1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
|
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/bounds_overlap.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
namespace torch {
namespace jit {
namespace tensorexpr {
// Creates a new Expr of the given type with the provided lhs and rhs.
inline ExprPtr newBinaryOpOfType(
IRNodeType expr_type,
ExprPtr lhs,
ExprPtr rhs,
bool option) {
switch (expr_type) {
// NOLINTNEXTLINE(bugprone-branch-clone)
case IRNodeType::kAdd:
return alloc<Add>(lhs, rhs);
case IRNodeType::kSub:
return alloc<Sub>(lhs, rhs);
case IRNodeType::kMul:
return alloc<Mul>(lhs, rhs);
case IRNodeType::kDiv:
return alloc<Div>(lhs, rhs);
case IRNodeType::kMod:
return alloc<Mod>(lhs, rhs);
case IRNodeType::kMax:
return alloc<Max>(lhs, rhs, option);
case IRNodeType::kMin:
return alloc<Min>(lhs, rhs, option);
case IRNodeType::kAnd:
return alloc<And>(lhs, rhs);
case IRNodeType::kXor:
return alloc<Xor>(lhs, rhs);
case IRNodeType::kLshift:
return alloc<Lshift>(lhs, rhs);
case IRNodeType::kRshift:
return alloc<Rshift>(lhs, rhs);
default:
LOG(FATAL) << "unsupported expr_type: " << static_cast<int>(expr_type);
return nullptr;
}
}
template <
typename Op,
typename std::enable_if<std::is_same<
decltype(detail::bin_op_deducer(std::declval<Op>())),
void>::value>::type* = nullptr>
static ExprPtr mutateBinaryOp(
NodePtr<Op> v,
IRMutator* mutator,
bool option = false) {
ExprPtr lhs = v->lhs();
ExprPtr rhs = v->rhs();
ExprPtr lhs_new = lhs->accept_mutator(mutator);
ExprPtr rhs_new = rhs->accept_mutator(mutator);
ExprPtr node = v;
if (lhs != lhs_new || rhs != rhs_new) {
node = newBinaryOpOfType(v->expr_type(), lhs_new, rhs_new, option);
}
// Can only fold if both sides are constant.
if (!lhs_new->isConstant() || !rhs_new->isConstant()) {
return node;
}
return evaluateOp(node);
}
// Simple recursive GCD.
template <typename T>
T gcd(T a, T b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
// Helper for determining if an Expr is a multi-lane primitive (e.g. Broadcast
// or Ramp).
bool isMultilanePrimitive(ExprPtr e) {
return to<Broadcast>(e) || to<Ramp>(e);
}
SimplifierHashType Term::hashVars() const {
SimplifierHashType hash;
for (auto v : variables_) {
hash = hasher_.hash_combine(hash, hasher_.hash(v));
}
return hash;
}
void Term::sort() {
// order of ops important for float
if (dtype().is_floating_point()) {
throw std::logic_error("reordering FP ops");
}
std::unordered_map<ExprPtr, std::string> str_repr_cache;
std::sort(variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
if (!str_repr_cache.count(a)) {
str_repr_cache[a] = std::to_string(a);
}
if (!str_repr_cache.count(b)) {
str_repr_cache[b] = std::to_string(b);
}
return str_repr_cache.at(a) < str_repr_cache.at(b);
});
}
SimplifierHashType Polynomial::hashVars() const {
SimplifierHashType hash;
for (auto v : variables_) {
hash = hasher_.hash_combine(hash, hasher_.hash(v));
}
return hash;
}
void Polynomial::sort() {
if (dtype().is_floating_point()) {
throw std::logic_error("reordering FP ops");
}
std::unordered_map<ExprPtr, std::string> str_repr_cache;
std::sort(variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
if (!str_repr_cache.count(a)) {
str_repr_cache[a] = std::to_string(a);
}
if (!str_repr_cache.count(b)) {
str_repr_cache[b] = std::to_string(b);
}
return str_repr_cache.at(a) < str_repr_cache.at(b);
});
}
void MaxTerm::uniquefy() {
std::sort(variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
return hasher_.hash(a) < hasher_.hash(b);
});
auto it = std::unique(
variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
return hasher_.hash(a) == hasher_.hash(b);
});
variables_.resize(std::distance(variables_.begin(), it));
// Once we removed duplicates, sort terms alphabetically for stability.
std::unordered_map<ExprPtr, std::string> str_repr_cache;
std::sort(variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
if (!str_repr_cache.count(a)) {
str_repr_cache[a] = std::to_string(a);
}
if (!str_repr_cache.count(b)) {
str_repr_cache[b] = std::to_string(b);
}
return str_repr_cache.at(a) < str_repr_cache.at(b);
});
}
void MinTerm::uniquefy() {
std::sort(variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
return hasher_.hash(a) < hasher_.hash(b);
});
auto it = std::unique(
variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
return hasher_.hash(a) == hasher_.hash(b);
});
variables_.resize(std::distance(variables_.begin(), it));
// Once we removed duplicates, sort terms alphabetically for stability.
std::unordered_map<ExprPtr, std::string> str_repr_cache;
std::sort(variables_.begin(), variables_.end(), [&](ExprPtr a, ExprPtr b) {
if (!str_repr_cache.count(a)) {
str_repr_cache[a] = std::to_string(a);
}
if (!str_repr_cache.count(b)) {
str_repr_cache[b] = std::to_string(b);
}
return str_repr_cache.at(a) < str_repr_cache.at(b);
});
}
// Handles optimization cases for Broadcast/Ramp +/- Broadcast/Ramp
template <class Op>
ExprPtr combineMultilane(ExprPtr lhs, ExprPtr rhs) {
if (BroadcastPtr bc = to<Broadcast>(lhs)) {
if (BroadcastPtr bcother = to<Broadcast>(rhs)) {
if (bc->lanes() != bcother->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Broadcast>(
alloc<Op>(bc->value(), bcother->value()), bc->lanes());
return ret;
}
if (RampPtr r = to<Ramp>(rhs)) {
if (bc->lanes() != r->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Ramp>(
alloc<Op>(bc->value(), r->base()), r->stride(), r->lanes());
return ret;
}
} else if (RampPtr ramp = to<Ramp>(lhs)) {
if (RampPtr rother = to<Ramp>(rhs)) {
if (ramp->lanes() != rother->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Ramp>(
alloc<Op>(ramp->base(), rother->base()),
alloc<Op>(ramp->stride(), rother->stride()),
ramp->lanes());
return ret;
}
if (BroadcastPtr bc = to<Broadcast>(rhs)) {
if (ramp->lanes() != bc->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Ramp>(
alloc<Op>(ramp->base(), bc->value()), ramp->stride(), ramp->lanes());
return ret;
}
}
return nullptr;
}
// Handles optimization cases for Broadcast/Ramp * Broadcast/Ramp
ExprPtr mulMultilane(ExprPtr lhs, ExprPtr rhs) {
if (BroadcastPtr bc = to<Broadcast>(lhs)) {
if (BroadcastPtr bcother = to<Broadcast>(rhs)) {
if (bc->lanes() != bcother->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Broadcast>(
alloc<Mul>(bc->value(), bcother->value()), bc->lanes());
return ret;
}
if (RampPtr r = to<Ramp>(rhs)) {
if (bc->lanes() != r->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Ramp>(
alloc<Mul>(bc->value(), r->base()),
alloc<Mul>(bc->value(), r->stride()),
r->lanes());
return ret;
}
} else if (RampPtr ramp = to<Ramp>(lhs)) {
if (RampPtr r = to<Ramp>(rhs)) {
if (ramp->lanes() != r->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Ramp>(
alloc<Mul>(ramp->base(), r->base()),
alloc<Mul>(ramp->stride(), r->stride()),
r->lanes());
return ret;
}
if (BroadcastPtr bc = to<Broadcast>(rhs)) {
if (ramp->lanes() != bc->lanes()) {
throw malformed_input("multilane lane mismatch");
}
ExprPtr ret = alloc<Ramp>(
alloc<Mul>(bc->value(), ramp->base()),
alloc<Mul>(bc->value(), ramp->stride()),
ramp->lanes());
return ret;
}
}
return nullptr;
}
void PolynomialTransformer::addOrUpdateTerm(
std::unordered_map<SimplifierHashType, TermPtr>& varmap,
TermPtr term) {
SimplifierHashType hash = term->hashVars();
auto insertRes = varmap.emplace(hash, term);
if (insertRes.second == false) {
TermPtr lt = insertRes.first->second;
ExprPtr termScalar = evaluateOp(alloc<Add>(lt->scalar(), term->scalar()));
// If the term is canceled out, remove from the map.
if (immediateEquals(termScalar, 0)) {
varmap.erase(hash);
return;
}
varmap[hash] = alloc<Term>(hasher_, termScalar, lt->variables());
}
}
ExprPtr PolynomialTransformer::addPolynomials(
PolynomialPtr lhs,
PolynomialPtr rhs) {
// simplify common components
// The key here is the variable hash, not the term's hash since we do want
// to combine terms that have the same vars but different scalar components.
std::unordered_map<SimplifierHashType, TermPtr> varmap;
for (auto lt : lhs->variables()) {
addOrUpdateTerm(varmap, lt);
}
for (auto rt : rhs->variables()) {
addOrUpdateTerm(varmap, rt);
}
ExprPtr newScalar = evaluateOp(alloc<Add>(lhs->scalar(), rhs->scalar()));
return alloc<Polynomial>(hasher_, newScalar, varmap);
}
// Insert a new Term into the provided polynomial. If the new term has common
// variables to an existing term it is combined.
ExprPtr PolynomialTransformer::insertTerm(PolynomialPtr poly, TermPtr term) {
SimplifierHashType tHash = term->hashVars();
std::vector<TermPtr> newVars;
bool found = false;
for (auto v : poly->variables()) {
if (v->hashVars() == tHash) {
ExprPtr newScalar = evaluateOp(alloc<Add>(term->scalar(), v->scalar()));
found = true;
// Skip this term if we cancelled it out.
if (immediateEquals(newScalar, 0)) {
continue;
}
auto term = alloc<Term>(hasher_, newScalar, v->variables());
newVars.push_back(term);
} else {
newVars.push_back(v);
}
}
if (!found) {
newVars.push_back(term);
}
if (newVars.empty()) {
return poly->scalar();
}
auto Poly = alloc<Polynomial>(hasher_, poly->scalar(), newVars);
return Poly;
}
ExprPtr PolynomialTransformer::mutate(AddPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant()) {
ExprPtr result = evaluateOp(alloc<Add>(lhs_new, rhs_new));
return result;
}
// Multilane folding.
if (isMultilanePrimitive(lhs_new)) {
if (auto ret = combineMultilane<Add>(lhs_new, rhs_new)) {
return ret->accept_mutator(this);
}
}
ExprPtr scalar = nullptr;
ExprPtr variable = nullptr;
if (lhs_new->isConstant()) {
scalar = evaluateOp(lhs_new);
variable = rhs_new;
} else if (rhs_new->isConstant()) {
scalar = evaluateOp(rhs_new);
variable = lhs_new;
}
// If there is a scalar, and it's zero: short circuit and return the other
// side.
if (scalar && immediateEquals(scalar, 0)) {
auto c = alloc<Cast>(v->dtype(), variable);
return c->accept_mutator(this);
}
// If this is a floating point Add then order of operations is important, we
// dont want to combine ops.
if (lhs_new->dtype().is_floating_point() ||
rhs_new->dtype().is_floating_point()) {
return alloc<Add>(lhs_new, rhs_new);
}
PolynomialPtr lhsPoly = to<Polynomial>(lhs_new);
PolynomialPtr rhsPoly = to<Polynomial>(rhs_new);
if (lhsPoly && rhsPoly) {
return addPolynomials(lhsPoly, rhsPoly);
}
TermPtr lhsTerm = to<Term>(lhs_new);
TermPtr rhsTerm = to<Term>(rhs_new);
if (lhsPoly && rhsTerm) {
return insertTerm(lhsPoly, rhsTerm);
}
if (rhsPoly && lhsTerm) {
return insertTerm(rhsPoly, lhsTerm);
}
if (lhsTerm && rhsTerm) {
// If the terms refer to the same variables: combine them.
if (lhsTerm->hashVars() == rhsTerm->hashVars()) {
ExprPtr newScalar =
evaluateOp(alloc<Add>(lhsTerm->scalar(), rhsTerm->scalar()));
// If the terms cancelled out, return zero.
if (immediateEquals(newScalar, 0)) {
return newScalar->accept_mutator(this);
}
return alloc<Term>(hasher_, newScalar, lhsTerm->variables());
}
// Otherwise this is a new polynomial with no scalar and two variable
// terms.
return alloc<Polynomial>(hasher_, immLike(v, 0), lhsTerm, rhsTerm);
}
// Adds are commutative.
PolynomialPtr poly = lhsPoly ? lhsPoly : rhsPoly;
// Add to Polynomial->scalar().
if (scalar && poly) {
ExprPtr newScalar = evaluateOp(alloc<Add>(scalar, poly->scalar()));
return alloc<Polynomial>(hasher_, newScalar, poly->variables());
}
// Simple Polynomial with a scalar and Term.
TermPtr term = lhsTerm ? lhsTerm : rhsTerm;
if (scalar && term) {
return alloc<Polynomial>(hasher_, scalar, term);
}
// Simple Term with a scalar and variable type.
if (scalar) {
return alloc<Polynomial>(
hasher_, scalar, alloc<Term>(hasher_, immLike(v, 1), variable));
}
// If LHS is neither Term not Polynomial, wrap it in a Term.
if (!lhsTerm && !lhsPoly) {
lhsTerm = alloc<Term>(hasher_, immLike(v, 1), lhs_new);
}
// Same for RHS.
if (!rhsTerm && !rhsPoly) {
rhsTerm = alloc<Term>(hasher_, immLike(v, 1), rhs_new);
}
// If we now have a poly and a term, we can insert.
if (poly) {
return insertTerm(poly, lhsTerm ? lhsTerm : rhsTerm);
}
if (lhsTerm->hashVars() == rhsTerm->hashVars()) {
return alloc<Term>(
hasher_,
evaluateOp(alloc<Add>(lhsTerm->scalar(), rhsTerm->scalar())),
lhsTerm->variables());
}
// If all else fails we have a new Polynomial with two new variable Terms.
return alloc<Polynomial>(hasher_, immLike(v, 0), lhsTerm, rhsTerm);
}
ExprPtr PolynomialTransformer::subTerms(
TermPtr lhs,
TermPtr rhs,
bool negated) {
// If RHS not already negated, negate it.
if (!negated) {
ExprPtr minusOne = immLike(rhs, -1);
ExprPtr negateScalar = evaluateOp(alloc<Mul>(minusOne, rhs->scalar()));
rhs = alloc<Term>(hasher_, negateScalar, rhs->variables());
}
if (lhs->hashVars() == rhs->hashVars()) {
ExprPtr newScalar = evaluateOp(alloc<Add>(lhs->scalar(), rhs->scalar()));
// If the terms cancel out, return zero.
if (immediateEquals(newScalar, 0)) {
return newScalar;
}
return alloc<Term>(hasher_, newScalar, lhs->variables());
}
return alloc<Polynomial>(
hasher_,
getImmediateByType(promoteTypes(lhs->dtype(), rhs->dtype()), 0),
lhs,
rhs);
}
// Subtract the RHS Polynomial from the LHS Polynomial, cancelling out where
// possible.
ExprPtr PolynomialTransformer::subPolynomials(
PolynomialPtr lhs,
PolynomialPtr rhs) {
// simplify common components
// The key here is the variable hash, not the term's hash since we do want
// to combine terms that have the same vars but different scalar components.
std::unordered_map<SimplifierHashType, TermPtr> varmap;
for (auto lt : lhs->variables()) {
addOrUpdateTerm(varmap, lt);
}
for (auto rt : rhs->variables()) {
// Polynomials add their terms, so negate the RHS's Terms.
ExprPtr negated = evaluateOp(alloc<Mul>(immLike(rt, -1), rt->scalar()));
TermPtr newRHS = alloc<Term>(hasher_, negated, rt->variables());
addOrUpdateTerm(varmap, newRHS);
}
ExprPtr newScalar = evaluateOp(alloc<Sub>(lhs->scalar(), rhs->scalar()));
// No vars means this cancelled out to a scalar, return it unwrapped.
if (varmap.empty()) {
return newScalar;
}
// If there is no scalar and zero or one terms, don't wrap.
if (immediateEquals(newScalar, 0)) {
if (varmap.empty()) {
return nullptr;
}
if (varmap.size() == 1) {
return varmap.begin()->second;
}
}
// Wrap new variables in a Polynomial.
return alloc<Polynomial>(hasher_, newScalar, varmap);
}
ExprPtr PolynomialTransformer::mutate(SubPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant()) {
ExprPtr result = evaluateOp(alloc<Sub>(lhs_new, rhs_new));
return result;
}
// Multilane folding.
if (isMultilanePrimitive(lhs_new)) {
if (auto ret = combineMultilane<Sub>(lhs_new, rhs_new)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return ret->accept_mutator(this);
}
}
if (rhs_new->isConstant() && immediateEquals(rhs_new, 0)) {
auto c = alloc<Cast>(v->dtype(), lhs_new);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return c->accept_mutator(this);
}
// If this is a floating point Sub then order of operations is important, we
// dont want to combine ops.
if (lhs_new->dtype().is_floating_point() ||
rhs_new->dtype().is_floating_point()) {
return alloc<Sub>(lhs_new, rhs_new);
}
PolynomialPtr lhsPoly = to<Polynomial>(lhs_new);
PolynomialPtr rhsPoly = to<Polynomial>(rhs_new);
if (lhsPoly && rhsPoly) {
auto ret = subPolynomials(lhsPoly, rhsPoly);
if (!ret) {
// Cancelled out completely.
return immLike(v, 0);
}
return ret;
}
TermPtr lhsTerm = to<Term>(lhs_new);
TermPtr rhsTerm = to<Term>(rhs_new);
// Polynomial - Term.
if (lhsPoly && rhsTerm) {
// Negate the term.
ExprPtr negate =
evaluateOp(alloc<Mul>(immLike(rhsTerm, -1), rhsTerm->scalar()));
TermPtr newTerm = alloc<Term>(hasher_, negate, rhsTerm->variables());
return insertTerm(lhsPoly, newTerm);
}
// Term - Polynomial.
if (rhsPoly && lhsTerm) {
// Negate every part of the Polynomial.
ExprPtr minusOne = immLike(lhsTerm, -1);
ExprPtr negateScalar = evaluateOp(alloc<Mul>(minusOne, rhsPoly->scalar()));
std::vector<TermPtr> variables;
for (auto t : rhsPoly->variables()) {
ExprPtr negate = evaluateOp(alloc<Mul>(minusOne, t->scalar()));
variables.push_back(alloc<Term>(hasher_, negate, t->variables()));
}
PolynomialPtr newPoly = alloc<Polynomial>(hasher_, negateScalar, variables);
return insertTerm(newPoly, lhsTerm);
}
if (lhsTerm && rhsTerm) {
return subTerms(lhsTerm, rhsTerm, false);
}
bool lhsScalar = lhs_new->isConstant();
bool rhsScalar = rhs_new->isConstant();
if (lhsPoly && rhsScalar) {
// Easy path, just sub the scalar component.
ExprPtr newScalar = evaluateOp(alloc<Sub>(lhsPoly->scalar(), rhs_new));
return alloc<Polynomial>(hasher_, newScalar, lhsPoly->variables());
}
if (lhsScalar && rhsPoly) {
// Sub the scalar component.
ExprPtr newScalar = evaluateOp(alloc<Sub>(lhs_new, rhsPoly->scalar()));
// Negate each term in the Polynomial RHS.
ExprPtr minusOne = immLike(rhsPoly, -1);
std::vector<TermPtr> variables;
for (auto t : rhsPoly->variables()) {
ExprPtr negate = evaluateOp(alloc<Mul>(minusOne, t->scalar()));
variables.push_back(alloc<Term>(hasher_, negate, t->variables()));
}
return alloc<Polynomial>(hasher_, newScalar, variables);
}
if (lhsTerm && rhsScalar) {
// Negate the constant.
ExprPtr negate = evaluateOp(alloc<Mul>(immLike(rhs_new, -1), rhs_new));
return alloc<Polynomial>(hasher_, negate, lhsTerm);
}
if (lhsScalar && rhsTerm) {
// Negate the RHS Term.
ExprPtr negate = evaluateOp(
alloc<Mul>(immLike(rhsTerm->scalar(), -1), rhsTerm->scalar()));
return alloc<Polynomial>(
hasher_, lhs_new, alloc<Term>(hasher_, negate, rhsTerm->variables()));
}
// simple term with a scalar and variable type.
if (lhsScalar) {
// Create a negated term.
return alloc<Polynomial>(
hasher_, lhs_new, alloc<Term>(hasher_, immLike(v, -1), rhs_new));
}
if (rhsScalar) {
// Negate the scalar.
ExprPtr negate = evaluateOp(alloc<Mul>(immLike(rhs_new, -1), rhs_new));
return alloc<Polynomial>(
hasher_, negate, alloc<Term>(hasher_, immLike(v, 1), lhs_new));
}
// no scalar...
if (!lhsTerm && !lhsPoly) {
lhsTerm = alloc<Term>(hasher_, immLike(v, 1), lhs_new);
}
bool createdRHSnegated = false;
if (!rhsTerm && !rhsPoly) {
rhsTerm = alloc<Term>(hasher_, immLike(v, -1), rhs_new);
createdRHSnegated = true;
}
if (lhsTerm && rhsTerm) {
return subTerms(lhsTerm, rhsTerm, createdRHSnegated);
}
// Insert wrapped Term into LHS Polynomial.
if (lhsPoly) {
CHECK(rhsTerm);
return insertTerm(lhsPoly, rhsTerm);
}
// Insert wrapper Term into negated RHS Poly.
if (rhsPoly) {
CHECK(lhsTerm);
ExprPtr minusOne = immLike(rhsPoly, -1);
ExprPtr newScalar = evaluateOp(alloc<Mul>(minusOne, rhsPoly->scalar()));
// Negate each term in the Polynomial RHS.
std::vector<TermPtr> variables;
for (auto t : rhsPoly->variables()) {
ExprPtr negate = evaluateOp(alloc<Mul>(minusOne, t->scalar()));
variables.push_back(alloc<Term>(hasher_, negate, t->variables()));
}
auto poly = alloc<Polynomial>(hasher_, newScalar, variables);
return insertTerm(poly, lhsTerm);
}
return alloc<Polynomial>(hasher_, immLike(v, 0), lhsTerm, rhsTerm);
}
// Multiply two terms together, usually creating a new term with the variable
// lists concatenated.
TermPtr PolynomialTransformer::mulTerms(TermPtr lhs, TermPtr rhs) {
ExprPtr scalar = evaluateOp(alloc<Mul>(lhs->scalar(), rhs->scalar()));
if (immediateEquals(scalar, 0)) {
return nullptr;
}
// Can reorder here since floating point ops don't get put into Terms.
std::vector<ExprPtr> variables;
std::vector<ExprPtr> multilaneVariables;
// For now don't handle exponents.
for (auto c : lhs->variables()) {
if (isMultilanePrimitive(c)) {
multilaneVariables.push_back(c);
} else {
variables.push_back(c);
}
}
for (auto c : rhs->variables()) {
if (isMultilanePrimitive(c)) {
multilaneVariables.push_back(c);
} else {
variables.push_back(c);
}
}
// Merge all the multilane vars:
ExprPtr lastNode{nullptr};
for (auto node : multilaneVariables) {
if (lastNode == nullptr) {
lastNode = node;
} else {
if (auto next = mulMultilane(lastNode, node)) {
lastNode = next->accept_mutator(this);
} else {
variables.push_back(lastNode);
lastNode = node;
}
}
}
if (lastNode) {
variables.push_back(lastNode);
}
return alloc<Term>(hasher_, scalar, variables);
}
// Multiply a Polynomial by a Term.
ExprPtr PolynomialTransformer::polyByTerm(PolynomialPtr poly, TermPtr term) {
// poly * term
// = (poly_terms + poly_scalar) * term
// = poly_terms * term + poly_scalar * term
// First, multiply all variables (terms) in the polynomial by the input
// term.
std::vector<TermPtr> newTerms;
for (auto var : poly->variables()) {
TermPtr newTerm = mulTerms(var, term);
if (newTerm) {
newTerms.push_back(newTerm);
}
}
// If the scalar in poly is not 0, it must be multiplied by term.
// If there are no variables in term, this becomes the scalar in the result
// polynomial. If there are variables in term, this becomes a new term in
// the result polynomial.
if (!immediateEquals(poly->scalar(), 0)) {
ExprPtr scalar = evaluateOp(alloc<Mul>(poly->scalar(), term->scalar()));
if (term->variables().empty()) {
return alloc<Polynomial>(hasher_, scalar, newTerms);
}
newTerms.push_back(alloc<Term>(hasher_, scalar, term->variables()));
}
// The only case when the result polynomial has a scalar is when the input
// term does not have any variables and the input polynomial has a non-zero
// scalar. That case is handled above. So, at this point, we do not have any
// scalars in the result polynomial.
return alloc<Polynomial>(hasher_, std::move(newTerms));
}
// Does multiplying these two expressions make a Rounding Off operation.
// e.g. LHS = (x/y), RHS = y => (x / y) * y => RoundOff(x, y).
ExprPtr PolynomialTransformer::isRoundOff(ExprPtr lhs, ExprPtr rhs) {
DivPtr div{nullptr};
ExprPtr other{nullptr};
if ((div = to<Div>(lhs))) {
other = rhs;
} else if ((div = to<Div>(rhs))) {
other = lhs;
} else {
return nullptr;
}
ExprPtr denom = div->rhs();
if (TermPtr denomTerm = to<Term>(denom)) {
if (immediateEquals(denomTerm->scalar(), 1) &&
denomTerm->variables().size() == 1) {
denom = denomTerm->variables()[0];
}
}
if (hasher_.hash(denom) == hasher_.hash(other)) {
// If the denominator is equal to the other, then yes it's a RoundOff.
return alloc<RoundOff>(div->lhs(), div->rhs());
}
if (denom->isConstant() && other->isConstant()) {
if (immediateEquals(denom, 0) || immediateEquals(other, 0)) {
return nullptr;
}
// If they are both scalar we may be able to find a common factor.
if (immediateEquals(evaluateOp(alloc<Mod>(other, denom)), 0)) {
ExprPtr scalar = evaluateOp(alloc<Div>(other, denom));
ExprPtr newDenom = evaluateOp(alloc<Div>(other, scalar));
return alloc<Term>(
hasher_, scalar, alloc<RoundOff>(div->lhs(), newDenom));
}
}
return nullptr;
}
// Inserts a new component into a term, looking for opportunities to simplify.
ExprPtr PolynomialTransformer::insertIntoTerm(TermPtr term, ExprPtr expr) {
std::vector<ExprPtr> vars;
// Search for RoundOffs.
bool merged{false};
for (auto component : term->variables()) {
if (auto roundoff = isRoundOff(component, expr)) {
vars.push_back(roundoff);
merged = true;
} else {
vars.push_back(component);
}
}
if (!merged) {
vars.push_back(expr);
}
if (vars.size() == 1 && immediateEquals(term->scalar(), 1)) {
return vars[0];
}
return alloc<Term>(hasher_, term->scalar(), vars);
}
ExprPtr PolynomialTransformer::mutate(MulPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant()) {
return evaluateOp(alloc<Mul>(lhs_new, rhs_new));
}
// Multilane folding.
if (isMultilanePrimitive(lhs_new)) {
if (auto ret = mulMultilane(lhs_new, rhs_new)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return ret->accept_mutator(this);
}
}
// Order doesn't matter.
ExprPtr scalar = nullptr;
ExprPtr variable = nullptr;
if (lhs_new->isConstant()) {
scalar = lhs_new;
variable = rhs_new;
} else if (rhs_new->isConstant()) {
scalar = rhs_new;
variable = lhs_new;
}
// Handle special case mul by 1 since thats safe for floating point, even if
// it's Nan/Inf.
if (scalar && immediateEquals(scalar, 1)) {
auto c = alloc<Cast>(v->dtype(), variable);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return c->accept_mutator(this);
}
// If this is a floating point Mul then order of operations is important, we
// dont want to combine ops.
if (lhs_new->dtype().is_floating_point() ||
rhs_new->dtype().is_floating_point()) {
return alloc<Mul>(lhs_new, rhs_new);
}
// Handle special case mul by 0.
if (scalar && immediateEquals(scalar, 0)) {
return immLike(v, 0);
}
// Catch cases of rounding (Div(A/B) * B).
if (auto ret = isRoundOff(lhs_new, rhs_new)) {
return ret;
} else if (auto ret = isRoundOff(v->lhs(), v->rhs())) {
// We can break the Round + Mod pattern via factorization of the Div, so
// check whether it would have worked on the unsimplified tree. If so, we
// need to simplify again.
return ret->accept_mutator(this);
}
PolynomialPtr lhsPoly = to<Polynomial>(lhs_new);
PolynomialPtr rhsPoly = to<Polynomial>(rhs_new);
if (lhsPoly && rhsPoly) {
// This expands to more terms that we can't generally fix without variable
// factorization, it's more efficient to just leave these as Muls.
return alloc<Mul>(lhsPoly, rhsPoly);
}
TermPtr lhsTerm = to<Term>(lhs_new);
TermPtr rhsTerm = to<Term>(rhs_new);
if (lhsPoly && rhsTerm) {
return polyByTerm(lhsPoly, rhsTerm);
}
if (rhsPoly && lhsTerm) {
return polyByTerm(rhsPoly, lhsTerm);
}
if (lhsTerm && rhsTerm) {
return mulTerms(lhsTerm, rhsTerm);
}
if (scalar && lhsTerm) {
ExprPtr newScalar = evaluateOp(alloc<Mul>(scalar, lhsTerm->scalar()));
return alloc<Term>(hasher_, newScalar, lhsTerm->variables());
}
if (scalar && rhsTerm) {
ExprPtr newScalar = evaluateOp(alloc<Mul>(scalar, rhsTerm->scalar()));
return alloc<Term>(hasher_, newScalar, rhsTerm->variables());
}
// If this is a scalar * a Polynomial, push the scalar term down.
// We can wrap the scalar with a Term and use polyByTerm.
if (scalar && lhsPoly) {
return polyByTerm(lhsPoly, alloc<Term>(hasher_, scalar));
}
if (scalar && rhsPoly) {
return polyByTerm(rhsPoly, alloc<Term>(hasher_, scalar));
}
// simple term with a scalar and variable type.
if (scalar) {
return alloc<Term>(hasher_, scalar, variable);
}
// Multiplying Polynomial by variable can be wrapped in a term and handled
// by polyByTerm also.
if (lhsPoly) {
auto term = alloc<Term>(hasher_, immLike(rhs_new, 1), rhs_new);
return polyByTerm(lhsPoly, term);
}
if (rhsPoly) {
auto term = alloc<Term>(hasher_, immLike(lhs_new, 1), lhs_new);
return polyByTerm(rhsPoly, term);
}
// Multiplying Term by a variable is equivalent to adding the variable to
// the term's list of vars.
if (lhsTerm) {
return insertIntoTerm(lhsTerm, rhs_new);
}
if (rhsTerm) {
return insertIntoTerm(rhsTerm, lhs_new);
}
// Two variables, create a new Term.
return alloc<Term>(hasher_, immLike(v, 1), lhs_new, rhs_new);
}
ExprPtr factorizeDivision(ExprPtr lhs_new, ExprPtr rhs_new) {
if (!lhs_new || !rhs_new) {
return nullptr;
}
ExprPtr leftScalar = lhs_new->isConstant() ? lhs_new : nullptr;
ExprPtr rightScalar = rhs_new->isConstant() ? rhs_new : nullptr;
auto lhsTerm = to<Term>(lhs_new);
auto rhsTerm = to<Term>(rhs_new);
if (lhsTerm) {
leftScalar = lhsTerm->scalar();
}
if (rhsTerm) {
rightScalar = rhsTerm->scalar();
}
if (!leftScalar || !rightScalar) {
return nullptr;
}
long left = immediateAs<long>(leftScalar);
long right = immediateAs<long>(rightScalar);
long GCD = gcd<long>(left, right);
if (GCD <= 1) {
return nullptr;
}
leftScalar = evaluateOp(alloc<Div>(leftScalar, immLike(leftScalar, GCD)));
rightScalar = evaluateOp(alloc<Div>(rightScalar, immLike(rightScalar, GCD)));
if (lhsTerm) {
lhs_new = alloc<Term>(lhsTerm->hasher(), leftScalar, lhsTerm->variables());
} else {
lhs_new = leftScalar;
}
if (rhsTerm) {
rhs_new = alloc<Term>(rhsTerm->hasher(), rightScalar, rhsTerm->variables());
} else {
rhs_new = rightScalar;
}
return alloc<Div>(lhs_new, rhs_new);
}
ExprPtr PolynomialTransformer::mutate(DivPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant()) {
return evaluateOp(alloc<Div>(lhs_new, rhs_new));
}
// If this is a floating point Div then order of operations is important, we
// dont want to combine ops.
if (lhs_new->dtype().is_floating_point() ||
rhs_new->dtype().is_floating_point()) {
return alloc<Div>(lhs_new, rhs_new);
}
// If the numerator is zero, so is the result.
if (lhs_new->isConstant() && immediateEquals(lhs_new, 0)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return lhs_new;
}
// If the denominator is one, return numerator.
if (rhs_new->isConstant() && immediateEquals(rhs_new, 1)) {
return lhs_new;
}
// If numberator and denominator are equal the result is 1.
// Unless the demoninator could be zero.
// if (hasher_.hash(lhs_new) == hasher_.hash(rhs_new)) {
// return getImmediateByType(v->dtype(), 1);
// }
if (auto ret = factorizeDivision(lhs_new, rhs_new)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return ret->accept_mutator(this);
}
return alloc<Div>(lhs_new, rhs_new);
}
ExprPtr PolynomialTransformer::mutate(ModPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant()) {
return evaluateOp(alloc<Mod>(lhs_new, rhs_new));
}
// 0 % x => 0.
if (lhs_new->isConstant() && immediateEquals(lhs_new, 0)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return lhs_new;
}
// x % 1 == 0.
if (rhs_new->isConstant() && immediateEquals(rhs_new, 1)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return immLike(v, 0);
}
// x % x => 0.
if (hasher_.hash(lhs_new) == hasher_.hash(rhs_new)) {
return immLike(v, 0);
}
TermPtr lhsTerm = to<Term>(lhs_new);
if (!lhsTerm) {
PolynomialPtr lhsPoly = to<Polynomial>(lhs_new);
if (lhsPoly) {
// Can still optimize this out if we can factorize the polynomial.
lhsTerm = factorizePolynomial(lhsPoly);
}
}
if (lhsTerm) {
// ((C1 * C2) * x) % C1 => 0.
if (rhs_new->isConstant() &&
immediateEquals(
evaluateOp(alloc<Mod>(lhsTerm->scalar(), rhs_new)), 0)) {
return immLike(v, 0);
}
// (x * y * z) % x => 0.
for (auto component : lhsTerm->variables()) {
if (hasher_.hash(component) == hasher_.hash(rhs_new)) {
return immLike(v, 0);
}
}
// (6 * x * y) % (3 * x * y) => 0.
// also, (x * y * z) % (z * y) => 0.
// This requires all variable terms found in the RHS to be present in the
// LHS.
TermPtr rhsTerm = to<Term>(rhs_new);
if (rhsTerm) {
auto& lVars = lhsTerm->variables();
auto& rVars = rhsTerm->variables();
size_t rLeft = rVars.size();
auto rIt = rVars.begin();
for (auto lIt = lVars.begin(); lIt != lVars.end() && !rVars.empty();
++lIt) {
auto lHash = hasher_.hash(*lIt);
for (; rIt != rVars.end(); ++rIt) {
auto rHash = hasher_.hash(*rIt);
if (lHash == rHash) {
--rLeft;
break;
} else if (lHash < rHash) {
break;
}
}
}
if (rLeft == 0 &&
immediateEquals(
evaluateOp(alloc<Mod>(lhsTerm->scalar(), rhsTerm->scalar())),
0)) {
return immLike(v, 0);
}
}
}
return alloc<Mod>(lhs_new, rhs_new);
}
namespace {
// Combines two MinTerm / MaxTerm expressions into one.
// The first type on the template refers to the op, as in Min or Max and the
// second type refers to the corresponding term, as in MinTerm or MaxTerm.
template <class Op, class OpTerm>
ExprPtr combineMinMaxTerms(
ExprPtr lhs,
ExprPtr rhs,
bool propagate_nans,
HashProvider& hasher) {
auto combine_scalars = [&](ExprPtr c1, ExprPtr c2) -> ExprPtr {
if (c1 && c2) {
return evaluateOp(alloc<Op>(c1, c2, propagate_nans));
}
if (c1) {
return c1;
}
return c2;
};
auto combine_opterms = [&](NodePtr<OpTerm> m1, NodePtr<OpTerm> m2) {
ExprPtr scalar = combine_scalars(m1->scalar(), m2->scalar());
std::vector<ExprPtr> variables;
for (auto v : m1->variables()) {
variables.push_back(v);
}
for (auto v : m2->variables()) {
variables.push_back(v);
}
return alloc<OpTerm>(hasher, scalar, propagate_nans, std::move(variables));
};
auto add_expr_to_opterm = [&](ExprPtr expr, NodePtr<OpTerm> opterm) {
ExprPtr scalar = nullptr;
std::vector<ExprPtr> variables;
if (opterm) {
scalar = opterm->scalar();
variables = opterm->variables();
}
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
if (expr->isConstant()) {
scalar = combine_scalars(scalar, expr);
} else {
variables.push_back(expr);
}
return alloc<OpTerm>(hasher, scalar, propagate_nans, std::move(variables));
};
auto lhs_opterm = to<OpTerm>(lhs);
auto rhs_opterm = to<OpTerm>(rhs);
if (lhs_opterm && lhs_opterm->propagate_nans() != propagate_nans) {
return alloc<Op>(lhs, rhs, propagate_nans);
}
if (rhs_opterm && rhs_opterm->propagate_nans() != propagate_nans) {
return alloc<Op>(lhs, rhs, propagate_nans);
}
if (lhs_opterm && rhs_opterm) {
return combine_opterms(lhs_opterm, rhs_opterm);
} else if (lhs_opterm) {
return add_expr_to_opterm(rhs, lhs_opterm);
} else if (rhs_opterm) {
return add_expr_to_opterm(lhs, rhs_opterm);
}
return add_expr_to_opterm(rhs, add_expr_to_opterm(lhs, nullptr));
}
// Returns true if op is one of the 2 operands in opterm and also returns
// the other op of opterm in other_op.
template <class OpTerm>
bool isOperandInMinMaxTerm(
NodePtr<OpTerm> opterm,
ExprPtr op,
HashProvider& hasher,
ExprPtr* other_op) {
if (opterm->variables().size() != 2) {
return false;
}
auto lhs = opterm->variables()[0];
auto rhs = opterm->variables()[1];
auto op_hash = hasher.hash(op);
if (hasher.hash(lhs) == op_hash) {
*other_op = rhs;
return true;
} else if (hasher.hash(rhs) == op_hash) {
*other_op = lhs;
return true;
}
return false;
};
// Simplifies the nested min-max pattern like:
// * Max(Min(x, y), Min(x, z)) => Min(x, Max(y, z))
// * Min(Max(x, y), Max(x, z)) => Max(x, Min(y, z))
// This function is called while processing the outer Min / Max ops.
// At that point the inner Min / Max ops would have been converted to
// MinTerm / MaxTerm as appropriate. So, this function checks for those
// term expressions in the given lhs and rhs.
//
// The first type of the template must be the term type corresponding to the
// outer op (e.g. MaxTerm) and the second type of the template must be the term
// type corresponding to the expected inner op (e.g. MinTerm).
template <class OpTerm, class OtherOpTerm>
bool simplifyNestedMinMax(
ExprPtr lhs,
ExprPtr rhs,
bool propagate_nans,
HashProvider& hasher,
ExprPtr* new_op) {
auto lhs_opterm = to<OtherOpTerm>(lhs);
auto rhs_opterm = to<OtherOpTerm>(rhs);
if (lhs_opterm && rhs_opterm &&
lhs_opterm->propagate_nans() == propagate_nans &&
rhs_opterm->propagate_nans() == propagate_nans) {
if (!lhs_opterm->scalar() && !rhs_opterm->scalar()) {
if (lhs_opterm->variables().size() == 2 &&
rhs_opterm->variables().size() == 2) {
auto rhs_v1 = rhs_opterm->variables()[0];
auto rhs_v2 = rhs_opterm->variables()[1];
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ExprPtr new_op_lhs;
if (isOperandInMinMaxTerm<OtherOpTerm>(
lhs_opterm, rhs_v1, hasher, &new_op_lhs)) {
auto inner_op = alloc<OpTerm>(
hasher, nullptr, propagate_nans, new_op_lhs, rhs_v2);
*new_op = alloc<OtherOpTerm>(
hasher, nullptr, propagate_nans, rhs_v1, inner_op);
return true;
}
if (isOperandInMinMaxTerm<OtherOpTerm>(
lhs_opterm, rhs_v2, hasher, &new_op_lhs)) {
auto inner_op = alloc<OpTerm>(
hasher, nullptr, propagate_nans, new_op_lhs, rhs_v1);
*new_op = alloc<OtherOpTerm>(
hasher, nullptr, propagate_nans, rhs_v2, inner_op);
return true;
}
}
}
}
return false;
}
} // namespace
ExprPtr PolynomialTransformer::mutate(MaxPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant()) {
return evaluateOp(alloc<Max>(lhs_new, rhs_new, v->propagate_nans()));
}
// If diff is constant, return the appropriate operand.
ExprPtr diff = alloc<Sub>(lhs_new, rhs_new);
diff = diff->accept_mutator(this);
if (diff->isConstant()) {
if (immediateAs<int>(diff) > 0) {
return lhs_new;
}
return rhs_new;
}
// Max(Min(x, y), Min(x, z)) => Min(x, Max(y, z))
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ExprPtr new_op;
if (simplifyNestedMinMax<MaxTerm, MinTerm>(
lhs_new, rhs_new, v->propagate_nans(), hasher_, &new_op)) {
return new_op;
}
return combineMinMaxTerms<Max, MaxTerm>(
lhs_new, rhs_new, v->propagate_nans(), hasher_);
}
ExprPtr PolynomialTransformer::mutate(MinPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant()) {
return evaluateOp(alloc<Min>(lhs_new, rhs_new, v->propagate_nans()));
}
// If diff is constant, return the appropriate operand.
ExprPtr diff = alloc<Sub>(lhs_new, rhs_new);
diff = diff->accept_mutator(this);
if (diff->isConstant()) {
if (immediateAs<int>(diff) < 0) {
return lhs_new;
}
return rhs_new;
}
// Min(Max(x, y), Max(x, z)) => Max(x, Min(y, z))
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ExprPtr new_op;
if (simplifyNestedMinMax<MinTerm, MaxTerm>(
lhs_new, rhs_new, v->propagate_nans(), hasher_, &new_op)) {
return new_op;
}
return combineMinMaxTerms<Min, MinTerm>(
lhs_new, rhs_new, v->propagate_nans(), hasher_);
}
ExprPtr PolynomialTransformer::mutate(CompareSelectPtr v) {
ExprPtr lhs_new = v->lhs()->accept_mutator(this);
ExprPtr rhs_new = v->rhs()->accept_mutator(this);
ExprPtr true_branch = v->ret_val1()->accept_mutator(this);
ExprPtr false_branch = v->ret_val2()->accept_mutator(this);
// Constant Folding.
if (lhs_new->isConstant() && rhs_new->isConstant() &&
true_branch->isConstant() && false_branch->isConstant()) {
ExprPtr v_new = alloc<CompareSelect>(
lhs_new,
rhs_new,
true_branch,
false_branch,
v->compare_select_op(),
v->bias());
return evaluateOp(v_new);
}
// If the comparison is done in float, don't attempt diff simplification,
// since we can't correctly handle NaN.
if (lhs_new->dtype().is_floating_point() ||
rhs_new->dtype().is_floating_point()) {
return alloc<CompareSelect>(
lhs_new,
rhs_new,
true_branch,
false_branch,
v->compare_select_op(),
v->bias());
}
// If diff is constant, we can determine it.
ExprPtr diff = alloc<Sub>(rhs_new, lhs_new);
diff = diff->accept_mutator(this);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
if (!diff->isConstant()) {
return alloc<CompareSelect>(
lhs_new,
rhs_new,
true_branch,
false_branch,
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
v->compare_select_op(),
v->bias());
}
bool equal = immediateEquals(diff, 0);
bool lhsSmaller = !equal && !immediateIsNegative(diff);
switch (v->compare_select_op()) {
case CompareSelectOperation::kEQ:
return equal ? true_branch : false_branch;
case CompareSelectOperation::kGT:
return (lhsSmaller || equal) ? false_branch : true_branch;
case CompareSelectOperation::kGE:
return lhsSmaller ? false_branch : true_branch;
case CompareSelectOperation::kLT:
return lhsSmaller ? true_branch : false_branch;
case CompareSelectOperation::kLE:
return (lhsSmaller || equal) ? true_branch : false_branch;
case CompareSelectOperation::kNE:
return equal ? false_branch : true_branch;
}
// should not be possible but just in case.
return alloc<CompareSelect>(
lhs_new,
rhs_new,
true_branch,
false_branch,
v->compare_select_op(),
v->bias());
}
ExprPtr PolynomialTransformer::mutate(IntrinsicsPtr v) {
std::vector<ExprPtr> new_params;
bool changed = false;
bool allConstant = true;
for (auto p : v->params()) {
ExprPtr new_child = p->accept_mutator(this);
new_params.push_back(new_child);
changed |= p != new_child;
allConstant &= new_child->isConstant();
}
ExprPtr node = v;
if (changed) {
node = alloc<Intrinsics>(v->op_type(), new_params);
}
if (!allConstant || !v->isPure()) {
return node;
}
// we're evaluating, but the evaluator only supports float intrinsics.
std::vector<ExprPtr> const_params;
changed = false;
for (auto p : new_params) {
if (p->dtype().scalar_type() == ScalarType::Float) {
const_params.push_back(p);
} else {
const_params.push_back(
alloc<Cast>(Dtype(ScalarType::Float, p->dtype().lanes()), p));
changed = true;
}
}
if (changed) {
node = alloc<Intrinsics>(v->op_type(), const_params);
}
return evaluateOp(node);
}
ExprPtr PolynomialTransformer::mutate(CastPtr v) {
ExprPtr node = v->src_value()->accept_mutator(this);
if (node->isConstant()) {
return evaluateOp(alloc<Cast>(v->dtype(), node));
}
if (v->dtype() == node->dtype()) {
return node;
}
return alloc<Cast>(v->dtype(), node);
}
ExprPtr PolynomialTransformer::mutate(IfThenElsePtr v) {
ExprPtr condition = v->condition();
ExprPtr true_value = v->true_value();
ExprPtr false_value = v->false_value();
ExprPtr condition_new = condition->accept_mutator(this);
ExprPtr true_value_new = true_value->accept_mutator(this);
ExprPtr false_value_new = false_value->accept_mutator(this);
// If the condition is constant then we can choose the right branch now.
if (condition_new->isConstant()) {
if (!immediateEquals(condition_new, 0)) {
return true_value_new;
} else {
return false_value_new;
}
}
// If both branches are the same then don't do the condition.
if (hasher_.hash(true_value_new) == hasher_.hash(false_value_new)) {
return true_value_new;
}
if (condition == condition_new && true_value == true_value_new &&
false_value == false_value_new) {
return v;
}
return alloc<IfThenElse>(condition_new, true_value_new, false_value_new);
}
ExprPtr PolynomialTransformer::mutate(AndPtr v) {
return mutateBinaryOp(v, this);
}
ExprPtr PolynomialTransformer::mutate(XorPtr v) {
return mutateBinaryOp(v, this);
}
ExprPtr PolynomialTransformer::mutate(LshiftPtr v) {
return mutateBinaryOp(v, this);
}
ExprPtr PolynomialTransformer::mutate(RshiftPtr v) {
return mutateBinaryOp(v, this);
}
StmtPtr PolynomialBase::mutate(CondPtr v) {
ExprPtr cond_old = v->condition();
StmtPtr true_old = v->true_stmt();
StmtPtr false_old = v->false_stmt();
ExprPtr cond_new = cond_old->accept_mutator(this);
StmtPtr true_new = true_old ? true_old->accept_mutator(this) : true_old;
StmtPtr false_new = false_old ? false_old->accept_mutator(this) : false_old;
// If the condition is constant then we can choose the right branch now.
if (cond_new->isConstant()) {
if (!immediateEquals(cond_new, 0)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return true_new;
} else {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return false_new;
}
}
// If both branches are the same then don't do the condition.
if (true_new && false_new &&
hasher_.hash(true_new) == hasher_.hash(false_new)) {
return true_new;
}
BlockPtr true_block = to<Block>(true_new);
BlockPtr false_block = to<Block>(false_new);
bool true_empty = !true_new || (true_block && true_block->nstmts() == 0);
bool false_empty = !false_new || (false_block && false_block->nstmts() == 0);
if (true_empty && false_empty) {
return alloc<Block>(std::vector<StmtPtr>({}));
}
if (cond_old != cond_new) {
v->set_condition(cond_new);
}
if (true_old != true_new) {
v->set_true_stmt(true_new);
}
if (false_old != false_new) {
v->set_false_stmt(false_new);
}
return v;
}
StmtPtr handleForCondReordering(ForPtr loop, CondPtr cond) {
if (cond->false_stmt()) {
return nullptr;
}
auto condition_vars = VarFinder::find(cond->condition());
for (auto v : condition_vars) {
// If the condition depends on a Var that is modified in the loop body, it
// may not be safe to reorder.
if (ModifiesVarChecker::check(loop, v)) {
return nullptr;
}
}
ForPtr new_f = loop->cloneWithNewBody(Stmt::clone(cond->true_stmt()));
return cond->cloneWithNewBody(new_f);
}
StmtPtr PolynomialBase::mutate(ForPtr v) {
ExprPtr var = v->var();
ExprPtr start = v->start();
ExprPtr stop = v->stop();
StmtPtr body = v->body();
LoopOptions loop_options = v->loop_options();
ExprPtr var_new_expr = var->accept_mutator(this);
VarPtr var_new = to<Var>(var_new_expr);
ExprPtr start_new = start->accept_mutator(this);
ExprPtr stop_new = stop->accept_mutator(this);
StmtPtr body_new = body;
ExprPtr loops = alloc<Sub>(stop_new, start_new);
loops = loops->accept_mutator(this);
if (loop_options.isDefault() && loops->isConstant()) {
if (immediateEquals(loops, 0)) {
return alloc<Block>(std::vector<StmtPtr>({}));
} else if (immediateEquals(loops, 1)) {
body_new = Substitute(body, {{var_new, start_new}});
body_new = body_new->accept_mutator(this);
return body_new;
}
}
body_new = body_new->accept_mutator(this);
if (!body_new) {
return alloc<Block>(std::vector<StmtPtr>({}));
}
if (auto block = to<Block>(body_new)) {
if (block->nstmts() == 0) {
return alloc<Block>(std::vector<StmtPtr>({}));
}
if (block->nstmts() == 1) {
if (auto cond = to<Cond>(block->front())) {
StmtPtr reordered = handleForCondReordering(v, cond);
if (reordered) {
return reordered->accept_mutator(this);
}
}
}
}
if (var != var_new) {
v->set_var(var_new);
}
if (start != start_new) {
v->set_start(start_new);
}
if (stop != stop_new) {
v->set_stop(stop_new);
}
if (body != body_new) {
v->set_body(body_new);
}
return v;
}
StmtPtr PolynomialBase::mutate(BlockPtr v) {
std::vector<StmtPtr> stmts;
// Flatten sub-blocks:
bool stmts_changed = false;
for (StmtPtr stmt : *v) {
StmtPtr stmt_new = stmt->accept_mutator(this);
stmts_changed |= stmt != stmt_new;
if (stmt_new == nullptr) {
continue;
}
if (auto subBlock = to<Block>(stmt_new)) {
for (Block::iterator I = subBlock->begin(), E = subBlock->end();
I != E;) {
// Be careful to avoid invalidating the iterator.
StmtPtr s = *(I++);
subBlock->remove_stmt(s);
stmts.push_back(s);
}
stmts_changed = true;
} else {
stmts.push_back(stmt_new);
}
}
if (stmts_changed) {
v->set_stmts(stmts);
}
return v;
}
// TermExpander
ExprPtr TermExpander::mutate(TermPtr v) {
ExprPtr newScalar = v->scalar()->accept_mutator(this);
if (immediateEquals(newScalar, 0)) {
return newScalar;
}
std::vector<ExprPtr> vars;
std::vector<ExprPtr> multilaneVars;
// Assume we can reorder here because we wont merge floating terms.
ExprPtr lastNode{nullptr};
for (auto var : v->variables()) {
ExprPtr node = var->accept_mutator(this);
if (MulPtr mul = to<Mul>(node)) {
// If the sub-Expr resolved to a multiplication, lift it into this
// term.
if (isMultilanePrimitive(mul->lhs())) {
multilaneVars.push_back(mul->lhs());
} else {
vars.push_back(mul->lhs());
}
if (isMultilanePrimitive(mul->rhs())) {
multilaneVars.push_back(mul->rhs());
} else {
vars.push_back(mul->rhs());
}
} else {
if (isMultilanePrimitive(node)) {
multilaneVars.push_back(node);
} else {
vars.push_back(node);
}
}
}
for (auto node : multilaneVars) {
if (lastNode == nullptr) {
lastNode = node;
} else {
lastNode = mulMultilane(lastNode, node);
// simplify first, then re-expand.
lastNode = lastNode->accept_mutator(simplifier_);
lastNode = lastNode->accept_mutator(this);
}
}
for (auto node : vars) {
if (lastNode == nullptr) {
lastNode = node;
} else {
lastNode = alloc<Mul>(lastNode, node);
}
}
if (!immediateEquals(newScalar, 1)) {
if (lastNode) {
// We want to avoid a leaving a CastNode on the scalar, so handle that
// now.
auto termDtype = v->scalar()->dtype();
auto lastNodeDtype = lastNode->dtype();
if (termDtype != lastNodeDtype) {
ExprPtr castV = v->scalar();
// Take care of lane mismatch first.
if (termDtype.lanes() != lastNodeDtype.lanes()) {
castV = alloc<Broadcast>(v->scalar(), lastNodeDtype.lanes());
}
// Now take care of scalar type as well.
if (termDtype.scalar_type() != lastNodeDtype.scalar_type()) {
castV = alloc<Cast>(lastNode->dtype(), castV);
// For scalars, we can simplify the cast further.
if (lastNodeDtype.lanes() == 1) {
castV = evaluateOp(castV);
}
}
lastNode = alloc<Mul>(castV, lastNode);
} else {
lastNode = alloc<Mul>(v->scalar(), lastNode);
}
} else {
lastNode = v->scalar();
}
}
return lastNode;
}
// Returns an immediate containing the greatest common divisor of all terms
// (inc. the scalar term) in the polynomial. If the GCD is uninteresting
// (e.g. 1) then returns nullptr.
ExprPtr polyGCD(PolynomialPtr poly) {
ExprPtr scalar = poly->scalar();
const std::vector<TermPtr>& variables = poly->variables();
// We ony want to factorize if we're saving complete operations, i.e. no
// value in factorizing 6x + 4y into 2 * (3x + 2y) since we don't save work.
int opsSaved = 1; // default to saving the scalar.
long GCD = std::abs(immediateAs<long>(scalar));
for (auto t : variables) {
long termScalar = std::abs(immediateAs<long>(t->scalar()));
long newGCD = gcd(std::max(GCD, termScalar), std::min(GCD, termScalar));
if (newGCD == 1) {
return nullptr;
}
if (GCD != newGCD) {
opsSaved = 0;
GCD = newGCD;
}
if (GCD == termScalar) {
opsSaved++;
}
}
if (opsSaved == 0) {
return nullptr;
}
if (GCD == 0) {
return nullptr;
}
// Not worth, can be a Sub.
if (GCD == -1 && opsSaved == 1) {
return nullptr;
}
return immLike(poly, GCD);
}
// A ModRound is a div-mod-mul in which the divisor in div and multiplier in mul
// are identical and not equal to 1.
// In a ModRound x/y%z*y*c (c is constant), 'scalar' denotes c, 'denominator'
// denotes x, 'divisor' denotes y and 'mod_divisor' denotes z.
class ModRound {
public:
ModRound(ExprPtr scalar, ExprPtr denom, ExprPtr divisor, ExprPtr mod_divisor)
: scalar(scalar),
denom(denom),
divisor(divisor),
mod_divisor(mod_divisor) {}
ExprPtr scalar;
ExprPtr denom;
ExprPtr divisor;
ExprPtr mod_divisor;
};
c10::optional<class ModRound> isModRound(TermPtr e) {
DivPtr div{nullptr};
ModPtr mod{nullptr};
ExprPtr denom{nullptr};
ExprPtr divisor{nullptr};
ExprPtr mod_divisor{nullptr};
ExprPtr multiplier = e->scalar();
ExprPtr scalar{nullptr};
ExprPtr other{nullptr};
for (auto m : e->variables()) {
if (m->expr_type() == IRNodeType::kMod) {
// TODO: currently only identify terms with one variable being mod; it is
// possible to extend this if we have to handle terms like (t/(x%2 * y) %
// z) * (x%2 *y).
if (!mod) {
mod = to<Mod>(m);
} else {
return c10::nullopt;
}
} else {
// Take care of special cases before multiplying the scalar and variable.
if (multiplier->isConstant()) {
// Take care of lane mismatch first.
if (multiplier->dtype().lanes() != m->dtype().lanes()) {
multiplier = alloc<Broadcast>(multiplier, m->dtype().lanes());
}
// Take care of scalar type mismatch.
if (multiplier->dtype().scalar_type() != m->dtype().scalar_type()) {
multiplier = alloc<Cast>(m->dtype(), multiplier);
if (m->dtype().lanes() == 1) {
multiplier = evaluateOp(multiplier);
}
}
}
// All non-mod vairables are considered as part of the multiplier.
multiplier = alloc<Mul>(multiplier, m);
}
}
multiplier = IRSimplifier::simplify(multiplier);
if (!mod) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return c10::nullopt;
}
mod_divisor = IRSimplifier::simplify(mod->rhs());
other = mod->lhs();
if (!(div = to<Div>(other))) {
return c10::nullopt;
}
divisor = IRSimplifier::simplify(div->rhs());
other = div->lhs();
denom = IRSimplifier::simplify(other);
// Deny cases in which divisor!=multiplier.
HashProvider& hasher = e->hasher();
if (hasher.hash(divisor) != hasher.hash(multiplier)) {
// TODO: currently we do not extract a common factor if divisor and
// multiplier are not constants. The extraction is not supported (e.g.,
// x*2/x -> 2) in IRSimplifier.simplify because x could be 0. As future
// work, we can extend division to 2 versions: 1) division for customers
// that has to be strictly simplified and 2) division we introduced in our
// transformations which can be simplified without considering 0s, e.g.,
// Div_nonzero. The second division will be only used to facilitate our
// transformations.
if (divisor->isConstant() && multiplier->isConstant()) {
// If both are scalar we may be able to find a common factor.
if (immediateEquals(evaluateOp(alloc<Mod>(multiplier, divisor)), 0)) {
// The common factor becomes 'scalar' of the term, e.g.,in t/3%7*6,
// divisor=multiplier=3, scalar=2.
ExprPtr c = evaluateOp(alloc<Div>(multiplier, divisor));
scalar = c;
} else if (immediateEquals(
evaluateOp(alloc<Mod>(divisor, multiplier)), 0)) {
// The common factor becomes part of 'denom', e.g., in t/14%7*2,
// divisor=multiplier=2, denom=t/7.
ExprPtr c = evaluateOp(alloc<Div>(divisor, multiplier));
divisor = multiplier;
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
denom = IRSimplifier::simplify(alloc<Div>(other, c));
} else {
return c10::nullopt;
}
} else {
return c10::nullopt;
}
}
// Deny cases in which divisor=1. Such cases are considered as Mods.
if (divisor->isConstant() && immediateEquals(divisor, 1)) {
return c10::nullopt;
}
if (!scalar) {
scalar = immLike(multiplier, 1);
}
return ModRound(scalar, denom, divisor, mod_divisor);
}
// Search the polynomial for Terms that can be merged in
// (1) Round + Mod pattern: (x/y) * y + x % y => RoundOff(x,y) + Mod(x, y) => x
// (2) Mod round + Mod pattern: (x/y % z)*y + x%y => ModRound(x, y, z) + Mod(x,
// y) => x % (y*z)
ExprPtr simplifyRoundModPattern(PolynomialPtr poly) {
std::vector<TermPtr> rounds;
std::vector<TermPtr> mods;
std::vector<TermPtr> mod_rounds;
std::vector<TermPtr> others;
// Split out the Mod, ModRounds and RoundOffs operations so we can inspect.
for (auto c : poly->variables()) {
if (c->variables().size() > 1) {
if (auto a = isModRound(c)) {
mod_rounds.push_back(c);
} else {
others.push_back(c);
}
continue;
}
ExprPtr e = c->variables()[0];
if (to<RoundOff>(e)) {
rounds.push_back(c);
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
} else if (e->expr_type() == IRNodeType::kMod) {
if (auto a = isModRound(c)) {
mod_rounds.push_back(c);
} else {
mods.push_back(c);
}
} else {
others.push_back(c);
}
}
// Can't continue without at least one RoundOff/ModRound and one Mod.
if ((rounds.empty() && mod_rounds.empty()) || mods.empty()) {
return nullptr;
}
HashProvider& hasher = poly->hasher();
bool didAnything = false;
std::vector<TermPtr> mods_merged;
bool repeat = true;
// Repeat merging terms till there are no Mods or the terms cannot be merged
// any further.
while (!mods.empty() && repeat) {
repeat = false;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
for (int64_t i = mods.size() - 1; i >= 0; i--) {
TermPtr m = mods[i];
ModPtr mod = to<Mod>(m->variables()[0]);
CHECK(mod);
ExprPtr mod_lhs = IRSimplifier::simplify(mod->lhs());
ExprPtr mod_rhs = IRSimplifier::simplify(mod->rhs());
bool merged = false;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
for (int64_t j = mod_rounds.size() - 1; j >= 0; j--) {
TermPtr mr = mod_rounds[j];
auto a = isModRound(mr);
CHECK(a);
ModRound& mod_round = *a;
// TODO: for now don't attempt partial factorization of this
// optimization. E.g. it's possible to do: 2 * (x/y%z) * y + (x%y) =>
// x%(y*z) + (x/y%z) * y
if (!immediateEquals(
evaluateOp(alloc<Sub>(mod_round.scalar, m->scalar())), 0)) {
continue;
}
// Valid optimization if mod LHS matches denom and mod RHS matches
// divisor.
if (hasher.hash(mod_round.denom) == hasher.hash(mod_lhs) &&
hasher.hash(mod_round.divisor) == hasher.hash(mod_rhs)) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
TermPtr merged_m = alloc<Term>(
hasher,
mod_round.scalar,
IRSimplifier::simplify(alloc<Mod>(
mod_round.denom,
alloc<Mul>(mod_round.divisor, mod_round.mod_divisor))));
mods_merged.push_back(merged_m);
merged = true;
repeat = true;
didAnything = true;
mods.erase(mods.begin() + i);
mod_rounds.erase(mod_rounds.begin() + j);
break;
}
}
if (merged) {
continue;
}
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
for (int64_t k = rounds.size() - 1; k >= 0; k--) {
TermPtr r = rounds[k];
RoundOffPtr roundoff = to<RoundOff>(r->variables()[0]);
CHECK(roundoff);
// TODO: for now don't attempt partial factorization of this
// optimization. E.g. it's possible to do: 2 * (x/y) * y + (x%y) => x +
// (x/y) * y but unsure thats actually much better, particulary with
// CSE.
if (!immediateEquals(
evaluateOp(alloc<Sub>(r->scalar(), m->scalar())), 0)) {
continue;
}
ExprPtr round_lhs = IRSimplifier::simplify(roundoff->lhs());
ExprPtr round_rhs = IRSimplifier::simplify(roundoff->rhs());
// Valid optimization if LHS and RHS are equal for both.
if (hasher.hash(round_lhs) == hasher.hash(mod_lhs) &&
hasher.hash(round_rhs) == hasher.hash(mod_rhs)) {
TermPtr merged_r = alloc<Term>(hasher, r->scalar(), round_lhs);
others.push_back(merged_r);
merged = true;
didAnything = true;
mods.erase(mods.begin() + i);
rounds.erase(rounds.begin() + k);
break;
}
}
// If we didn't merge, move out the Mod.
if (!merged) {
others.push_back(m);
mods.erase(mods.begin() + i);
}
} // end of for-loop
// Add newly generated Mods for merging opportunities in the next iteration.
if (!mods_merged.empty()) {
mods.insert(mods.end(), mods_merged.begin(), mods_merged.end());
mods_merged.clear();
}
} // end of while-loop
// If we made no changes, just exit.
if (!didAnything) {
return nullptr;
}
// Keep remaining ModRounds and RoundOffs.
if (!mod_rounds.empty()) {
others.insert(others.end(), mod_rounds.begin(), mod_rounds.end());
}
if (!rounds.empty()) {
others.insert(others.end(), rounds.begin(), rounds.end());
}
return alloc<Polynomial>(hasher, poly->scalar(), others);
}
// Trivially factorize terms by GCD of scalar components.
TermPtr PolynomialBase::factorizePolynomial(PolynomialPtr poly) {
ExprPtr scalar = poly->scalar();
const std::vector<TermPtr>& variables = poly->variables();
// Compute the GCD of terms.
ExprPtr GCD = polyGCD(poly);
// No GCD means 0 or 1 and can't be factored.
if (!GCD) {
return nullptr;
}
// Create new struture.
std::vector<TermPtr> newPolyTerms;
newPolyTerms.reserve(variables.size());
for (auto t : variables) {
// New term with the scalar divided by the GCD.
newPolyTerms.push_back(alloc<Term>(
poly->hasher(),
evaluateOp(alloc<Div>(t->scalar(), GCD)),
t->variables()));
}
PolynomialPtr newPoly = alloc<Polynomial>(
poly->hasher(), evaluateOp(alloc<Div>(scalar, GCD)), newPolyTerms);
return alloc<Term>(poly->hasher(), GCD, newPoly);
}
ExprPtr TermExpander::mutate(PolynomialPtr v) {
if (v->variables().empty()) {
return v->scalar();
}
// If this Polynomial can be factorized: do it, then expand the result.
if (ExprPtr simplified = simplifyRoundModPattern(v)) {
return simplified->accept_mutator(this);
}
// If this Polynomial can be factorized: do it, then expand the result.
if (ExprPtr factorized = factorizePolynomial(v)) {
return factorized->accept_mutator(this);
}
std::vector<TermPtr> addTerms;
std::vector<TermPtr> subTerms;
auto vars = v->variables();
std::unordered_map<ExprPtr, std::string> str_repr_cache;
std::sort(vars.begin(), vars.end(), [&](ExprPtr a, ExprPtr b) {
if (!str_repr_cache.count(a)) {
str_repr_cache[a] = std::to_string(a);
}
if (!str_repr_cache.count(b)) {
str_repr_cache[b] = std::to_string(b);
}
return str_repr_cache.at(a) < str_repr_cache.at(b);
});
// partition the terms into a list to add and list to subtract.
for (auto node : vars) {
if (immediateIsNegative(node->scalar())) {
subTerms.push_back(node);
} else if (!immediateEquals(node->scalar(), 0)) {
addTerms.push_back(node);
}
// Skip terms with a scalar of zero.
}
// The last node constructed.
ExprPtr lastNode{nullptr};
for (auto node : addTerms) {
ExprPtr simpleNode = node->accept_mutator(this);
if (lastNode == nullptr) {
lastNode = simpleNode;
continue;
}
if (isMultilanePrimitive(simpleNode)) {
auto ret = combineMultilane<Add>(lastNode, simpleNode);
if (ret) {
// simplify result first, then expand.
lastNode = ret->accept_mutator(simplifier_);
lastNode = lastNode->accept_mutator(this);
continue;
}
}
lastNode = alloc<Add>(lastNode, simpleNode);
}
// If we have no add terms the scalar should go first.
// E.g. 1 - x.
bool scalarWritten = false;
if (lastNode == nullptr) {
auto scalarNode = v->scalar()->accept_mutator(simplifier_);
if (!immediateEquals(scalarNode, 0)) {
lastNode = scalarNode;
scalarWritten = true;
}
}
for (auto node : subTerms) {
// Can still be first node if scalarVal is 0.
if (lastNode == nullptr) {
lastNode = node->accept_mutator(this);
continue;
}
// Negate the term back to positive since we'll be subtracting it.
ExprPtr negated =
evaluateOp(alloc<Mul>(immLike(node->scalar(), -1), node->scalar()));
TermPtr newRHS = alloc<Term>(node->hasher(), negated, node->variables());
lastNode = alloc<Sub>(lastNode, newRHS->accept_mutator(this));
}
if (scalarWritten || immediateEquals(v->scalar(), 0)) {
if (!lastNode) {
return immLike(v, 0);
}
return lastNode;
}
if (immediateIsNegative(v->scalar())) {
// Negate the scalar and subtract.
ExprPtr negated =
evaluateOp(alloc<Mul>(immLike(lastNode, -1), v->scalar()));
lastNode = alloc<Sub>(lastNode, evaluateOp(negated));
} else {
// we want to avoid a cast to the scalar if it would happen.
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
if (v->scalar()->dtype() != lastNode->dtype()) {
lastNode = alloc<Add>(
lastNode, evaluateOp(alloc<Cast>(lastNode->dtype(), v->scalar())));
} else {
lastNode = alloc<Add>(lastNode, v->scalar());
}
}
return lastNode;
}
ExprPtr TermExpander::mutate(MaxTermPtr v) {
auto& variables = v->variables();
if (variables.empty()) {
if (!v->scalar()) {
// This case should never happen because MaxTerm will be created only
// on valid Max expressions.
throw std::logic_error("empty maxterm op");
}
return v->scalar();
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ExprPtr max;
if (v->scalar()) {
max = alloc<Max>(variables[0], v->scalar(), v->propagate_nans());
} else {
max = variables[0];
}
for (size_t i = 1; i < variables.size(); i++) {
max = alloc<Max>(max, variables[i], v->propagate_nans());
}
return max->accept_mutator(this);
}
ExprPtr TermExpander::mutate(MinTermPtr v) {
auto& variables = v->variables();
if (variables.empty()) {
if (!v->scalar()) {
// This case should never happen because MinTerm will be created only
// on valid Min expressions.
throw std::logic_error("empty minterm op");
}
return v->scalar();
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ExprPtr min;
if (v->scalar()) {
min = alloc<Min>(variables[0], v->scalar(), v->propagate_nans());
} else {
min = variables[0];
}
for (size_t i = 1; i < variables.size(); i++) {
min = alloc<Min>(min, variables[i], v->propagate_nans());
}
return min->accept_mutator(this);
}
// Expands RoundOff(x, y) => Term(1, Div(x, y), y), which will later be expanded
// to Mul(Div(x, y), y).
ExprPtr TermExpander::mutate(RoundOffPtr v) {
TermPtr term = alloc<Term>(
simplifier_->hasher(),
immLike(v, 1),
alloc<Div>(v->lhs(), v->rhs()),
v->rhs());
return term->accept_mutator(this);
}
ExprPtr buf_flat_size(BufPtr v) {
std::vector<ExprPtr> dims = v->dims();
if (dims.size() == 0) {
return alloc<LongImm>(1);
}
ExprPtr flattened = immLike(dims[0], 1);
for (auto& dim : dims) {
flattened = alloc<Mul>(flattened, dim);
}
flattened = IRSimplifier::simplify(flattened);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return flattened;
}
StmtPtr TermExpander::mutate(AllocatePtr v) {
BufPtr buf = v->buf();
BufPtr buf_new = to<Buf>(v->buf()->accept_mutator(this));
TORCH_INTERNAL_ASSERT(
buf_new,
buildErrorMessage("TermExpander mutation produced null for Buf."));
ExprPtr flattened = buf_flat_size(buf_new);
if (flattened->isConstant() && immediateEquals(flattened, 0)) {
eliminated_allocations_.insert(buf_new->base_handle());
return nullptr;
}
if (buf != buf_new) {
v->set_buf(buf_new);
}
return v;
}
StmtPtr TermExpander::mutate(FreePtr v) {
BufPtr buf = v->buf();
BufPtr buf_new = to<Buf>(v->buf()->accept_mutator(this));
TORCH_INTERNAL_ASSERT(
buf_new,
buildErrorMessage("TermExpander mutation produced null for Buf."));
if (eliminated_allocations_.count(buf_new->base_handle())) {
eliminated_allocations_.erase(buf_new->base_handle());
return nullptr;
}
if (buf != buf_new) {
v->set_buf(buf_new);
}
return v;
}
// Combines adjactent Cond nodes with identical conditions.
BlockPtr TermExpander::fuseConditions(BlockPtr v) {
std::vector<StmtPtr> stmts;
bool did_anything = false;
CondPtr prev_cond = nullptr;
for (auto s : *v) {
CondPtr cond = to<Cond>(s);
if (!cond) {
prev_cond = nullptr;
stmts.push_back(s);
continue;
}
// If the previous statement is a Cond and the conditions are identical,
// then we fuse.
if (!prev_cond ||
hasher_.hash(prev_cond->condition()) !=
hasher_.hash(cond->condition())) {
prev_cond = cond;
stmts.push_back(s);
continue;
}
// Fuse the two Conds by appending the bodies of the second Cond to the
// first.
BlockPtr true_block = alloc<Block>(std::vector<StmtPtr>({}));
BlockPtr false_block = alloc<Block>(std::vector<StmtPtr>({}));
if (prev_cond->true_stmt()) {
true_block->splice(true_block->end(), prev_cond->true_stmt());
}
if (cond->true_stmt()) {
true_block->splice(true_block->end(), cond->true_stmt());
}
if (prev_cond->false_stmt()) {
false_block->splice(false_block->end(), prev_cond->false_stmt());
}
if (cond->false_stmt()) {
false_block->splice(false_block->end(), cond->false_stmt());
}
// avoid unflattening this Cond if we can.
if (true_block->empty()) {
true_block = nullptr;
}
if (false_block->empty()) {
false_block = nullptr;
}
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
StmtPtr new_cond = prev_cond->cloneWithNewBodies(true_block, false_block)
->accept_mutator(this);
prev_cond = to<Cond>(new_cond);
// erase, which shortens the list.
stmts.pop_back();
stmts.push_back(new_cond);
did_anything = true;
}
if (!did_anything) {
return v;
}
// clean up parents.
for (auto s : stmts) {
if (s->get_parent() == v) {
v->remove_stmt(s);
}
}
return alloc<Block>(stmts);
}
StmtPtr TermExpander::fuseSyncThreads(BlockPtr block) {
// only really first if highest level Block.
bool first = block->get_parent() == nullptr;
SyncThreadsPtr last = nullptr;
std::vector<StmtPtr> stmts;
bool did_anything = false;
for (auto s : *block) {
SyncThreadsPtr sync = to<SyncThreads>(s);
if (!sync) {
first = false;
last = nullptr;
stmts.push_back(s);
continue;
}
if (first || last) {
did_anything = true;
continue;
}
last = sync;
first = false;
stmts.push_back(s);
}
if (last) {
stmts.pop_back();
did_anything = true;
}
if (!did_anything) {
return block;
}
// clean up parents.
for (auto s : stmts) {
if (s->get_parent() == block) {
block->remove_stmt(s);
}
}
return alloc<Block>(std::vector<StmtPtr>({stmts}));
}
StmtPtr TermExpander::mutate(BlockPtr v) {
StmtPtr new_stmt = PolynomialBase::mutate(v);
BlockPtr new_block = to<Block>(new_stmt);
if (!new_block) {
return new_stmt;
}
// fuseConditions will return the original block if it cannot fuse.
new_block = fuseConditions(new_block);
/// fuseSyncThreads too.
return fuseSyncThreads(new_block);
}
// SimplifierUnderContext
//
// This function records the bounds(range) info of the index var in a for-stmt.
// The bounds info will be used later when simplifying expressions with the
// index var.
StmtPtr SimplifierUnderContext::mutate(ForPtr v) {
ExprPtr var = v->var();
ExprPtr start = v->start();
ExprPtr stop = v->stop();
StmtPtr body = v->body();
LoopOptions loop_options = v->loop_options();
ExprPtr var_new_expr = var->accept_mutator(this);
VarPtr var_new = to<Var>(var_new_expr);
ExprPtr start_new = start->accept_mutator(this);
ExprPtr stop_new = stop->accept_mutator(this);
StmtPtr body_new = body;
// save bounds info before this for-stmt
//
// The same variable could have appeared in a if-stmt which the for-stmt is
// nested inside, and we need to restore its bounds info after the for-stmt.
//
// An example,
// if (i>=0 && i<5) {
// for (i=0; i<3; i++){
// A[i] = ...
// }
// x = (i+20) / 5;
//}
// Inside the if stmt, i is in the range of [0, 5); and if we can restore this
// bound info after the for stmt, we can use it to simplify the assignment
// stmt x = (i+20)/5 to x = 4.
bool has_bounds = false;
analysis::Bound bound_old;
VarPtr var_key = to<Var>(var);
auto got = var_bound_info_.find(var_key);
if (got != var_bound_info_.end()) {
has_bounds = true;
bound_old = got->second;
}
// set bounds info for index var
const analysis::Bound bound_new(start_new, stop_new);
var_bound_info_[var_key] = bound_new;
ExprPtr iters = alloc<Sub>(stop_new, start_new);
iters = iters->accept_mutator(this);
if (loop_options.isDefault() && iters->isConstant()) {
if (immediateEquals(iters, 0)) {
return alloc<Block>(std::vector<StmtPtr>({}));
} else if (immediateEquals(iters, 1)) {
body_new = Substitute(body, {{var_new, start_new}});
body_new = body_new->accept_mutator(this);
// erase index var bounds info or restore old bounds info
if (has_bounds) {
var_bound_info_[var_key] = bound_old;
} else {
var_bound_info_.erase(var_key);
}
return body_new;
}
}
body_new = body_new->accept_mutator(this);
// erase index var bounds info or restore old bounds info
if (has_bounds) {
var_bound_info_[var_key] = bound_old;
} else {
var_bound_info_.erase(var_key);
}
if (!body_new) {
return alloc<Block>(std::vector<StmtPtr>({}));
}
if (auto block = to<Block>(body_new)) {
if (block->nstmts() == 0) {
return alloc<Block>(std::vector<StmtPtr>({}));
}
if (block->nstmts() == 1) {
// if the stmt in the loop body is a if-stmt, try to move the branching
// out of the loop
if (auto cond = to<Cond>(block->front())) {
StmtPtr reordered = handleForCondReordering(v, cond);
if (reordered) {
return reordered->accept_mutator(this);
}
}
}
}
if (var != var_new) {
v->set_var(var_new);
}
if (start != start_new) {
v->set_start(start_new);
}
if (stop != stop_new) {
v->set_stop(stop_new);
}
if (body != body_new) {
v->set_body(body_new);
}
return v;
}
// Simplify division using distributive laws for the following cases:
// 1) (i + x) / n => x/n, if
// a) n is a positive integer constant;
// b) i is the index var of a for-stmt and the range of i is
// a subset of [0, n);
// c) x is a constant and the end value of i's range is less than n - x%n;
// TODO: remove d) from the requirements because the simplification formula
// still holds when x is a negative integer. In integer division, the result
// of the division is converted to an integer using `floor` function which
// returns the largest integer that is not greater than X. For exmaple, -1/6
// returns -1. But currently, both Pytorch and NNC are performing an incorrect
// integer division: (-1)/6 = 0. With the current implementation of integer
// division, x has to be not negative. d) x is not negative
//
// 2) (i + j*n) / n => j, if
// a) n is a positive integer constant;
// b) i is the index var of a for-stmt and the range of i is
// a subset of [0, n);
// c) j is an integer variable;
// TODO: remove d) from the requirements because the simplification formula
// still holds when j is a negative integer. In integer division, the result
// of the division is converted to an integer using `floor` function which
// returns the largest integer that is not greater than X. For exmaple, -1/6
// returns -1. But currently, both Pytorch and NNC are performing an incorrect
// integer division: (-1)/6 = 0. With the current implementation of integer
// division, x has to be not negative. d) j is not negative
ExprPtr distributeDiv(ExprPtr lhs, ExprPtr rhs, VarBoundInfo var_bound_info) {
if (!lhs || !rhs) {
return nullptr;
}
// return if not integer division
if (lhs->dtype().is_floating_point() || rhs->dtype().is_floating_point()) {
return nullptr;
}
// identify n: a positive integer constant
ExprPtr rhsScalar = rhs->isConstant() ? rhs : nullptr;
if (!rhsScalar) {
return nullptr;
}
ExprPtr check_n_value = IRSimplifier::simplify(
alloc<CompareSelect>(rhsScalar, immLike(rhsScalar, 0), kGT));
if (!immediateEquals(check_n_value, 1)) {
return nullptr;
}
auto lhsAdd = to<Add>(lhs);
if (!lhsAdd) {
return nullptr;
}
ExprPtr lhsAdd1 = lhsAdd->lhs();
ExprPtr lhsAdd2 = lhsAdd->rhs();
// identify index var 'i'
VarPtr var_key = to<Var>(lhsAdd1);
ExprPtr main = lhsAdd2;
if (var_key == nullptr) {
var_key = to<Var>(lhsAdd2);
main = lhsAdd1;
}
if (var_key == nullptr) {
return nullptr;
}
auto got = var_bound_info.find(var_key);
if (got == var_bound_info.end()) {
return nullptr;
}
// check the bounds of 'i'
auto start = got->second.start;
// open upper bound, i.e., end is one more than the maximum value in the
// range
auto end = got->second.end;
ExprPtr check_start = IRSimplifier::simplify(
alloc<CompareSelect>(start, immLike(start, 0), kGE));
ExprPtr check_end =
IRSimplifier::simplify(alloc<CompareSelect>(end, rhsScalar, kLE));
if (!check_start->isConstant() || !check_end->isConstant() ||
!immediateEquals(check_start, 1) || !immediateEquals(check_end, 1)) {
return nullptr;
}
ExprPtr ret = IRSimplifier::simplify(alloc<Div>(main, rhsScalar));
// simplify type 1) exprs: '(i+x)/n' => 'x/n'
ExprPtr sign_check =
IRSimplifier::simplify(alloc<CompareSelect>(main, immLike(main, 0), kGE));
ExprPtr main_mod = IRSimplifier::simplify(alloc<Mod>(main, rhsScalar));
ExprPtr mod_check = IRSimplifier::simplify(
alloc<CompareSelect>(alloc<Add>(main_mod, end), rhsScalar, kLE));
if (sign_check->isConstant() && immediateEquals(sign_check, 1) &&
mod_check->isConstant() && immediateEquals(mod_check, 1)) {
return ret;
}
// simplify type 2 exprs: '(i+j*n)/n' => 'j'
auto ret_var = to<Var>(ret);
// FIXME: Allow any integral type.
if (ret_var && ret_var->dtype() == kInt) {
// retrieve j's range info
auto got = var_bound_info.find(ret_var);
if (got == var_bound_info.end()) {
return nullptr;
}
// check if j is not negative
sign_check = IRSimplifier::simplify(alloc<CompareSelect>(
got->second.start, immLike(got->second.start, 0), kGE));
if (sign_check->isConstant() && immediateEquals(sign_check, 1)) {
return ret_var;
}
}
return nullptr;
}
// Simplify mod using distributive laws for the following cases:
// 1) (i + x) % n => i + x%n if
// a) n is a positive integer constant;
// b) i is the index var of a for-stmt and the range of i is
// a subset of [0, n);
// c) x is a constant and the end value of i's range is less than n - x%n;
// TODO: remove d) from the requirements because the simplification formula
// still holds when x is a negative integer. In integer division, the result
// of the division is converted to an integer using `floor` function which
// returns the largest integer that is not greater than X. For exmaple, -1/6
// returns -1. But currently, both Pytorch and NNC are performing an incorrect
// integer division: (-1)/6 = 0. With the current implementation of integer
// division, x has to be not negative. d) x is not negative
//
// 2) (i + j*n) % n => i if
// a) n is a positive integer constant;
// b) i is the index var of a for-stmt and the range of i is
// a subset of [0, n);
// c) j is an integer variable;
// TODO: remove d) from the requirements because the simplification formula
// still holds when j is a negative integer. In integer division, the result
// of the division is converted to an integer using `floor` function which
// returns the largest integer that is not greater than X. For exmaple, -1/6
// returns -1. But currently, both Pytorch and NNC are performing an incorrect
// integer division: (-1)/6 = 0. With the current implementation of integer
// division, j has to be not negative. d) j is not negative
ExprPtr distributeMod(ExprPtr lhs, ExprPtr rhs, VarBoundInfo var_bound_info) {
if (!lhs || !rhs) {
return nullptr;
}
// return if not integer mod
if (lhs->dtype().is_floating_point() || rhs->dtype().is_floating_point()) {
return nullptr;
}
// identify n: a positive integer constant
ExprPtr rhsScalar = rhs->isConstant() ? rhs : nullptr;
if (!rhsScalar) {
return nullptr;
}
ExprPtr check_n_value = IRSimplifier::simplify(
alloc<CompareSelect>(rhsScalar, immLike(rhsScalar, 0), kGT));
if (!immediateEquals(check_n_value, 1)) {
return nullptr;
}
auto lhsAdd = to<Add>(lhs);
if (!lhsAdd) {
return nullptr;
}
if (!lhsAdd || !rhsScalar) {
return nullptr;
}
ExprPtr lhsAdd1 = lhsAdd->lhs();
ExprPtr lhsAdd2 = lhsAdd->rhs();
// identify index var 'i'
VarPtr var_key = to<Var>(lhsAdd1);
ExprPtr main = lhsAdd2;
if (var_key == nullptr) {
var_key = to<Var>(lhsAdd2);
main = lhsAdd1;
}
if (var_key == nullptr) {
return nullptr;
}
auto got = var_bound_info.find(var_key);
if (got == var_bound_info.end()) {
return nullptr;
}
// check the bounds of 'i'
auto start = got->second.start;
// open upper bound, i.e., end is one more than the maximum value in the
// range
auto end = got->second.end;
ExprPtr check_start = IRSimplifier::simplify(
alloc<CompareSelect>(start, immLike(start, 0), kGE));
ExprPtr check_end =
IRSimplifier::simplify(alloc<CompareSelect>(end, rhsScalar, kLE));
if (!check_start->isConstant() || !check_end->isConstant() ||
!immediateEquals(check_start, 1) || !immediateEquals(check_end, 1)) {
return nullptr;
}
// simplify type 1) exprs: '(i+x)%n' => 'i+x%n'
ExprPtr sign_check =
IRSimplifier::simplify(alloc<CompareSelect>(main, immLike(main, 0), kGE));
ExprPtr main_mod = IRSimplifier::simplify(alloc<Mod>(main, rhsScalar));
ExprPtr mod_check = IRSimplifier::simplify(
alloc<CompareSelect>(alloc<Add>(main_mod, end), rhsScalar, kLE));
if (sign_check->isConstant() && immediateEquals(sign_check, 1) &&
mod_check->isConstant() && immediateEquals(mod_check, 1)) {
return alloc<Add>(var_key, main_mod);
}
// simplify type 2) exprs: '(i+j*n)%n' => 'i'
ExprPtr main_div = IRSimplifier::simplify(alloc<Div>(main, rhsScalar));
auto j_var = to<Var>(main_div);
// FIXME: Allow any integral type.
if (j_var && j_var->dtype() == kInt) {
// retrieve j's range info
auto got = var_bound_info.find(j_var);
if (got == var_bound_info.end()) {
return nullptr;
}
// check if j is not negative
sign_check = IRSimplifier::simplify(alloc<CompareSelect>(
got->second.start, immLike(got->second.start, 0), kGE));
if (sign_check->isConstant() && immediateEquals(sign_check, 1)) {
return var_key;
}
}
return nullptr;
}
ExprPtr SimplifierUnderContext::mutate(DivPtr v) {
ExprPtr lhs = v->lhs();
ExprPtr rhs = v->rhs();
std::ostringstream oss;
if (auto ret = distributeDiv(lhs, rhs, var_bound_info_)) {
GRAPH_DEBUG("SimplifierUnderContext: ", *v, " => ", *ret);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return ret->accept_mutator(this);
}
// i / N -> 0 if the range of i's values is a subset of [0, N)
// where N is an integer constant
auto lhsVar = to<Var>(lhs);
ExprPtr rhsScalar = rhs->isConstant() ? rhs : nullptr;
if (lhsVar && rhsScalar && !rhsScalar->dtype().is_floating_point()) {
auto got = var_bound_info_.find(lhsVar);
if (got != var_bound_info_.end()) {
auto start = got->second.start;
auto end = got->second.end;
ExprPtr check_start = IRSimplifier::simplify(
alloc<CompareSelect>(start, immLike(start, 0), kGE));
ExprPtr check_end =
IRSimplifier::simplify(alloc<CompareSelect>(end, rhsScalar, kLE));
if (check_start->isConstant() && check_end->isConstant() &&
immediateEquals(check_start, 1) && immediateEquals(check_end, 1)) {
GRAPH_DEBUG(
"SimplifierUnderContext: ", *v, " => ", *immLike(lhsVar, 0));
return immLike(lhsVar, 0);
}
}
}
ExprPtr lhs_new = lhs->accept_mutator(this);
ExprPtr rhs_new = rhs->accept_mutator(this);
if (lhs == lhs_new && rhs == rhs_new) {
return v;
}
return alloc<Div>(lhs_new, rhs_new);
}
ExprPtr SimplifierUnderContext::mutate(IfThenElsePtr v) {
ExprPtr condition = v->condition();
ExprPtr true_val = v->true_value();
ExprPtr false_val = v->false_value();
auto simplified_condition =
IRSimplifier::simplify(condition->accept_mutator(this));
auto simplified_true_val =
IRSimplifier::simplify(true_val->accept_mutator(this));
auto simplified_false_val =
IRSimplifier::simplify(false_val->accept_mutator(this));
if (simplified_condition->isConstant()) {
return immediateAs<int>(simplified_condition) ? simplified_true_val
: simplified_false_val;
}
bool nothing_changed = (simplified_condition == condition) &&
(simplified_true_val == true_val) && (simplified_false_val == false_val);
return nothing_changed
? v
: alloc<IfThenElse>(
simplified_condition, simplified_true_val, simplified_false_val);
}
ExprPtr SimplifierUnderContext::mutate(CompareSelectPtr v) {
GRAPH_DEBUG("(SimplifierUnderContext) Original: ", std::to_string(v));
ExprPtr lhs = v->lhs();
ExprPtr rhs = v->rhs();
ExprPtr ret1 = v->ret_val1();
ExprPtr ret2 = v->ret_val2();
auto simplified_lhs = IRSimplifier::simplify(lhs->accept_mutator(this));
auto simplified_rhs = IRSimplifier::simplify(rhs->accept_mutator(this));
auto simplified_ret1 = IRSimplifier::simplify(ret1->accept_mutator(this));
auto simplified_ret2 = IRSimplifier::simplify(ret2->accept_mutator(this));
ExprPtr simplified_cmp_select_expr = nullptr;
if ((simplified_lhs == lhs) && (simplified_rhs == rhs) &&
(simplified_ret1 == ret1) && (simplified_ret2 == ret2)) {
simplified_cmp_select_expr = v;
} else {
simplified_cmp_select_expr = alloc<CompareSelect>(
simplified_lhs,
simplified_rhs,
simplified_ret1,
simplified_ret2,
v->compare_select_op(),
v->bias());
}
GRAPH_DEBUG(
"(SimplifierUnderContext) after simplify: ",
std::to_string(simplified_cmp_select_expr));
analysis::Bound lhs_bound;
analysis::Bound rhs_bound;
auto lhs_has_bound = getLoopBoundInfo(simplified_lhs, &lhs_bound);
auto rhs_has_bound = getLoopBoundInfo(simplified_rhs, &rhs_bound);
if (!lhs_has_bound || !rhs_has_bound) {
GRAPH_DEBUG(
"(SimplifierUnderContext) Final: ",
std::to_string(simplified_cmp_select_expr));
return simplified_cmp_select_expr;
}
analysis::CmpEvalResult cmp_res =
analysis::compareBound(lhs_bound, rhs_bound, v->compare_select_op());
// Return the simplified ret1/ret2 if the compare result is deterministic.
// Otherwise, return the simplified CompareSelect directly.
auto ret_expr = (cmp_res == analysis::CmpEvalResult::True)
? simplified_ret1
: ((cmp_res == analysis::CmpEvalResult::False)
? simplified_ret2
: simplified_cmp_select_expr);
GRAPH_DEBUG("(SimplifierUnderContext) Final: ", std::to_string(ret_expr));
return ret_expr;
}
ExprPtr SimplifierUnderContext::mutate(ModPtr v) {
ExprPtr lhs = v->lhs();
ExprPtr rhs = v->rhs();
std::ostringstream oss;
if (auto ret = distributeMod(lhs, rhs, var_bound_info_)) {
GRAPH_DEBUG("SimplifierUnderContext: ", *v, " => ", *ret);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
return ret->accept_mutator(this);
}
// i % N -> i if the range of i's values is a subset of [0, N)
// where N is an integer constant
auto lhsVar = to<Var>(lhs);
ExprPtr rhsScalar = rhs->isConstant() ? rhs : nullptr;
if (lhsVar && rhsScalar && !rhsScalar->dtype().is_floating_point()) {
auto got = var_bound_info_.find(lhsVar);
if (got != var_bound_info_.end()) {
auto start = got->second.start;
auto end = got->second.end;
ExprPtr check_start = IRSimplifier::simplify(
alloc<CompareSelect>(start, immLike(start, 0), kGE));
ExprPtr check_end =
IRSimplifier::simplify(alloc<CompareSelect>(end, rhsScalar, kLE));
if (check_start->isConstant() && check_end->isConstant() &&
immediateEquals(check_start, 1) && immediateEquals(check_end, 1)) {
GRAPH_DEBUG("SimplifierUnderContext: ", *v, " => ", *lhsVar);
return lhsVar;
}
}
}
ExprPtr lhs_new = lhs->accept_mutator(this);
ExprPtr rhs_new = rhs->accept_mutator(this);
if (lhs == lhs_new && rhs == rhs_new) {
return v;
}
return alloc<Mod>(lhs_new, rhs_new);
}
bool SimplifierUnderContext::getLoopBoundInfo(
const ExprPtr& expr,
analysis::Bound* loop_bound_info) {
if (expr == nullptr)
return false;
if (expr->isConstant()) {
loop_bound_info->start = expr;
loop_bound_info->end = expr;
return true;
}
VarPtr var_key = to<Var>(expr);
if (var_key == nullptr) {
return false;
}
auto got = var_bound_info_.find(var_key);
if (got == var_bound_info_.end()) {
return false;
}
loop_bound_info->start = got->second.start;
// TODO: Need to add the boundary information(close/open) of a range to
// Bound. Currently, the VarBoundInfo comes from for-loop statement while
// the end of the boundary is open. But we assume the start and end of a
// range are always close. Hence, we explicitly convert the open boundary to
// close.
// [for-start, for-stop) => [for-start, for-stop -1]
loop_bound_info->end = IRSimplifier::simplify(
alloc<Sub>(got->second.end, immLike(got->second.end, 1)));
return true;
}
bool exprEquals(ExprPtr A, ExprPtr B) {
try {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
ExprPtr diff = IRSimplifier::simplify(alloc<Sub>(A, B));
if (!diff->isConstant()) {
return false;
}
return immediateEquals(diff, 0);
} catch (std::exception& e) {
return false;
}
}
ExprPtr IRSimplifier::simplify(ExprPtr e) {
GRAPH_DEBUG("(Simplifier) Original: ", std::to_string(e));
SimplifierUnderContext ctxsimplifier;
e = e->accept_mutator(&ctxsimplifier);
PolynomialTransformer simplifier;
e = e->accept_mutator(&simplifier);
// There may be terms left in the IR, expand them.
TermExpander expander(&simplifier);
e = e->accept_mutator(&expander);
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
if (!expander.check_safe()) {
throw malformed_input("eliminated null Allocation without free");
}
GRAPH_DEBUG("(Simplifier) Simplified: ", std::to_string(e));
return e;
}
StmtPtr IRSimplifier::simplify(StmtPtr s) {
GRAPH_DEBUG("(Simplifier) Original: ", std::to_string(s));
SimplifierUnderContext ctxsimplifier;
s = s->accept_mutator(&ctxsimplifier);
PolynomialTransformer simplifier;
s = s->accept_mutator(&simplifier);
if (s == nullptr) {
GRAPH_DEBUG("(Simplifier) Simplified: NULL");
return nullptr;
}
// There may be terms left in the IR, expand them.
TermExpander expander(&simplifier);
s = s->accept_mutator(&expander);
if (!expander.check_safe()) {
throw malformed_input("eliminated null Allocation without free");
}
GRAPH_DEBUG("(Simplifier) Simplified: ", std::to_string(s));
return s;
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|