_input("bad arg count in Intrinsics");
    }
  }

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  Intrinsics(IntrinsicsOp op_type, ExprPtr v1)
      : ExprNodeBase(IntrinsicsDtype(op_type, v1->dtype())),
        params_({v1}),
        op_type_(op_type) {
    if (OpArgCount(op_type) != 1) {
      throw malformed_input("bad arg count in Intrinsics");
    }
  }

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  Intrinsics(IntrinsicsOp op_type, ExprPtr v1, ExprPtr v2)
      : ExprNodeBase(IntrinsicsDtype(op_type, v1->dtype(), v2->dtype())),
        params_({v1, v2}),
        op_type_(op_type) {
    if (OpArgCount(op_type) != 2) {
      throw malformed_input("bad arg count in Intrinsics");
    }
  }

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  Intrinsics(IntrinsicsOp op_type, const std::vector<ExprPtr>& params)
      : ExprNodeBase(IntrinsicsDtype(op_type, params)),
        params_(params),
        op_type_(op_type) {
    if (OpArgCount(op_type) != nparams()) {
      throw malformed_input("bad arg count in Intrinsics");
    }
  }

  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
  Intrinsics(
      IntrinsicsOp op_type,
      Dtype dtype,
      const std::vector<ExprPtr>& params)
      : ExprNodeBase(IntrinsicsDtype(op_type, dtype)),
        params_(params),
        op_type_(op_type) {
    if (OpArgCount(op_type) != nparams()) {
      throw malformed_input("bad arg count in Intrinsics");
    }
  }

  bool isPure() const {
    return op_type_ != kRand;
  }

  int nparams() const {
    return params_.size();
  }

  ExprPtr param(int index) const {
    return params_[index];
  }
  const std::vector<ExprPtr>& params() const {
    return params_;
  }

  void set_params(std::vector<ExprPtr> params) {
    params_ = std::move(params);
  }

  static int OpArgCount(IntrinsicsOp op_type);

 private:
  static Dtype IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1);
  static Dtype IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1, Dtype dt2);
  static Dtype IntrinsicsDtype(
      IntrinsicsOp op_type,
      const std::vector<ExprPtr>& params);

  std::vector<ExprPtr> params_;
  IntrinsicsOp op_type_;
};

TORCH_API std::vector<ExprPtr> ExprHandleVectorToExprVector(
    const std::vector<ExprHandle>&);
TORCH_API std::vector<ExprHandle> ExprVectorToExprHandleVector(
    const std::vector<ExprPtr>&);
TORCH_API std::vector<VarPtr> VarHandleVectorToVarVector(
    const std::vector<VarHandle>&);
TORCH_API std::vector<VarHandle> VarVectorToVarHandleVector(
    const std::vector<VarPtr>&);
TORCH_API ExprPtr flatten_index(
    const std::vector<ExprPtr>& dims,
    const std::vector<ExprPtr>& indices,
    const std::vector<ExprPtr>& strides);

} // namespace tensorexpr
} // namespace jit
} // namespace torch