File: kernel.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (383 lines) | stat: -rw-r--r-- 13,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#pragma once

#include <c10/util/variant.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/symbolic_shape_runtime_fusion.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/codegen.h>
#include <torch/csrc/jit/tensorexpr/lowerings.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>

namespace torch {
namespace jit {
namespace tensorexpr {

struct SmallSizeTPairHash {
 public:
  std::size_t operator()(const std::pair<size_t, size_t>& x) const {
    // hashing input index and then dim index
    return x.first * 128 + x.second;
  }
};

// Returns true if the TE fuser supports this conv2d.
bool conv2dIsSupportedJit(const Node* node);
// Returns true if the TE fuser supports this conv2d with mkldnn prepacked conv.
bool mkldnnPrepackedConvIsSupportedJit(const Node* node);
// Returns true if the the _convolution node is Conv2d.
bool isConv2d(const Node* node);
// Returns true if the TE fuser supports this matmul.
bool matmulIsSupported(const Node* node);
template <typename T>
inline std::vector<int64_t> bufferSizes(const T& t) {
  std::vector<int64_t> sizes;
  for (size_t i = 0; i < t->ndim(); i++) {
    sizes.push_back(*intValue(t->dim(i)));
  }
  return sizes;
}

// Get the dimensions of a value.
std::vector<ExprHandle> valueShape(const ArgValue& v);

// If v is a tensor, broadcast it to match the shape of axes, or return
// directly if v is a constant.
ExprHandle tensorOrConstant(
    const ArgValue& v,
    const std::vector<ExprHandle>& axes);

int64_t normalizeAndCheckIndex(int64_t idx, int64_t list_size);

ExprHandle broadcast(BufHandle b, const std::vector<ExprHandle>& axes);

ExprHandle constant(const ArgValue& v);

std::vector<ExprHandle> computeIndicesToBroadcast(
    const std::vector<ExprHandle>& outputAxes,
    const std::vector<ExprHandle>& inputSizes);

inline std::string getArgValueName(const ArgValue& a) {
  if (c10::get_if<tensorexpr::BufHandle>(&a)) {
    return "BufHandle";
  } else if (c10::get_if<tensorexpr::VarHandle>(&a)) {
    return "VarHandle";
  } else if (c10::get_if<double>(&a)) {
    return "double";
  } else if (c10::get_if<int64_t>(&a)) {
    return "int64_t";
  } else if (c10::get_if<bool>(&a)) {
    return "bool";
  } else if (c10::get_if<BufList>(&a)) {
    return "BufList";
  } else if (c10::get_if<DoubleList>(&a)) {
    return "DoubleList";
  } else if (c10::get_if<IntList>(&a)) {
    return "IntList";
  } else if (c10::get_if<ArgNone>(&a)) {
    return "None";
  } else {
    throw std::runtime_error("ArgValue type not handled in string conversion");
  }
}

template <class T>
std::vector<T> convertVecArgValue(const std::vector<ArgValue>& v) {
  std::vector<T> res;
  for (auto& x : v) {
    auto val = c10::get_if<T>(&x);
    if (val) {
      res.push_back(*val);
    } else {
      throw std::runtime_error(
          "vector type not homogeneous - found " + getArgValueName(x) +
          ", expected " + getArgValueName(v[0]));
    }
  }
  return res;
}

class TORCH_API TensorExprKernel {
  struct ConstantDescr {
    BufPtr buf;
    // Only one of ptr and node is used at a time
    // 1) ptr for the constant tensors
    // 2) node for the constant custom class ojects
    void* ptr = nullptr;
    Node* node = nullptr;
  };

 public:
  // Constructor Params:
  //  * subgraph
  //      - the graph that needs to be compiled.
  //  * kernel_func_name
  //      - the name that should be used for the generated kernel.
  //  * custom_lowerings
  //      - map that represents custom lowering definitions for a set of ops.
  //  * symbolic_shape_inputs
  //      - a list of symbolic graph inputs that represent the symbolic dims of
  //        the input tensors.
  //  * pre_alloc
  //      - a flag to control pre-allocation of buffers.
  explicit TensorExprKernel(
      const std::shared_ptr<Graph>& subgraph,
      const std::string& kernel_func_name,
      std::unordered_map<c10::Symbol, NNCLoweringFunction> custom_lowerings =
          {},
      std::vector<int64_t> symbolic_shape_inputs = {},
      bool pre_alloc = false,
      std::unordered_map<
          const torch::jit::Value*,
          std::vector<torch::jit::StrideInput>> symbolic_strides = {});

  explicit TensorExprKernel(
      const std::shared_ptr<Graph>& subgraph,
      std::unordered_map<c10::Symbol, NNCLoweringFunction> custom_lowerings =
          {},
      std::vector<int64_t> symbolic_shape_inputs = {},
      bool pre_alloc = false,
      std::unordered_map<
          const torch::jit::Value*,
          std::vector<torch::jit::StrideInput>> symbolic_strides = {})
      : TensorExprKernel(
            subgraph,
            SubgraphUtils::generateNameForGraph(subgraph),
            custom_lowerings,
            symbolic_shape_inputs,
            pre_alloc,
            symbolic_strides) {}

  void run(Stack& stack) const;
  void runFast(
      const std::vector<void*>& inputs,
      const std::vector<void*>& outputs) const;
  // Expected format of stack:
  //  ... <outputs> <inputs>
  // i.e., output IValues must be below the input IValues in the stack.
  void runWithAllocatedOutputs(Stack& stack) const;

  void fallback(Stack& stack) const {
    InterpreterState(code_).run(stack);
  }
  void recompile();

  StmtPtr getCodeGenStmt();

  std::string getCodeText(const std::string& attr = "") {
    return codegen_->getCodeText(attr);
  }

  const std::shared_ptr<Graph> graph() {
    return graph_;
  }

  const std::vector<ConstantDescr>& getConstantDescriptors() const {
    return constants_;
  }

  const std::vector<CodeGen::BufferArg>& getBufferArgs() const {
    return bufferArgs_;
  }

  const std::string& getKernelName() const {
    return codegen_->kernel_func_name();
  }

  const std::vector<int64_t>& getSymbolicShapeInputs() const {
    return symbolic_shape_inputs_;
  }

 private:
  enum BackendType {
    kUninitialized,
    kSimpleIREval,
    kLLVMCodeGen,
    kCudaCodeGen,
    kBlockCodeGen,
  };

  enum MemoryLayoutPolicy {
    kContiguous,
    kChannelsLastNdContiguous,
  };

  void compile();
  void genInputDebugNames();
  void runKernel(Stack& stack) const;

  std::vector<ExprHandle> sizesForValue(const torch::jit::Value* v);

  // These functions broadcast shape and also store a `hasBroadcast_` variable.
  std::vector<ExprHandle> broadcastShapesMut(
      const std::vector<ExprHandle>& a,
      const std::vector<ExprHandle>& b);
  std::vector<ExprHandle> broadcastShapesMut(
      std::vector<std::vector<ExprHandle>> shapes);

  ArgValue toArg(const torch::jit::Value* v) const;
  ExprHandle constant(const torch::jit::Value* v);

  Tensor computeValue(const torch::jit::Value* v);

  void bindConstant(const torch::jit::Value* v);

  StmtPtr transformLoops(BackendType backendType, StmtPtr st);

  std::string getCodeGenName(BackendType backendType);

  void getStaticOutputSizesAndStrides(
      const at::ArrayRef<IValue>& inputs,
      std::vector<std::vector<int64_t>>* static_sizes,
      std::vector<std::vector<int64_t>>* static_strides) const;

  std::vector<CodeGen::CallArg> prepareRunArgs(
      const at::ArrayRef<IValue>& inputs,
      std::vector<at::Tensor>& outputs) const;
  BackendType inferBackendTypeFromDevice(at::Device device);

  Tensor bindInput(const torch::jit::Value* input);
  BlockPtr bindAllInputs();

  // Deduce the memory layout policy to be propagated within
  // NNC fusion group. The memory layout policy could be `kContiguous`
  // or `kChannelsLastNdContiguous`.
  //    `kContiguous`: Always convert the non-contiguous input tensors and
  //        internal buffers to contiguous.
  //    `kChannelsLastNdContiguous`: Always convert the input tensors and
  //        internal buffers to channels-last contiguous.
  // Currently, the rule is simple.
  //    If all the input and out tensors of NNC fusion group are channels-last
  //    contiguous, the policy is `kChannelsLastNdContiguous`. Otherwise, it
  //    is always `kContiguous`.
  void deduceMemoryLayoutPolicy();

  Tensor convertSymbolicOutputToCorrectStrides(torch::jit::Value* v);
  Tensor convertStaticShapeOutputToCorrectStrides(torch::jit::Value* v);
  Tensor convertSymbolicOutputToCorrectStrides(
      const std::vector<ExprHandle>& sizes,
      const std::vector<size_t>& sorted_stride_indices_descending,
      const std::vector<ExprPtr>& strides,
      BufPtr& buf);

  NNCLoweringFunction getCustomLoweringFor(c10::Symbol op) const;
  std::unordered_map<c10::Symbol, NNCLoweringFunction> getCustomLowerings()
      const {
    return custom_lowerings_;
  }

  // Allocate memory for intermediate buffers at compile time.
  // Specifically, we pre-allocate memory for intermediate buffers with static
  // size and manage these buffers in the way we manage JIT constant tensors:
  // push the buf args into the stack so NNC IR can access them at runtime.
  std::vector<BufPtr> preAllocIntermediateBufs(
      const std::vector<BufPtr>& interm_bufs);

  struct UnpackedTensorOptions {
    c10::optional<c10::ScalarType> dtype;
    c10::optional<c10::Layout> layout;
    c10::optional<c10::Device> device;
    c10::optional<bool> pinned_memory;

    UnpackedTensorOptions(const c10::TensorOptions& opts)
        : dtype(optTypeMetaToScalarType(opts.dtype_opt())),
          layout(opts.layout_opt()),
          device(opts.device_opt()),
          pinned_memory(opts.pinned_memory_opt()) {}
  };

  ExprHandle getVarForShape(const c10::ShapeSymbol& ss);
  std::vector<ExprHandle> computeInputTensorDims(
      const torch::jit::Value* input);
  ExprHandle getStrideArg(size_t tensor_input, size_t stride_index);
  std::vector<ExprHandle> sizesFromSymbolicShape(
      const c10::SymbolicShape& shape);
  std::vector<ExprHandle> getInputStrides(
      const torch::jit::Value* input,
      const std::vector<ExprHandle>& inputTensorDims);
  std::vector<torch::jit::StrideInput>& getSymbolicStrideDesc(
      const torch::jit::Value* value);

  // Apply the optimizations to the graph owned by the current fusion group,
  // like concatenation optimization, post-op fusion, and some other graph-level
  // optimizations.
  void optimizeOwningGraph();

  int64_t nInputs_ = 0;
  int64_t nOutputs_ = 0;
  std::vector<CodeGen::BufferArg> bufferArgs_;
  std::vector<std::vector<int64_t>> tensorOutputSizes_;
  std::vector<std::vector<int64_t>> tensorOutputStrides_;
  std::vector<torch::jit::StrideInput> tensorOutputStrideDesc_;
  std::vector<bool> isOutputScalar_;
  std::vector<UnpackedTensorOptions> tensorOutputTensorOptions_;
  std::unordered_set<BufPtr> bufOutputs_;
  std::unordered_set<BufPtr> bufsToBeParallelized_;
  std::unordered_map<const torch::jit::Value*, BufPtr> bufs_;
  std::unordered_map<const torch::jit::Value*, VarHandle> scalars_;
  std::unordered_map<const torch::jit::Value*, std::string> input_name_map_;
  std::unique_ptr<CodeGen> codegen_;
  at::Device device_ = at::kCPU;
  std::shared_ptr<Graph> graph_;
  Code code_;
  bool allow_fallback_{false};
  bool use_fallback_{false};
  bool hasRandom_{false};
  bool hasBroadcast_{false};
  std::unordered_map<const torch::jit::Value*, std::vector<ExprHandle>>
      known_sizes_;

  std::vector<std::vector<ExprHandle>> tensorOutputSymbolicSizes_;
  // A map from ShapeSymbol.value() to the corresponding Var.
  std::unordered_map<int64_t, VarHandle> shapeSymbolToVar_;
  std::unordered_map<ExprPtr, size_t> shapeSymbolInputPos_;
  // List of values corresponding to the ShapeSymbols that are inputs to
  // kernel being compiled. The order of these values correspond to the order
  // of the symbolic inputs at the end of the list of inputs to the kernel.
  std::vector<int64_t> symbolic_shape_inputs_;
  bool has_symbolic_shapes_{false};

  std::vector<at::Tensor> unpacked_constant_tensors_;
  std::vector<ConstantDescr> constants_;

  std::unordered_map<c10::Symbol, NNCLoweringFunction> custom_lowerings_;
  StmtPtr stmt_ = nullptr;
  bool pre_alloc_{false};
  std::string kernel_func_name_;

  // index of stack, stride index of tensor that will be appended as a codegen
  // arg
  std::vector<std::pair<size_t, size_t>> input_stride_args_;
  // map from <input index, tensor dimension> to stride as arg VarHandle
  std::unordered_map<std::pair<size_t, size_t>, VarHandle, SmallSizeTPairHash>
      strideArgToVar_;
  std::unordered_map<
      const torch::jit::Value*,
      std::vector<torch::jit::StrideInput>>
      symbolic_strides_;

  // Memory layout to be propagated with fusion group
  MemoryLayoutPolicy memory_layout_policy_ = MemoryLayoutPolicy::kContiguous;
};

TORCH_API int& getTECudaPointwiseLoopLevels();
TORCH_API int& getTECudaPointwiseBlockCount();
TORCH_API int& getTECudaPointwiseBlockSize();
TORCH_API bool& getTEGenerateBlockCode();
TORCH_API bool& getTEMustUseLLVMOnCPU();
TORCH_API bool fallbackAllowed();
TORCH_API bool setFallbackAllowed(bool value);
TORCH_API bool& getCatWoConditionals();
TORCH_API bool& getOptConditionals();

TORCH_API c10::optional<at::Device> pickDeviceType(
    const at::ArrayRef<torch::jit::Value*>& inputs);

bool isContiguous(
    const torch::jit::Value* v,
    at::MemoryFormat memory_format = at::MemoryFormat::Contiguous);

} // namespace tensorexpr
} // namespace jit
} // namespace torch