1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
#ifdef TORCH_ENABLE_LLVM
#include <torch/csrc/jit/tensorexpr/external_functions.h>
#include <torch/csrc/jit/tensorexpr/intrinsic_symbols.h>
#include <torch/csrc/jit/tensorexpr/llvm_jit.h>
#include <llvm/ExecutionEngine/ExecutionEngine.h>
#include <llvm/ExecutionEngine/JITSymbol.h>
#include <llvm/ExecutionEngine/Orc/CompileUtils.h>
#include <llvm/ExecutionEngine/Orc/ExecutionUtils.h>
#include <llvm/ExecutionEngine/Orc/IRCompileLayer.h>
// llvm::SCEVPredicate has virtual function but non-virtual destructor
// https://github.com/llvm/llvm-project/blob/c1a0a213378a458fbea1a5c77b315c7dce08fd05/llvm/include/llvm/Analysis/ScalarEvolution.h#L198
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
#include <llvm/ExecutionEngine/Orc/LLJIT.h>
#pragma GCC diagnostic pop
#include <llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h>
#include <llvm/ExecutionEngine/Orc/SymbolStringPool.h>
#include <llvm/ExecutionEngine/RTDyldMemoryManager.h>
#include <llvm/ExecutionEngine/SectionMemoryManager.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/Mangler.h>
#include <llvm/Support/CFGUpdate.h>
#include <llvm/Support/DynamicLibrary.h>
#include <llvm/Support/Host.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Target/TargetMachine.h>
#include <torch/csrc/jit/tensorexpr/external_functions_registry.h>
#include <c10/util/Half.h>
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_set>
#include <vector>
using namespace torch::jit::tensorexpr;
template <typename T>
static llvm::JITTargetAddress toAddress(T* Ptr) {
return static_cast<llvm::JITTargetAddress>(reinterpret_cast<uintptr_t>(Ptr));
}
// Get subtarget features for the host.
static llvm::SubtargetFeatures getHostSubtargetFeatures() {
llvm::SubtargetFeatures subtargetFeatures;
llvm::StringMap<bool> featureMap;
llvm::sys::getHostCPUFeatures(featureMap);
for (auto& feature : featureMap) {
subtargetFeatures.AddFeature(feature.first(), feature.second);
}
return subtargetFeatures;
}
// Create a JTMB using the host's triple. CPU and attrs default to the host
// unless they are supplied.
static llvm::orc::JITTargetMachineBuilder makeJTMBFromHost(
c10::optional<std::string> cpu,
c10::optional<std::string> attrs) {
llvm::orc::JITTargetMachineBuilder JTMB(
(llvm::Triple(llvm::sys::getProcessTriple())));
JTMB.setCPU(cpu.value_or(llvm::sys::getHostCPUName().str()));
if (attrs) {
std::vector<std::string> features;
llvm::SubtargetFeatures::Split(features, *attrs);
JTMB.addFeatures(features);
} else {
JTMB.addFeatures(getHostSubtargetFeatures().getFeatures());
}
return JTMB;
}
// Create a JTMB using a given triple. Do not set cpu or attrs if not supplied.
static llvm::orc::JITTargetMachineBuilder makeJTMBFromTriple(
const std::string& triple,
c10::optional<std::string> cpu,
c10::optional<std::string> attrs) {
llvm::orc::JITTargetMachineBuilder JTMB((llvm::Triple(triple)));
if (cpu) {
JTMB.setCPU(*cpu);
}
if (attrs) {
std::vector<std::string> features;
llvm::SubtargetFeatures::Split(features, *attrs);
JTMB.addFeatures(features);
}
return JTMB;
}
static llvm::orc::JITTargetMachineBuilder makeTargetMachineBuilder(
c10::optional<std::string> triple,
c10::optional<std::string> cpu,
c10::optional<std::string> attrs) {
auto JTMB = triple ? makeJTMBFromTriple(*triple, cpu, attrs)
: makeJTMBFromHost(cpu, attrs);
JTMB.setCodeGenOptLevel(llvm::CodeGenOpt::Default);
JTMB.getOptions().AllowFPOpFusion = llvm::FPOpFusion::Fast;
return JTMB;
}
static void registerIntrinsics(
llvm::orc::JITDylib& JD,
llvm::orc::MangleAndInterner& Mangle,
std::unordered_set<std::string>& intrinsics) {
using namespace llvm;
using namespace llvm::orc;
auto entry = [&](const char* name, auto ptr) -> SymbolMap::value_type {
return {Mangle(name), {toAddress(ptr), JITSymbolFlags::None}};
};
SymbolMap symbols;
for (auto const& sym : getIntrinsicSymbols()) {
symbols.insert(entry(sym.symbol, sym.address));
intrinsics.insert(sym.symbol);
}
assertSuccess(JD.define(absoluteSymbols(symbols)));
for (auto& kv : getNNCFunctionRegistry()) {
assertSuccess(
JD.define(absoluteSymbols({entry(kv.first.c_str(), kv.second)})));
}
assertSuccess(JD.define(
absoluteSymbols({entry("DispatchParallel", DispatchParallel)})));
assertSuccess(
JD.define(absoluteSymbols({entry("nnc_aten_free", nnc_aten_free)})));
}
namespace llvm {
namespace orc {
// Lightly modified implementation from LLVM's Kaleidoscope JIT tutorial:
// https://llvm.org/docs/tutorial/BuildingAJIT1.html
#if LLVM_VERSION_MAJOR >= 9
class TORCH_API PytorchLLVMJITImpl {
private:
std::unique_ptr<TargetMachine> TM;
std::unique_ptr<LLJIT> LLJ;
std::unordered_set<std::string> intrinsics;
public:
PytorchLLVMJITImpl(
c10::optional<std::string> triple,
c10::optional<std::string> cpu,
c10::optional<std::string> attrs)
: TM(assertSuccess(makeTargetMachineBuilder(triple, cpu, attrs)
.createTargetMachine())),
LLJ(assertSuccess(LLJITBuilder()
.setJITTargetMachineBuilder(
makeTargetMachineBuilder(triple, cpu, attrs))
.create())) {
auto ProcSymbolsGenerator =
assertSuccess(DynamicLibrarySearchGenerator::GetForCurrentProcess(
LLJ->getDataLayout().getGlobalPrefix()));
auto& JD = LLJ->getMainJITDylib();
#if LLVM_VERSION_MAJOR == 9
JD.setGenerator(std::move(ProcSymbolsGenerator));
#else
JD.addGenerator(std::move(ProcSymbolsGenerator));
#endif
// Handle platform-specific symbol mangling
MangleAndInterner Mangle(LLJ->getExecutionSession(), LLJ->getDataLayout());
// Register implementations of intrinsics
registerIntrinsics(JD, Mangle, intrinsics);
}
void addModule(std::unique_ptr<Module> M, std::unique_ptr<LLVMContext> C) {
assertSuccess(
LLJ->addIRModule(ThreadSafeModule(std::move(M), std::move(C))),
"Failed to add module to compile layer");
}
JITSymbol findSymbol(const std::string Name) {
#if LLVM_VERSION_MAJOR >= 15
// Starting with llvm-15, LLJIT::lookup returns an address rather than a
// symbol. Even though an address is what we ultimately we want, we also
// want to avoid churning our internal APIs, so we wrap the returned address
// in a fake JITSymbol.
auto result = assertSuccess(LLJ->lookup(Name));
return JITSymbol(result.getValue(), JITSymbolFlags());
#else
return assertSuccess(LLJ->lookup(Name));
#endif
}
bool hasSymbol(const std::string& Name) {
return intrinsics.find(Name) != intrinsics.end();
}
TargetMachine& getTargetMachine() {
return *TM;
}
const DataLayout& getDataLayout() {
return LLJ->getDataLayout();
}
};
#elif LLVM_VERSION_MAJOR == 8 && LLVM_VERSION_PATCH == 20181009
class TORCH_API PytorchLLVMJITImpl {
private:
ExecutionSession ES;
std::shared_ptr<SymbolResolver> Resolver;
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
RTDyldObjectLinkingLayer ObjectLayer;
IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;
std::unordered_set<std::string> intrinsics;
public:
PytorchLLVMJITImpl(
c10::optional<std::string> triple,
c10::optional<std::string> cpu,
c10::optional<std::string> attrs)
: Resolver(createLegacyLookupResolver(
ES,
[this](const std::string& Name) -> JITSymbol {
if (auto Sym = CompileLayer.findSymbol(Name, false)) {
return Sym;
} else if (auto Err = Sym.takeError()) {
return std::move(Err);
}
if (auto SymAddr =
RTDyldMemoryManager::getSymbolAddressInProcess(Name)) {
return JITSymbol(SymAddr, JITSymbolFlags::Exported);
}
MangleAndInterner Mangle(ES, DL);
return assertSuccess(
lookup({&ES.getMainJITDylib()}, Mangle(Name)));
},
[](Error Err) {
assertSuccess(std::move(Err), "lookupFlags failed");
})),
TM(assertSuccess(makeTargetMachineBuilder(triple, cpu, attrs)
.createTargetMachine())),
DL(TM->createDataLayout()),
ObjectLayer(
ES,
[this](VModuleKey) {
return RTDyldObjectLinkingLayer::Resources{
std::make_shared<SectionMemoryManager>(), Resolver};
}),
CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
auto& JD = ES.getMainJITDylib();
MangleAndInterner Mangle(ES, DL);
registerIntrinsics(JD, Mangle, intrinsics);
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}
TargetMachine& getTargetMachine() {
return *TM;
}
void addModule(std::unique_ptr<Module> M, std::unique_ptr<LLVMContext> C) {
// Add the module to the JIT with a new VModuleKey.
auto K = ES.allocateVModule();
assertSuccess(
CompileLayer.addModule(K, std::move(M)),
"Failed to add module to compile layer");
}
JITSymbol findSymbol(const std::string Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return CompileLayer.findSymbol(MangledNameStream.str(), true);
}
bool hasSymbol(const std::string& Name) {
return intrinsics.find(Name) != intrinsics.end();
}
JITTargetAddress getSymbolAddress(const std::string Name) {
return assertSuccess(findSymbol(Name).getAddress());
}
void removeModule(VModuleKey K) {
assertSuccess(CompileLayer.removeModule(K));
}
const DataLayout& getDataLayout() {
return DL;
}
};
#else // LLVM_VERSION_MAJOR
#error Only LLVM versions 8 and above are supported.
#endif
PytorchLLVMJIT::PytorchLLVMJIT(
c10::optional<std::string> triple,
c10::optional<std::string> cpu,
c10::optional<std::string> attrs)
: impl_(std::make_unique<PytorchLLVMJITImpl>(triple, cpu, attrs)) {}
PytorchLLVMJIT::~PytorchLLVMJIT() = default;
void PytorchLLVMJIT::addModule(
std::unique_ptr<Module> M,
std::unique_ptr<LLVMContext> C) {
impl_->addModule(std::move(M), std::move(C));
}
JITSymbol PytorchLLVMJIT::findSymbol(const std::string Name) {
return impl_->findSymbol(std::move(Name));
}
bool PytorchLLVMJIT::hasSymbol(const std::string& Name) {
return impl_->hasSymbol(Name);
}
TargetMachine& PytorchLLVMJIT::getTargetMachine() {
return impl_->getTargetMachine();
}
const DataLayout& PytorchLLVMJIT::getDataLayout() {
return impl_->getDataLayout();
}
#if !defined(NDEBUG)
void dumpCFG(const llvm::cfg::Update<llvm::BasicBlock*>& update) {
// XXX: This method call is only here to placate gcov builds. The `dump`
// method is conditionally defined when NDEBUG is unset, so if you try to
// link a debug-mode pytorch with an opt-mode llvm, the symbol is undefined.
update.dump();
}
#endif
} // end namespace orc
} // end namespace llvm
#endif // TORCH_ENABLE_LLVM
|