1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
|
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <algorithm>
#include <stdexcept>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <c10/util/Logging.h>
#include <c10/util/irange.h>
#include <c10/util/string_utils.h>
#include <ATen/core/functional.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/bounds_inference.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_cloner.h>
#include <torch/csrc/jit/tensorexpr/ir_mutator.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_verifier.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace torch {
namespace jit {
namespace tensorexpr {
LoopNest::LoopNest(const LoopNest& other)
: root_stmt_(Stmt::clone(other.root_stmt_)),
output_bufs_(other.output_bufs_) {
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
LoopNest::LoopNest(StmtPtr stmt, std::unordered_set<BufPtr> output_bufs)
: root_stmt_(stmt), output_bufs_(std::move(output_bufs)) {
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
LoopNest::LoopNest(
const std::vector<Tensor>& output_tensors,
const std::vector<Tensor>& tensors_to_compute) {
initialize(output_tensors, tensors_to_compute);
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
LoopNest::LoopNest(const std::vector<Tensor>& output_tensors) {
initialize(output_tensors, output_tensors);
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
std::vector<BufPtr> LoopNest::getIntermediateBufs() const {
std::vector<BufPtr> result;
std::unordered_set<BufPtr> result_set;
auto input_bufs = getInputBufs();
auto bufs = NodeFinder<Buf>::find(root_stmt_);
for (auto buf : bufs) {
if (!output_bufs_.count(buf) && !input_bufs.count(buf) &&
!result_set.count(buf)) {
result.push_back(buf);
result_set.insert(buf);
}
}
return result;
}
const std::unordered_set<BufPtr> LoopNest::getInputBufs() const {
std::unordered_set<BufPtr> result;
auto buf_load_store_uses = findLoadOrStoreUses(root_stmt_);
for (auto& kv : buf_load_store_uses) {
bool has_store = false;
for (auto& use : kv.second) {
if (use.isStore) {
has_store = true;
break;
}
}
if (!has_store) {
result.insert(kv.first);
}
}
return result;
}
class IndexFlattener : public IRMutator {
public:
StmtPtr flatten(StmtPtr s) {
return s->accept_mutator(this);
}
ExprPtr mutate(LoadPtr v) override {
if (v->indices().size() == 1) {
return v;
}
return alloc<Load>(
v->dtype(),
v->buf(),
std::vector<ExprPtr>({flatten_index(
v->buf()->dims(), v->indices(), v->buf()->strides())}));
}
StmtPtr mutate(StorePtr v) override {
ExprPtr value = v->value();
ExprPtr new_value = value->accept_mutator(this);
if (v->indices().size() == 1 && value == new_value) {
return v;
}
std::vector<ExprPtr> indices = {
flatten_index(v->buf()->dims(), v->indices(), v->buf()->strides())};
v->set_indices(indices);
v->set_value(new_value);
return v;
}
};
static bool isValidIdentifierChar(char c, size_t pos) {
return islower(c) || isupper(c) || c == '_' || (pos > 0 && isdigit(c));
}
// replaces all invalid characters with underscore
std::string sanitizeName(const std::string& input_name) {
std::stringstream sanitized_name;
for (size_t i = 0; i < input_name.size(); ++i) {
if (isValidIdentifierChar(input_name[i], i)) {
sanitized_name << input_name[i];
} else {
if (i == 0) {
// Don't start names with underscore
sanitized_name << "v";
}
sanitized_name << "_";
}
}
return sanitized_name.str();
}
class VarNameSanitizer : public IRMutator {
public:
ExprPtr mutate(BufPtr v) override {
if (seen_bufs_.count(v)) {
return v;
}
const std::string& name = v->name_hint();
auto new_name = sanitizeName(name);
if (taken_names_.count(new_name)) {
new_name = getNextAvailableName(new_name);
}
v->set_name_hint(new_name);
taken_names_.insert(new_name);
seen_bufs_.insert(v);
return v;
}
ExprPtr mutate(VarPtr v) override {
if (seen_vars_.count(v)) {
return v;
}
const std::string& name = v->name_hint();
auto new_name = sanitizeName(name);
if (taken_names_.count(new_name)) {
new_name = getNextAvailableName(new_name);
}
v->set_name_hint(new_name);
taken_names_.insert(new_name);
seen_vars_.insert(v);
return v;
}
StmtPtr mutate(ForPtr v) override {
auto new_name = getNextAvailableName(getIndexVarNameAtLevel(level_));
if (seen_index_vars_.count(v->var())) {
auto new_var = alloc<Var>("", v->var()->dtype());
Substitute(v, {{v->var(), new_var}});
}
v->var()->set_name_hint(new_name);
seen_index_vars_.insert(v->var());
seen_vars_.insert(v->var());
taken_names_.insert(new_name);
level_++;
v->body()->accept_mutator(this);
level_--;
v->start()->accept_mutator(this);
v->stop()->accept_mutator(this);
return v;
}
std::string getIndexVarNameAtLevel(int level_) {
int names_num = index_var_names_.size();
int counter = level_ / names_num;
if (counter == 0) {
return index_var_names_[level_ % names_num];
} else {
return index_var_names_[level_ % names_num] + std::to_string(counter);
}
}
std::string getNextAvailableName(const std::string& base_name) {
std::string name = base_name;
int counter = 0;
while (taken_names_.count(name)) {
counter++;
name = base_name + "_" + std::to_string(counter);
}
return name;
}
private:
std::vector<std::string> index_var_names_ =
{"i", "j", "k", "l", "m", "n", "o", "p"};
std::unordered_set<std::string> taken_names_;
std::unordered_set<VarPtr> seen_index_vars_;
std::unordered_set<VarPtr> seen_vars_;
std::unordered_set<BufPtr> seen_bufs_;
int level_ = 0;
};
StmtPtr LoopNest::sanitizeNames(StmtPtr s) {
VarNameSanitizer r;
s->accept_mutator(&r);
return s;
}
class Vectorizer : public IRMutator {
public:
StmtPtr vectorize(ForPtr v) {
StmtPtr body = v->body();
VarPtr var = v->var();
ExprPtr start = v->start();
ExprPtr stop = v->stop();
auto start_imm = intValue(start);
auto stop_imm = intValue(stop);
if (!start_imm) {
// Can't vectorize due to non-constant loop start!
success_ = false;
return v;
}
if (!stop_imm) {
// Can't vectorize due to non-constant loop stop!
success_ = false;
return v;
}
var_ = var;
start_ = immLike(start, *start_imm);
lanes_ = *stop_imm;
StmtPtr new_body = body->accept_mutator(this);
if (new_body == body) {
// Vectorization failed!
success_ = false;
return v;
}
return new_body;
}
bool success() const {
return success_;
}
ExprPtr mutate(AddPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) + ExprHandle(inputs[1]);
});
}
ExprPtr mutate(SubPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) - ExprHandle(inputs[1]);
});
}
ExprPtr mutate(MulPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) * ExprHandle(inputs[1]);
});
}
ExprPtr mutate(DivPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) / ExprHandle(inputs[1]);
});
}
ExprPtr mutate(ModPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) % ExprHandle(inputs[1]);
});
}
ExprPtr mutate(AndPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) & ExprHandle(inputs[1]);
});
}
ExprPtr mutate(OrPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) | ExprHandle(inputs[1]);
});
}
ExprPtr mutate(XorPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) ^ ExprHandle(inputs[1]);
});
}
ExprPtr mutate(LshiftPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) << ExprHandle(inputs[1]);
});
}
ExprPtr mutate(RshiftPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) >> ExprHandle(inputs[1]);
});
}
ExprPtr mutate(MaxPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return Max::make(
ExprHandle(inputs[0]), ExprHandle(inputs[1]), v->propagate_nans());
});
}
ExprPtr mutate(MinPtr v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return Min::make(
ExprHandle(inputs[0]), ExprHandle(inputs[1]), v->propagate_nans());
});
}
ExprPtr mutate(CompareSelectPtr v) override {
std::vector<ExprPtr> inputs = {
v->lhs(), v->rhs(), v->ret_val1(), v->ret_val2()};
return try_vectorize(v, inputs, [&]() {
return CompareSelect::make(
ExprHandle(inputs[0]),
ExprHandle(inputs[1]),
ExprHandle(inputs[2]),
ExprHandle(inputs[3]),
v->compare_select_op(),
v->bias());
});
}
ExprPtr mutate(BitCastPtr v) override {
std::vector<ExprPtr> inputs = {v->src_value()};
return try_vectorize(v, inputs, [&]() {
return BitCast::make(
Dtype(v->dtype().scalar_type(), lanes_), ExprHandle(inputs[0]));
});
}
ExprPtr mutate(CastPtr v) override {
std::vector<ExprPtr> inputs = {v->src_value()};
return try_vectorize(v, inputs, [&]() {
return Cast::make(
Dtype(v->dtype().scalar_type(), lanes_), ExprHandle(inputs[0]));
});
}
ExprPtr mutate(VarPtr v) override {
if (v == var_) {
return Ramp::make(
ExprHandle(start_), ExprHandle(immLike(start_, 1)), lanes_)
.node();
}
return v;
}
ExprPtr mutate(RampPtr v) override {
ExprPtr base = v->base();
ExprPtr stride = v->stride();
ExprPtr base_new = base->accept_mutator(this);
ExprPtr stride_new = stride->accept_mutator(this);
if (base_new == base && stride_new == stride) {
return v;
}
// Can't vectorize a Ramp!
success_ = false;
return v;
}
ExprPtr mutate(LoadPtr v) override {
Dtype dtype(v->dtype().scalar_type(), lanes_);
BufPtr buf = v->buf();
std::vector<ExprPtr> inputs = {v->flat_index()};
return try_vectorize(v, inputs, [&]() {
return Load::make(dtype, BufHandle(buf), {ExprHandle(inputs[0])});
});
}
ExprPtr mutate(ReduceOpPtr v) override {
Dtype dtype(v->dtype().scalar_type(), lanes_);
std::vector<ExprPtr> inputs = {v->body()};
auto out = try_vectorize(v, inputs, [&]() {
return ExprHandle(
alloc<ReduceOp>(inputs[0], v->reduce_args(), v->reducer()));
});
return out;
}
ExprPtr mutate(BroadcastPtr v) override {
ExprPtr val = v->value();
ExprPtr new_val = val->accept_mutator(this);
if (new_val == val) {
return v;
}
// Can't vectorize a Broadcast!
success_ = false;
return v;
}
ExprPtr mutate(IfThenElsePtr v) override {
ExprPtr condition = v->condition();
ExprPtr new_condition = condition->accept_mutator(this);
if (new_condition != condition) {
// Can't vectorize an IfThenElse condition!
success_ = false;
return v;
}
std::vector<ExprPtr> inputs = {v->true_value(), v->false_value()};
return try_vectorize(v, inputs, [&]() {
return IfThenElse::make(
ExprHandle(condition), ExprHandle(inputs[0]), ExprHandle(inputs[1]));
});
}
ExprPtr mutate(IntrinsicsPtr v) override {
std::vector<ExprPtr> inputs = v->params();
return try_vectorize(v, inputs, [&]() {
return ExprHandle(alloc<Intrinsics>(v->op_type(), inputs));
});
}
StmtPtr mutate(StorePtr v) override {
BufPtr buf = v->buf();
std::vector<ExprPtr> inputs = {v->flat_index(), v->value()};
return try_vectorize(v, inputs, [&]() {
return Store::make(
BufHandle(buf), {ExprHandle(inputs[0])}, ExprHandle(inputs[1]));
});
}
StmtPtr mutate(ForPtr v) override {
VarPtr var = v->var();
ExprPtr start = v->start();
ExprPtr stop = v->stop();
LoopOptions loop_options = v->loop_options();
ExprPtr new_start = start->accept_mutator(this);
ExprPtr new_stop = stop->accept_mutator(this);
if (new_start != start || new_stop != stop) {
// Can't vectorize nested For with dependent loop bounds!
success_ = false;
return v;
}
StmtPtr body = v->body();
StmtPtr new_body = body->accept_mutator(this);
if (new_body == body) {
return (ForPtr)v;
}
return alloc<For>(var, new_start, new_stop, new_body, loop_options);
}
StmtPtr mutate(BlockPtr v) override {
// IRMutator does in-place mutations. But the logic in vectorization checks
// for success by looking for a new stmt. So, we override the in-place
// mutations and create a clone here if any of its statements change.
// TODO: Can we change the logic of vectorizer so that we don't need this?
bool any_change = false;
std::vector<StmtPtr> stmts;
for (StmtPtr stmt : *v) {
StmtPtr stmt_new = stmt->accept_mutator(this);
if (stmt != stmt_new) {
any_change = true;
} else {
stmt_new = Stmt::clone(stmt);
}
if (stmt_new) {
stmts.push_back(stmt_new);
}
}
if (any_change) {
return alloc<Block>(stmts);
}
return v;
}
template <typename T>
ExprPtr try_vectorize(ExprPtr e, std::vector<ExprPtr>& inputs, T&& vec_ctor) {
bool vectorize = vectorize_inputs(inputs);
if (vectorize) {
return vec_ctor().node();
}
return e;
}
template <typename T>
StmtPtr try_vectorize(StmtPtr s, std::vector<ExprPtr>& inputs, T&& vec_ctor) {
bool vectorize = vectorize_inputs(inputs);
if (vectorize) {
return vec_ctor();
}
return (StmtPtr)s;
}
bool vectorize_inputs(std::vector<ExprPtr>& inputs) {
bool any_vectorized = false;
std::vector<ExprPtr> new_inputs;
// Attempt to vectorize each input.
for (ExprPtr& in : inputs) {
ExprPtr new_in = in->accept_mutator(this);
new_inputs.push_back(new_in);
if (new_in != in) {
any_vectorized = true;
}
}
// If none of them vectorized, then don't vectorize this.
if (!any_vectorized) {
return false;
}
// Insert broadcasts for any inputs that weren't vectorized.
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i] == new_inputs[i]) {
inputs[i] = Broadcast::make(ExprHandle(inputs[i]), lanes_).node();
} else {
inputs[i] = new_inputs[i];
}
}
// And then vectorize this node.
return true;
}
VarPtr var_ = nullptr;
int lanes_ = 0;
ExprPtr start_ = nullptr;
bool success_ = true;
};
bool LoopNest::vectorize(ForPtr f) {
BlockPtr b = to<Block>(f->get_parent());
if (!b) {
return false;
}
// Can't vectorize reduction axes.
auto reductions = NodeFinder<ReduceOp>::find(f);
for (auto r : reductions) {
if (std::find(r->reduce_args().begin(), r->reduce_args().end(), f->var()) !=
r->reduce_args().end()) {
return false;
}
}
Vectorizer v;
StmtPtr new_f = nullptr;
new_f = Stmt::clone(f);
normalize(to<For>(new_f));
new_f = FlattenIndexes(new_f);
new_f = v.vectorize(to<For>(new_f));
if (!v.success()) {
// We clone f before vectorizing. So, any partial vectorization will
// have modified the clone. In case of an exception, we can continue
// using f.
new_f = f;
}
if (new_f != f) {
b->replace_stmt(f, IRSimplifier::simplify(new_f));
return true;
}
// Vectorization was not successful.
return false;
}
void LoopNest::initialize(
const std::vector<Tensor>& output_tensors,
const std::vector<Tensor>& tensors_to_compute) {
for (auto t : output_tensors) {
output_bufs_.insert(t.buf());
}
std::vector<StmtPtr> loops;
for (Tensor t : tensors_to_compute) {
StmtPtr loop = t.stmt();
if (loop->get_parent()) {
std::cerr << "Error: creating a loopnest from already used Tensors\n";
loops = {};
break;
}
// Flatten initializers.
if (BlockPtr block = to<Block>(loop)) {
for (auto s : block->stmts()) {
block->remove_stmt(s);
loops.push_back(s);
}
} else {
loops.push_back(loop);
}
}
root_stmt_ = alloc<Block>(loops);
}
class FunctionInliner : public IRMutator {
public:
FunctionInliner(StorePtr producer, std::unordered_set<BufPtr> outputs)
: buf_(producer->buf()),
producer_(producer),
outputs_(std::move(outputs)) {
success_ = true;
for (auto i : producer->indices()) {
if (auto index_var = to<Var>(i)) {
index_vars_.insert(index_var);
producer_index_vars_.push_back(index_var);
} else {
// If the index can be a constant, then that dimension must have size 1
// (since we don't support in-place writes). Resolves issue 52581.
auto index_val = evalInt(i);
if (!index_val || *index_val != 0) {
success_ = false;
break;
}
producer_index_vars_.push_back(nullptr);
}
}
}
bool success() const {
return success_;
}
private:
ExprPtr mutate_loads(BufPtr buf, std::vector<ExprPtr> dims) {
std::vector<VarPtr> index_vars;
if (buf->ndim() != producer_index_vars_.size()) {
// Dimensions of producer and consumer expressions do not match in inliner
// in the fuser
success_ = false;
return nullptr;
}
for (const auto i : c10::irange(buf->ndim())) {
VarPtr func_callee_arg = producer_index_vars_.at(i);
ExprPtr func_caller_param = dims.at(i);
if (func_callee_arg == nullptr) {
continue;
}
auto iter = inline_mapping_.find(func_callee_arg);
if (iter != inline_mapping_.end()) {
// Duplicated variables
success_ = false;
return nullptr;
}
// Add a mapping for each function parameter to it's source name.
inline_mapping_[func_callee_arg] = func_caller_param;
GRAPH_DEBUG(
"ComputeInline: Inline mapping: ",
std::to_string(func_callee_arg),
" -> ",
std::to_string(func_caller_param));
index_vars.push_back(func_callee_arg);
}
// Call the actual replacement.
ExprPtr body = producer_->value();
GRAPH_DEBUG("ComputeInline: Before rewriting body: ", std::to_string(body));
ExprPtr result = Expr::clone(body)->accept_mutator(this);
GRAPH_DEBUG(
"ComputeInline: After rewriting body: ", std::to_string(result));
// Remove the mappings we created for this function parameters.
for (auto v : index_vars) {
for (auto& pair : random_bindings_) {
if (pair.second.erase(v)) {
ExprPtr inlined = inline_mapping_[v];
for (auto nv : VarFinder::find(inlined)) {
pair.second.insert(nv);
}
}
}
GRAPH_DEBUG("ComputeInline: Inline mapping: erasing", std::to_string(v));
inline_mapping_.erase(v);
}
return result;
}
ExprPtr mutate(LoadPtr v) override {
if (!success()) {
return v;
}
BufPtr buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
if (v->indices().size() != buf->ndim()) {
// Number of indices doesn't match buf rank in the fuser
success_ = false;
return v;
}
auto result = mutate_loads(buf, v->indices());
if (!result) {
// If we don't inline successfully return the given load.
success_ = false;
return v;
}
return result;
}
// Replace the target variable with the caller expressions.
ExprPtr mutate(VarPtr v) override {
if (!success()) {
return v;
}
auto iter = inline_mapping_.find(v);
if (iter == inline_mapping_.end()) {
return v;
} else {
ExprPtr expr = iter->second;
// Continue to transform the value from the lookup table.
return expr->accept_mutator(this);
}
}
// Handle random intrinsics which should be cached.
ExprPtr mutate(IntrinsicsPtr v) override {
if (!success()) {
return v;
}
if (!in_producer_ || v->op_type() != kRand) {
return IRMutator::mutate(v);
}
// Create a new Let Statement for the random variable, which we can refer
// to multiple times and resolve the same value (ie. store it in a scalar
// rather than the Tensor).
const std::string& name = buf_->name_hint();
VarPtr new_var = alloc<Var>(name, v->dtype());
random_bindings_[alloc<Let>(new_var, v)] = index_vars_;
GRAPH_DEBUG(
"ComputeInline: created random bindings for ", std::to_string(new_var));
return new_var;
}
// Remove the buffer write from the inlined function.
StmtPtr mutate(StorePtr v) override {
if (!success()) {
return v;
}
// If the buf_ is in the outputs set, keep its statement intact. Otherwise,
// remove it.
if (v == producer_ && !outputs_.count(buf_)) {
in_producer_ = true;
producer_ = to<Store>(IRMutator::mutate(v));
if (!producer_) {
// Producer statement for output buf should remain non-null in the fuser
success_ = false;
return v;
}
in_producer_ = false;
return nullptr;
} else {
return IRMutator::mutate(v);
}
}
// Any Random Instrinsics that were turned into vars must be inserted here.
StmtPtr mutate(BlockPtr v) override {
if (!success()) {
return v;
}
std::vector<StmtPtr> stmts;
for (StmtPtr stmt : *v) {
StmtPtr stmt_new = stmt->accept_mutator(this);
if (!stmt_new) {
continue;
}
if (stmt == stmt_new) {
stmt_new = Stmt::clone(stmt);
}
stmts.push_back(stmt_new);
}
return Block::make(stmts);
}
StmtPtr mutate(ForPtr v) override {
if (!success()) {
return v;
}
ForPtr res = to<For>(IRMutator::mutate(v));
if (!res) {
return nullptr;
}
// Find any random bindings that should be defined in this loops body.
std::vector<LetPtr> bindings_this_loop;
VarPtr fv = v->var();
for (auto& pair : random_bindings_) {
auto& index_var = pair.second;
if (index_var.erase(fv)) {
bindings_this_loop.push_back(pair.first);
}
}
for (auto l : bindings_this_loop) {
res->body()->prepend_stmt(l);
random_bindings_.erase(l);
}
return res;
}
private:
BufPtr buf_;
StorePtr producer_;
// Index Vars present in the producer.
std::unordered_set<VarPtr> index_vars_;
std::vector<VarPtr> producer_index_vars_;
std::unordered_map<VarPtr, ExprPtr> inline_mapping_;
// In the producer's scope - we need to bind any calls to rand().
bool in_producer_ = false;
std::unordered_map<LetPtr, std::unordered_set<VarPtr>> random_bindings_;
std::unordered_set<BufPtr> outputs_;
bool success_ = true;
};
StmtPtr computeInlineImpl(
BufPtr b,
StmtPtr stmt,
const std::unordered_set<BufPtr>& output_bufs) {
// If buf is used or defined in an ExternalCall, we cannot inline it
auto buf_load_store_uses = findLoadOrStoreUses(stmt);
if (!buf_load_store_uses.count(b)) {
return nullptr;
}
for (auto& use : buf_load_store_uses.at(b)) {
StmtPtr s = use.s;
if (to<ExternalCall>(s) || to<ExternalCallWithAlloc>(s)) {
return nullptr;
}
}
// Find producers.
StorePtr relevant_store{nullptr};
auto stores = NodeFinder<Store>::find(stmt);
for (auto s : stores) {
if (s->buf() == b) {
auto reductions = NodeFinder<ReduceOp>::find(s);
if (!reductions.empty()) {
// Cannot inline a reduction computation
return nullptr;
}
if (relevant_store != nullptr) {
// Cannot inline Buf with multiple Tensors
return nullptr;
}
relevant_store = s;
}
}
if (!relevant_store) {
// Cannot find a relevant store to inline a buf in the fuser
return nullptr;
}
GRAPH_DEBUG("ComputeInline: Def: ", std::to_string(relevant_store));
FunctionInliner inliner(relevant_store, output_bufs);
auto result = stmt->accept_mutator(&inliner);
if (inliner.success()) {
return result;
}
return nullptr;
}
bool LoopNest::computeInline(BufPtr b) {
// Inlining may not always be successful. Since all mutations now happen
// in-place, an unsuccessful inlining transformation might leave the IR
// in an invalid state. To get around this problem, we clone the root stmt,
// try inlining on the clone, and if it succeeds, we proceed to perform
// inlining on the actual root stmt. This way the root stmt will always be
// in a valid state.
auto stmt_copy = Stmt::clone(root_stmt_);
auto try_inline = computeInlineImpl(b, stmt_copy, output_bufs_);
if (!try_inline) {
return false;
}
root_stmt_ = computeInlineImpl(b, root_stmt_, output_bufs_);
return true;
}
bool LoopNest::computeInline(StmtPtr s) {
auto s_store = to<Store>(s);
if (s_store == nullptr) {
// Could not find buffer producer to inline
return false;
}
return computeInline(s_store->buf());
}
// inlining buffers with multiple uses can create duplicated work, which can
// slow down cpu code generation but is enabled on gpu because it avoids
// difficult synchronization logic across blocks. Inlining trivial reads does
// not duplicate work
void LoopNest::inlineIntermediateBufs(bool allow_duplicated_work) {
std::unordered_set<BufPtr> bufs_to_inline;
auto intermediate_bufs = getIntermediateBufs();
if (allow_duplicated_work) {
bufs_to_inline.insert(intermediate_bufs.begin(), intermediate_bufs.end());
} else {
auto buf_load_store_uses = findLoadOrStoreUses(root_stmt_);
auto input_bufs = getInputBufs();
for (auto buf : intermediate_bufs) {
TORCH_INTERNAL_ASSERT(
buf_load_store_uses.count(buf),
buildErrorMessage(
"Could not find uses of buf '" + buf->name_hint() +
"' in the fuser."));
std::vector<BufLoadOrStoreUse>& uses = buf_load_store_uses[buf];
auto stores = c10::filter(
uses, [](const BufLoadOrStoreUse& use) { return use.isStore; });
// if the intermediate is the buffer formed from reading in the input
// tensors, always inline, bc we are not duplicating any work
// and avoiding an intermediary buffer
if (stores.size() == 1) {
if (auto store = to<Store>(stores[0].s)) {
auto input_as_load = to<Load>(store->value());
if (input_as_load && input_bufs.count(input_as_load->buf())) {
bufs_to_inline.insert(buf);
continue;
}
} else {
// If S is not a store, it must be an ExternalCall.
TORCH_INTERNAL_ASSERT(
to<ExternalCall>(stores[0].s) ||
to<ExternalCallWithAlloc>(stores[0].s),
buildErrorMessage(
"Expected stmt: " + std::to_string(stores[0].s) +
"\nto be either a Store or an ExternalCall in the fuser."));
}
}
// all bufs will have at least one store (if they have > 1 they cant be
// inlined anyway)
size_t reads = uses.size() - 1;
// if only one read, we can inline it without duplicating work
if (reads <= 1) {
bufs_to_inline.insert(buf);
}
}
}
if (allow_duplicated_work) {
bufs_to_inline.insert(output_bufs_.begin(), output_bufs_.end());
}
for (auto b : bufs_to_inline) {
computeInline(b);
}
}
// TODO: Unify with DepTracker
class LoadOrStoreUseFinder : public IRVisitor {
public:
std::unordered_map<BufPtr, std::vector<BufLoadOrStoreUse>> findUses(
StmtPtr s) {
uses_.clear();
s->accept(this);
return uses_;
}
private:
void visit(StorePtr v) override {
if (stores_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({(StmtPtr)v, true});
}
last_stmt_ = (StmtPtr)v;
IRVisitor::visit(v);
}
void visit(ExternalCallPtr v) override {
if (stores_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({(StmtPtr)v, true});
}
last_stmt_ = (StmtPtr)v;
for (BufPtr input_buf : v->buf_args()) {
if (loads_[input_buf].insert(last_stmt_).second) {
uses_[input_buf].push_back({last_stmt_, false});
}
}
IRVisitor::visit(v);
}
void visit(ExternalCallWithAllocPtr v) override {
for (const auto& out_buf : v->buf_out_args()) {
if (stores_[out_buf].insert(last_stmt_).second) {
uses_[out_buf].push_back({(StmtPtr)v, true});
}
}
last_stmt_ = (StmtPtr)v;
for (const auto& input_buf : v->buf_args()) {
if (loads_[input_buf].insert(last_stmt_).second) {
uses_[input_buf].push_back({last_stmt_, false});
}
}
IRVisitor::visit(v);
}
void visit(LoadPtr v) override {
if (loads_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({last_stmt_, false});
}
IRVisitor::visit(v);
}
StmtPtr last_stmt_ = nullptr;
std::unordered_map<BufPtr, std::vector<BufLoadOrStoreUse>> uses_;
// Sets of loads and stores in order to keep the results unique
std::unordered_map<BufPtr, std::unordered_set<StmtPtr>> loads_;
std::unordered_map<BufPtr, std::unordered_set<StmtPtr>> stores_;
};
std::unordered_map<BufPtr, std::vector<BufLoadOrStoreUse>> findLoadOrStoreUses(
StmtPtr s) {
LoadOrStoreUseFinder uf;
return uf.findUses(s);
}
class ContainedStmtsFinder : public IRVisitor {
public:
// Simply list all Stores and Block that are children of the given stmt
const std::unordered_set<StmtPtr>& findContainedStmts(StmtPtr s) {
contained_.clear();
s->accept(this);
return contained_;
}
private:
void visit(StorePtr v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
void visit(ExternalCallPtr v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
void visit(ExternalCallWithAllocPtr v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
void visit(BlockPtr v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
std::unordered_set<StmtPtr> contained_;
};
bool containsAll(const std::vector<BufLoadOrStoreUse>& uses, BlockPtr b) {
std::unordered_set<StmtPtr> not_found;
for (auto use : uses) {
not_found.insert(use.s);
}
ContainedStmtsFinder csf;
const std::unordered_set<StmtPtr>& contained = csf.findContainedStmts(b);
for (auto s : contained) {
not_found.erase(s);
}
return not_found.empty();
}
BlockPtr findParentBlock(StmtPtr s) {
while (s) {
if (auto b = to<Block>(s)) {
return b;
}
s = s->get_parent();
}
return nullptr;
}
BlockPtr findLowestContainingBlock(const std::vector<BufLoadOrStoreUse>& uses) {
// TODO: we're not using the most efficient algorithm here for simplicity.
// Replace with something more performant in case it becomes a bottleneck.
BlockPtr b = findParentBlock(uses[0].s);
while (b && !containsAll(uses, b)) {
b = findParentBlock(b->get_parent());
}
return b;
}
class StmtDeleter : public IRMutator {
public:
StmtDeleter(const std::unordered_set<StmtPtr>& targets) : targets_(targets) {}
private:
StmtPtr mutate(BlockPtr v) override {
std::vector<StmtPtr> stmts;
for (auto s : v->stmts()) {
if (targets_.count(s) == 0) {
StmtPtr ns = s->accept_mutator(this);
if (ns) {
stmts.push_back(Stmt::clone(ns));
}
}
}
return Block::make(stmts);
}
const std::unordered_set<StmtPtr>& targets_;
};
void LoopNest::eliminateDeadStores() {
using namespace analysis;
MemDependencyChecker checker(getInputBufs(), getOutputBufs());
root_stmt_->accept(&checker);
std::unordered_set<StmtPtr> deadStores;
std::vector<std::shared_ptr<AccessInfo>> outputAccesses;
for (auto o : getOutputBufs()) {
outputAccesses.push_back(checker.output(o));
}
for (auto& info : checker.getHistory()) {
if (!info->isWrite()) {
continue;
}
bool found = false;
for (auto& output : outputAccesses) {
if (checker.dependsIndirectly(output, info)) {
found = true;
break;
}
}
if (!found) {
deadStores.insert(info->stmt());
}
}
StmtDeleter deleter(deadStores);
root_stmt_ = root_stmt_->accept_mutator(&deleter);
}
void LoopNest::prepareForCodegen() {
// Expand reduction ops.
ReductionExpander reduceExpander;
root_stmt_ = reduceExpander.expand(root_stmt_);
root_stmt_ = FlattenIndexes(root_stmt_);
}
namespace {
// This is extended from IRCloner instead of IRMutator because we want all
// the rest of the IR nodes (the ones not touched directly) to be cloned.
class IfThenElseReplacer : public IRCloner {
public:
IfThenElseReplacer(IfThenElsePtr to_replace, ExprPtr new_expr)
: to_replace_(to_replace), new_expr_(new_expr) {}
ExprPtr mutate(IfThenElsePtr i) override {
if (i == to_replace_) {
return new_expr_;
}
return IRCloner::mutate(i);
}
private:
IfThenElsePtr to_replace_;
ExprPtr new_expr_;
};
// Check if the given condition is optimizable.
// Specifically, this function looks for the following pattern:
// "var < expr"
//
// If this pattern is found, then this function:
// * sets `cond_var` to `var`,
// * sets `compared_value` to `expr`, and
// * returns true.
bool isConditionOptimizable(
ExprPtr condition,
VarPtr* cond_var,
ExprPtr* compared_value) {
auto cs = to<CompareSelect>(condition);
if (cs && cs->compare_select_op() == kLT) {
auto var = to<Var>(cs->lhs());
if (var) {
*cond_var = var;
*compared_value = cs->rhs();
return true;
}
}
return false;
}
// Checks if the given if-then-else expression is a conditional that is
// generated from `aten::cat`.
//
// The expected format of conditionals is:
// IfThenElse(var < val1? 1 : 0,
// IfThenElse (var < val2? 1 : 0,
// IfThenElse (var < val3? 1 : 0,
// sub-expr1,
// sub-expr2),
// sub-expr3),
// sub-expr4)
//
// If such a conditional is found, this function also sets:
// * cond_var to the condition variable found in this expression.
// * comp_values to the list of compared values in the condition expressions.
// * sub_exprs to the list of sub-expressions that are the result of this
// if-then-else expression.
bool isConditionalFromCat(
IfThenElsePtr ite,
VarPtr* cond_var,
std::vector<ExprPtr>* comp_values,
std::vector<ExprPtr>* sub_exprs) {
VarPtr var = nullptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ExprPtr comp_value;
if (isConditionOptimizable(ite->condition(), &var, &comp_value)) {
if (*cond_var == nullptr) {
*cond_var = var;
} else if (*cond_var != var) {
// Different condition variables found in nested if-then-else
// expressions. Can not optimize such cases.
return false;
}
auto true_ite = to<IfThenElse>(ite->true_value());
if (true_ite) {
if (!isConditionalFromCat(true_ite, cond_var, comp_values, sub_exprs)) {
return false;
}
} else {
sub_exprs->push_back(ite->true_value());
}
auto false_ite = to<IfThenElse>(ite->false_value());
if (false_ite) {
return false;
}
comp_values->push_back(comp_value);
sub_exprs->push_back(ite->false_value());
return true;
}
return false;
}
bool areConstantsAndSorted(const std::vector<ExprPtr>& comp_values) {
std::vector<int> comp_consts;
comp_consts.reserve(comp_values.size());
for (auto c : comp_values) {
if (!c->isConstant()) {
return false;
}
comp_consts.push_back(immediateAs<int>(c));
}
return std::is_sorted(comp_consts.begin(), comp_consts.end());
}
} // namespace
bool LoopNest::optimizeConditionals() {
// Consider every store in the root_stmt_ and try to optimize the
// conditionals in that store.
auto stores = NodeFinder<Store>::find(root_stmt_);
std::unordered_set<ForPtr> split_fors;
for (auto store : stores) {
VarPtr cond_var = nullptr;
// `comp_values` represent the list of compared values that will be
// collected as we check for the expected pattern. Since that will
// only include the RHS of the conditions in the if-then-else expressions
// we need to start with `0` which is the initial bound, given that we
// only handle normalized loops (check for this is done below).
std::vector<ExprPtr> comp_values;
std::vector<ExprPtr> sub_exprs;
auto ifthenelse_exprs = NodeFinder<IfThenElse>::find(store);
if (ifthenelse_exprs.empty()) {
continue;
}
// We only check if the first if-then-else expression in this store
// corresponds to a conditional of the required format. If there are more
// than one such conditional, optimizing them requires checking if the
// conditions are exactly the same across them and handling all of them
// together. Currently, this is not handled.
if (!isConditionalFromCat(
ifthenelse_exprs.front(), &cond_var, &comp_values, &sub_exprs)) {
continue;
}
TORCH_INTERNAL_ASSERT(
comp_values.size() >= 1,
buildErrorMessage(
"Expected at least one expression in optimizeConditional in the fuser."));
comp_values.insert(comp_values.begin(), immLike(comp_values[0], 0));
auto fors = getLoopStmtsFor(store);
if (cond_var != fors.back()->var()) {
// Currently, we only handle the case where the condition variable
// is the same as the inner-most loop variable.
// TODO: Handle all other cases here.
//
// In order to handle all other cases, the method `clone_and_replace`
// called below to clone the body of the loop with a new store needs
// to recursively handle cloning of the loops and other blocks it
// contains.
continue;
}
auto for_to_split = fors.back();
if (!LoopNest::isNormalized(for_to_split)) {
// Do not optimize this conditional since the condition variable
// refers to a loop that is not normalized.
continue;
}
if (split_fors.count(for_to_split)) {
// This loop has already been split while optimizing conditionals
// earlier.
//
// Optimizing multiple conditionals that require splitting the same loop
// is tricky. It requires checking if the conditions are exactly the same
// across them and handling all of them together by splitting the loop
// exactly once.
//
// Currently, this case is not supported.
continue;
}
split_fors.insert(for_to_split);
// `comp_values` needs to include the end bound, which is `for_to_split`
// stop value.
comp_values.push_back(for_to_split->stop());
// Check if all `comp_values` are constants and they are sorted.
if (!areConstantsAndSorted(comp_values)) {
continue;
}
// Remove all the if-then-else expressions from this store and create
// one loop per sub-expression.
std::vector<StmtPtr> split_loops;
auto cond_to_replace = ifthenelse_exprs.front();
for (size_t i = 0; i < sub_exprs.size(); ++i) {
IfThenElseReplacer ifthenelseReplacer(cond_to_replace, sub_exprs[i]);
auto new_store = store->accept_mutator(&ifthenelseReplacer);
auto new_for_body =
for_to_split->body()->clone_and_replace(store, new_store);
auto new_for = alloc<For>(
for_to_split->var(),
comp_values[i],
comp_values[i + 1],
new_for_body);
LoopNest::normalize(new_for);
split_loops.push_back(new_for);
}
auto par = to<Block>(for_to_split->get_parent());
par->replace_stmt(for_to_split, alloc<Block>(split_loops));
}
root_stmt_ = IRSimplifier::simplify(root_stmt_);
return true;
}
void LoopNest::vectorizeInnerLoops() {
std::vector<ForPtr> innerLoops;
std::vector<ForPtr> worklist;
// Find outer-most For loops
if (ForPtr rootF = to<For>(root_stmt_)) {
worklist.push_back(rootF);
} else if (BlockPtr body = to<Block>(root_stmt_)) {
std::vector<BlockPtr> blocks = {body};
while (blocks.size()) {
BlockPtr b = blocks.back();
blocks.pop_back();
for (StmtPtr s : *b) {
if (ForPtr f = to<For>(s)) {
worklist.push_back(f);
} else if (BlockPtr b2 = to<Block>(s)) {
blocks.push_back(b2);
}
}
}
}
// Traverse the For loop nest find inner-most loops, which are
// vectorization candidates.
while (worklist.size()) {
ForPtr f = worklist.back();
worklist.pop_back();
bool containsSubLoops = false;
if (BlockPtr body = to<Block>(f->body())) {
for (StmtPtr s2 : *body) {
if (ForPtr f2 = to<For>(s2)) {
containsSubLoops = true;
worklist.push_back(f2);
}
}
}
if (!containsSubLoops) {
innerLoops.push_back(f);
}
}
// vectorize inner loops.
for (ForPtr loop : innerLoops) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr split1;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr tail1;
static const int kBodyVectorWidth = 8;
splitWithTail(loop, kBodyVectorWidth, &split1, &tail1);
vectorize(split1);
if (tail1) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr split2;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr tail2;
static const int kTailVectorWidth = 4;
splitWithTail(tail1, kTailVectorWidth, &split2, &tail2);
vectorize(split2);
}
}
}
void LoopNest::sliceHead(ForPtr f, int factor, ForPtr* head, ForPtr* tail) {
if (intValue(f->start()) && intValue(f->stop())) {
auto start_val = *intValue(f->start());
auto stop_val = *intValue(f->stop());
auto size_val = stop_val - start_val;
if (factor >= size_val) {
*head = f;
*tail = nullptr;
return;
}
}
if (!f) {
throw malformed_input("sliceHead attempted on null loop", f);
}
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
throw malformed_input("sliceHead attempted on loop with no parent", p);
}
ExprPtr head_end = alloc<Min>(
alloc<Add>(f->start(), immLike(f->stop(), factor)), f->stop(), true);
*head = alloc<For>(f->var(), f->start(), head_end, Stmt::clone(f->body()));
p->insert_stmt_before(*head, f);
f->set_start(head_end);
*tail = f;
if (f->loop_options().is_gpu_block_index() ||
f->loop_options().is_gpu_thread_index()) {
LoopNest::normalize(*tail);
}
}
void LoopNest::sliceHead(ForPtr f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr head, tail;
sliceHead(f, factor, &head, &tail);
}
void LoopNest::sliceTail(ForPtr f, int factor, ForPtr* head, ForPtr* tail) {
if (intValue(f->start()) && intValue(f->stop())) {
auto start_val = *intValue(f->start());
auto stop_val = *intValue(f->stop());
auto size_val = stop_val - start_val;
if (factor >= size_val) {
*head = nullptr;
*tail = f;
return;
}
}
if (!f) {
throw malformed_input("sliceTail attempted on null loop", f);
}
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
throw malformed_input("sliceTail attempted on loop with no parent", p);
}
ExprPtr tail_start = alloc<Max>(
f->start(), alloc<Sub>(f->stop(), immLike(f->stop(), factor)), true);
*tail = alloc<For>(f->var(), tail_start, f->stop(), Stmt::clone(f->body()));
p->insert_stmt_after(*tail, f);
f->set_stop(tail_start);
*head = f;
if (f->loop_options().is_gpu_block_index() ||
f->loop_options().is_gpu_thread_index()) {
LoopNest::normalize(*head);
}
}
void LoopNest::sliceTail(ForPtr f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr head, tail;
sliceTail(f, factor, &head, &tail);
}
void LoopNest::splitWithTail(ForPtr f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner, tail;
splitWithTail(f, factor, &inner, &tail);
}
void LoopNest::splitWithTail(
ForPtr f,
int factor,
ForPtr* inner,
ForPtr* tail) {
if (!f) {
throw malformed_input("splitWithTail attempted on null loop", f);
}
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
throw malformed_input("splitWithTail attempted on loop with no parent", p);
}
// Normalize the loop to simplify start and stop bound computation
normalize(f);
bool tail_is_needed = true;
if (intValue(f->start()) && intValue(f->stop())) {
auto const start_val = *intValue(f->start());
auto const stop_val = *intValue(f->stop());
auto const size_val = stop_val - start_val;
auto const tail_size = size_val % factor;
if (tail_size == 0) {
tail_is_needed = false;
}
}
ExprPtr factor_expr = immLike(f->stop(), factor);
ExprPtr size = alloc<Sub>(f->stop(), f->start());
ExprPtr split_count = alloc<Div>(size, factor_expr);
ExprPtr tail_size = alloc<Mod>(size, factor_expr);
const std::string& loop_var_name = f->var()->name_hint();
Dtype loop_var_dtype = f->var()->dtype();
VarPtr i_inner = alloc<Var>(loop_var_name + "_inner", loop_var_dtype);
VarPtr i_outer = alloc<Var>(loop_var_name + "_outer", loop_var_dtype);
// x -> x.outer * inner.size + x.inner
ExprPtr combined_index1 =
alloc<Add>(alloc<Mul>(i_outer, factor_expr), i_inner);
if (tail_is_needed) {
VarPtr i_tail = alloc<Var>(loop_var_name + "_tail", loop_var_dtype);
// x -> x.tail + outer.size * inner.size
ExprPtr combined_index2 =
alloc<Add>(i_tail, alloc<Mul>(split_count, factor_expr));
StmtPtr body_tail =
SubstituteInClone(f->body(), {{f->var(), combined_index2}});
*tail = alloc<For>(i_tail, immLike(tail_size, 0), tail_size, body_tail);
p->insert_stmt_after(*tail, f);
} else {
*tail = nullptr;
}
StmtPtr body_inner =
Substitute(f->removeBody(), {{f->var(), combined_index1}});
*inner =
alloc<For>(i_inner, immLike(factor_expr, 0), factor_expr, body_inner);
// The input loop `f` will be the outer loop after split.
f->set_var(i_outer);
f->set_start(immLike(split_count, 0));
f->set_stop(split_count);
f->set_body(*inner);
}
void LoopNest::splitWithMask(ForPtr f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner;
splitWithMask(f, factor, &inner);
}
void LoopNest::splitWithMask(ForPtr f, int factor, ForPtr* inner) {
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
std::cerr << "Parent is not a Block!\n";
return;
}
bool tail_is_needed = true;
ExprPtr start = IRSimplifier::simplify(f->start());
ExprPtr stop = IRSimplifier::simplify(f->stop());
if (start->isConstant() && stop->isConstant()) {
auto start_val = *intValue(start);
auto stop_val = *intValue(stop);
auto size_val = stop_val - start_val;
auto tail_size = size_val % factor;
if (tail_size == 0) {
tail_is_needed = false;
}
}
auto factor_expr = immLike(f->stop(), factor);
ExprPtr size = alloc<Sub>(f->stop(), f->start());
// split_count = (size + factor - 1) / factor
ExprPtr split_count = alloc<Div>(
alloc<Sub>(alloc<Add>(size, factor_expr), immLike(size, 1)), factor_expr);
const std::string& loop_var_name = f->var()->name_hint();
Dtype loop_var_dtype = f->var()->dtype();
VarPtr i_inner = alloc<Var>(loop_var_name + "_inner", loop_var_dtype);
VarPtr i_outer = alloc<Var>(loop_var_name + "_outer", loop_var_dtype);
// x -> x.outer * inner.size + x.inner
ExprPtr combined_index =
alloc<Add>(alloc<Mul>(i_outer, factor_expr), i_inner);
StmtPtr body_inner = f->removeBody();
// TODO: is it ok that we're doing it eagerly? In the other implementation we
// are only materializing predicates at the last, lowering, step.
if (tail_is_needed) {
auto start = intValue(f->start());
if (!start || *start != 0) {
throw unimplemented_lowering();
}
ExprPtr predicate =
CompareSelect::make(ExprHandle(f->var()), ExprHandle(f->stop()), kLT)
.node();
body_inner = Cond::make(ExprHandle(predicate), body_inner, nullptr);
}
body_inner = Substitute(body_inner, {{f->var(), combined_index}});
*inner =
alloc<For>(i_inner, immLike(factor_expr, 0), factor_expr, body_inner);
// The input loop `f` will be the outer loop after split.
f->set_var(i_outer);
f->set_start(immLike(split_count, 0));
f->set_stop(split_count);
f->set_body(*inner);
}
std::vector<ForPtr> LoopNest::distributeLoop(
ForPtr loop,
const std::unordered_set<StmtPtr>& pivots) {
TORCH_INTERNAL_ASSERT(
loop,
buildErrorMessage(
"Expected non-null loop in distributeLoop in the fuser."));
auto root = loop->get_parent();
if (root == nullptr) {
throw malformed_input("Loop without parent: ", loop);
}
auto root_block = to<Block>(root);
if (root_block == nullptr) {
throw malformed_input(
"Loop's parent must be a Block, instead found ", root);
}
// Extract bodies for all the loops after distribution.
std::vector<BlockPtr> new_loop_bodies;
auto new_loop_body = alloc<Block>(std::vector<StmtPtr>({}));
while (!loop->body()->empty()) {
auto s = loop->body()->front();
loop->body()->remove_stmt(s);
new_loop_body->append_stmt(s);
if (pivots.count(s)) {
new_loop_bodies.push_back(new_loop_body);
new_loop_body = alloc<Block>(std::vector<StmtPtr>({}));
}
}
if (!new_loop_body->empty()) {
new_loop_bodies.push_back(new_loop_body);
}
// The first loop body has to be in the original loop.
loop->body()->splice(loop->body()->begin(), new_loop_bodies.front());
std::vector<ForPtr> new_loops = {loop};
// Create loops for all the remaining blocks.
// Add all the new loops to the parent block.
for (size_t i = 1; i < new_loop_bodies.size(); ++i) {
auto new_loop = loop->cloneWithNewBody(new_loop_bodies[i]);
root_block->insert_stmt_after(new_loop, new_loops.back());
new_loops.push_back(new_loop);
}
return new_loops;
}
std::vector<ForPtr> LoopNest::distributeLoop(ForPtr loop) {
std::unordered_set<StmtPtr> stmtsInBlock(
loop->body()->begin(), loop->body()->end());
return distributeLoop(loop, stmtsInBlock);
}
std::vector<ForPtr> LoopNest::distributeLoopAndParents(ForPtr loop) {
auto parentLoop = getParentLoop(loop);
auto result = distributeLoop(loop);
if (parentLoop) {
return distributeLoopAndParents(parentLoop);
}
return result;
}
std::vector<ForPtr> LoopNest::distributeLoopOverInnerLoops(ForPtr loop) {
auto loops = NodeFinder<For>::find(loop);
std::unordered_set<StmtPtr> loopsSet(loops.begin(), loops.end());
return distributeLoop(loop, loopsSet);
}
std::vector<ForPtr> LoopNest::distributeLoopAndParentsOverInnerLoops(
ForPtr loop) {
auto parentLoop = getParentLoop(loop);
auto result = distributeLoopOverInnerLoops(loop);
if (parentLoop) {
return distributeLoopAndParentsOverInnerLoops(parentLoop);
}
return result;
}
bool areEqual(ExprPtr expr1, ExprPtr expr2) {
auto diff = IRSimplifier::simplify(alloc<Sub>(expr1, expr2));
return diff->isConstant() && (immediateAs<int>(diff) == 0);
};
bool doesExprContainAnyVar(
ExprPtr expr,
const std::unordered_set<VarPtr>& vars) {
for (auto v : VarFinder::find(expr)) {
if (vars.count(v)) {
return true;
}
}
return false;
}
// Returns true if the given list of indices refer to two accesses
// that are loop-independent w.r.t. the given list of outer loop
// variables.
bool areIndicesLoopIndependent(
const std::vector<ExprPtr>& expr_list1,
const std::vector<ExprPtr>& expr_list2,
const std::unordered_set<VarPtr>& outer_loop_vars) {
if (expr_list1.size() != expr_list2.size()) {
return false;
}
for (size_t i = 0; i < expr_list1.size(); ++i) {
auto expr1 = expr_list1[i];
auto expr2 = expr_list2[i];
if (doesExprContainAnyVar(expr1, outer_loop_vars) ||
doesExprContainAnyVar(expr2, outer_loop_vars)) {
if (!areEqual(expr1, expr2)) {
return false;
}
}
}
return true;
}
bool LoopNest::hasLoopCarriedDependence(ForPtr loop) {
analysis::MemDependencyChecker analyzer;
loop->accept(&analyzer);
std::unordered_set<VarPtr> outer_loop_vars = {loop->var()};
auto outer_loops = LoopNest::getEnclosingLoopNest(loop);
for (auto l : outer_loops) {
outer_loop_vars.insert(l->var());
}
// High-level algorithm to check if two accesses to a buffer, A and B, one of
// which is a Store, result in a loop-carried dependence:
// 1. For every pair of index expressions, Ai and Bi, that refer to a dim
// of A and B, if one of the following conditions are satisfied:
// a) Ai and Bi are equal (OR)
// b) Both Ai and Bi do not contain any outer-loop variables
// then, the dependence between A and B is a loop-independent
// dependence. This is because, in the case of b), those index
// expressions do not affect the ordering of accesses A and B.
// 2. If condition 1) is not satisfied:
// a) if the bounds on the accesses overlap, then this is a
// loop-carried dependence.
// b) if the bounds on the accesses do not overlap, then there is no
// dependence.
//
// NOTE: Since we check for equality of index expressions whenever outer
// loop variables are involved, this may incorrectly report some cases as
// having a loop-carried dependence. It is impractical to handle all
// possible cases here, so, we are being conservative and allow for
// some false positives. While this will prevent some loop fusion
// opportunities, that should be a small fraction of the cases that are
// allowed.
//
// Implementation:
//
// For every pair of statements, S1 and S2, in the loop:
// * Get the loads and stores in S1 and S2.
// * For every store in S1 and load in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
// * For every load in S1 and store in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
// * For every store in S1 and store in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
for (auto it1 = loop->body()->begin(); it1 != loop->body()->end(); ++it1) {
for (auto it2 = std::next(it1); it2 != loop->body()->end(); ++it2) {
auto aStores = NodeFinder<Store>::find(*it1);
auto aLoads = NodeFinder<Load>::find(*it1);
auto bStores = NodeFinder<Store>::find(*it2);
auto bLoads = NodeFinder<Load>::find(*it2);
// ReadAfterWrite
for (auto& aStore : aStores) {
for (auto& bLoad : bLoads) {
if (aStore->buf() == bLoad->buf()) {
if (!areIndicesLoopIndependent(
aStore->indices(), bLoad->indices(), outer_loop_vars)) {
if (isOverlapping(analyzer, aStore, bLoad)) {
return true;
}
}
}
}
}
// WriteAfterRead
for (auto& bStore : bStores) {
for (auto& aLoad : aLoads) {
if (bStore->buf() == aLoad->buf()) {
if (!areIndicesLoopIndependent(
bStore->indices(), aLoad->indices(), outer_loop_vars)) {
if (isOverlapping(analyzer, bStore, aLoad)) {
return true;
}
}
}
}
}
// WriteAfterWrite
for (auto& aStore : aStores) {
for (auto& bStore : bStores) {
if (aStore->buf() == bStore->buf()) {
if (!areIndicesLoopIndependent(
aStore->indices(), bStore->indices(), outer_loop_vars)) {
if (isOverlapping(analyzer, aStore, bStore)) {
return true;
}
}
}
}
}
}
}
return false;
}
bool LoopNest::unsafeFuseLoops(
const std::vector<ForPtr>& loops,
ForPtr* fused) {
if (loops.empty()) {
return false;
}
if (loops.size() == 1) {
*fused = loops.front();
return true;
}
// Check if all the loops have the same parent.
auto root = loops.front()->get_parent();
for (auto l : loops) {
auto par = l->get_parent();
if (par == nullptr) {
return false;
}
if (par != root) {
return false;
}
}
auto root_block = to<Block>(root);
if (root_block == nullptr) {
return false;
}
// Currently, we only handle cases where there are no statements between
// the given loops in their parents body. We can possibly relax this
// constraint by allowing statements that do not affect the loops being
// fused by performing some dependency analysis. TODO.
auto it = root_block->begin();
for (; it != root_block->end(); ++it) {
if (*it == loops.front()) {
break;
}
}
TORCH_INTERNAL_ASSERT(
it != root_block->end(),
buildErrorMessage(
"Could not find the given loop in the root stmt in unsafeFuseLoop the fuser."));
for (auto l : loops) {
if (*it != l) {
return false;
}
++it;
}
auto first_loop = loops.front();
// Fuse the loops by taking all the statements from the second loops
// onwards and moving them into the first loop's body.
// This way the final fused loop will be the same as the first loop.
for (size_t i = 1; i < loops.size(); ++i) {
auto body = to<Block>(SubstituteInClone(
loops[i]->body(), {{loops[i]->var(), first_loop->var()}}));
first_loop->body()->splice(first_loop->body()->end(), body);
root_block->remove_stmt(loops[i]);
}
*fused = loops.front();
return true;
}
bool LoopNest::fuseLoops(const std::vector<ForPtr>& loops, ForPtr* fused) {
if (loops.empty()) {
return false;
}
if (loops.size() == 1) {
*fused = loops.front();
return true;
}
// Check if bounds are the same for all the loops.
auto first_loop = loops.front();
auto first_loop_start = IRSimplifier::simplify(first_loop->start());
auto first_loop_stop = IRSimplifier::simplify(first_loop->stop());
for (size_t i = 1; i < loops.size(); ++i) {
auto curr_loop = loops[i];
auto curr_loop_start = IRSimplifier::simplify(curr_loop->start());
auto curr_loop_stop = IRSimplifier::simplify(curr_loop->stop());
if (!areEqual(curr_loop_start, first_loop_start)) {
return false;
}
if (!areEqual(curr_loop_stop, first_loop_stop)) {
return false;
}
}
// We need to check if fusing the loops results in a loop-carried dependence.
// This check can be done only after the loops are fused into one. But if the
// check is violated, we need to return the given loops in the original form.
// So, we create a clone of all the loops, fuse them and check for this.
std::vector<ForPtr> loops_copy;
loops_copy.reserve(loops.size());
BlockPtr parent = alloc<Block>(std::vector<StmtPtr>({}));
for (auto& l : loops) {
auto l_copy = Stmt::clone(l);
loops_copy.push_back(to<For>(l_copy));
parent->append_stmt(l_copy);
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr fused_copy;
bool ret = unsafeFuseLoops(loops_copy, &fused_copy);
if (!ret || hasLoopCarriedDependence(fused_copy)) {
return false;
}
// Now that all conditions are satisfied, we fuse the given loops.
return unsafeFuseLoops(loops, fused);
}
ForPtr LoopNest::findOuterFor(ForPtr a, ForPtr b) {
StmtPtr s = b; // guess b is the latter.
while (s != nullptr) {
if (s == a) {
// yes, b is after a.
return a;
}
s = s->get_parent();
}
// check that the two are in the same loop nest.
s = a;
while (s != nullptr) {
if (s == b) {
// a is after b.
return b;
}
s = s->get_parent();
}
// a and b have no relationship.
return nullptr;
}
void LoopNest::reorderAxis(ForPtr a, ForPtr b) {
if (a == b) {
// nothing to do.
return;
}
// find inner and outer.
ForPtr outer = findOuterFor(a, b);
if (outer == nullptr) {
throw std::runtime_error("Reordered a loop not in LoopNest");
}
ForPtr inner = a == outer ? b : a;
std::deque<ForPtr> internal_axes;
// Find relevant axes, store reversed.
StmtPtr s = inner;
while (s != outer) {
if (ForPtr f = to<For>(s)) {
internal_axes.push_back(f);
}
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
s = s->get_parent();
}
internal_axes.push_back(outer);
BlockPtr root = to<Block>(outer->get_parent());
CHECK(root);
// Do a shallow copy of the inner blocks.
BlockPtr body = alloc<Block>(std::vector<StmtPtr>({}));
body->splice(body->end(), inner->body());
ForPtr before{outer};
ForPtr after{nullptr};
ForPtr last = internal_axes.front();
StmtPtr newInner = body;
s = inner;
while (s != outer) {
if (auto cond = to<Cond>(s->get_parent())) {
if (s == cond->true_stmt()) {
newInner = cond->cloneWithNewBody(newInner);
} else {
// s is the false branch of Cond
newInner = cond->cloneWithNewBodies(
alloc<Block>(std::vector<StmtPtr>({})), newInner);
}
}
s = s->get_parent();
}
// This is the major complexity in loop reordering: handling statements not in
// the straight line of the reorder. To handle this we partition the tree into
// the section before the critical path and after the critical path.
//
// An example of this pattern is:
// for i in ..
// Statement A
// for j in ..
// Statement B
// Statement C
//
// When reordering loop i and j we need to ensure that Statement A and C are
// still both executed with the loop extents of i, and that the three
// statements are not reordered (as much as possible).
for (auto loop : internal_axes) {
// If the inner loop had a component after the loop we must wrap it in a For
// loop matching this level of the tree.
if (after != nullptr) {
after = loop->cloneWithNewBody(after);
}
bool pastMidpoint = false;
bool hadBeforeStmts = false;
for (auto I = loop->body()->begin(), E = loop->body()->end(); I != E;) {
// Be careful not to invalidate the iterator.
StmtPtr s = *(I++);
if (s == last) {
// This is the midpoint.
loop->body()->remove_stmt(s);
if (!hadBeforeStmts) {
// If there were no existing statements this loop does not need to be
// preserved and we can roll it into the above loop.
last = loop;
}
pastMidpoint = true;
} else if (pastMidpoint) {
// Statements after the reordered path must be moved to a new tree after
// the reordered statement has occurred to preserve ordering.
loop->body()->remove_stmt(s);
if (after == nullptr) {
after = loop->cloneWithNewBody(s);
} else {
after->body()->append_stmt(s);
}
} else {
// We can leave any statements before the reordered loop alone, so long
// as we preserve the loop structure.
hadBeforeStmts = true;
}
}
}
// now we can actually reorder the chosen axes.
std::swap(internal_axes.front(), internal_axes.back());
// Create the reordered internals:
for (auto loop : internal_axes) {
newInner = loop->cloneWithNewBody(newInner);
}
// Append the new statements to the root of the tree.
if (before->body()->nstmts() == 0) {
// If the top level is now empty, eliminate it.
root->replace_stmt(before, newInner);
} else {
root->insert_stmt_after(newInner, before);
}
if (after) {
root->insert_stmt_after(after, newInner);
}
}
bool isTrivialPermutation(const std::vector<size_t>& permutation) {
for (size_t i = 0; i < permutation.size(); ++i) {
if (permutation[i] != i) {
return false;
}
}
return true;
}
bool isValidPermutation(std::vector<size_t> permutation) {
std::sort(permutation.begin(), permutation.end());
return isTrivialPermutation(permutation);
}
std::vector<ForPtr> LoopNest::reorder(
const std::vector<ForPtr>& loops,
const std::vector<size_t>& permutation) {
if (loops.size() != permutation.size()) {
throw malformed_input("invalid permutation size");
}
if (isTrivialPermutation(permutation)) {
return loops;
}
if (!isValidPermutation(permutation)) {
throw malformed_input("invalid permutation for reorder");
}
if (loops.size() < 2) {
return loops;
}
if (!areLoopsPerfectlyNested(loops)) {
throw malformed_input("reorder is only allowed on perfectly nested loops");
}
auto parent = to<Block>(loops.front()->get_parent());
if (parent == nullptr) {
throw malformed_input("parent of the loops must be a Block");
}
// Reorder the loops according to the permutation.
std::vector<ForPtr> result(loops.size());
for (size_t i = 0; i < loops.size(); ++i) {
result[i] = loops[permutation[i]];
}
// Remove the bodies from all the loops.
auto innermost_body = loops.back()->removeBody();
// We use an empty block statement to replace the outermost loop
// so that we know the position where the outermost reordered loop
// is to be inserted.
auto empty_block = alloc<Block>(std::vector<StmtPtr>({}));
parent->replace_stmt(loops.front(), empty_block);
for (size_t i = 1; i < loops.size(); ++i) {
auto block = to<Block>(loops[i]->get_parent());
TORCH_INTERNAL_ASSERT(
block,
buildErrorMessage(
"Expected parent stmt to be a non-null Block in reorder transformation the fuser."));
block->remove_stmt(loops[i]);
}
// Set the new bodies after reorder for all the loops.
for (size_t i = 0; i < result.size() - 1; ++i) {
result[i]->set_body(result[i + 1]);
}
result.back()->set_body(innermost_body);
parent->replace_stmt(empty_block, result.front());
return result;
}
ForPtr LoopNest::getLoopAt(ForPtr root, const std::vector<int>& indices) const {
if (indices.empty()) {
return root;
}
if (root == nullptr) {
throw malformed_input("root loop is null");
}
ForPtr curr = root;
for (auto i : indices) {
if (i < 0 || curr->body()->nstmts() <= i) {
return nullptr;
}
std::list<StmtPtr>::iterator stmtp = curr->body()->begin();
std::advance(stmtp, i);
curr = to<For>(*stmtp);
if (curr == nullptr) {
return nullptr;
}
}
return curr;
}
ForPtr LoopNest::tile(ForPtr x, ForPtr y, int x_factor, int y_factor) {
auto parent = to<Block>(x->get_parent());
if (parent == nullptr) {
throw malformed_input("parent of the loops must be a Block");
}
if (!areLoopsPerfectlyNested({x, y})) {
throw malformed_input("two loops must be perfectly nested");
}
// Split x, y axes by x_factor and y_factor
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr yi, ytail;
splitWithTail(y, y_factor, &yi, &ytail);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr xi, xtail;
splitWithTail(x, x_factor, &xi, &xtail);
// Distribute xi over yo and ytail so we can manipulate the loop order of {xo,
// xi, yo, yi}
auto loops = distributeLoop(xi);
// For {xi, yo, yi}, reorder the axes to be yo, xi, yi
xi = loops.front();
ForPtr yo = to<For>(xi->body()->stmts().front());
CHECK(yo);
reorder({xi, yo}, {1, 0});
// For {xi, ytail}, reorder the axes to be ytail, xi
if (loops.size() == 2) {
xi = loops.back();
ytail = to<For>(xi->body()->stmts().front());
CHECK(ytail);
reorder({xi, ytail}, {1, 0});
}
return xtail;
}
bool LoopNest::areLoopsPerfectlyNested(const std::vector<ForPtr>& loops) {
if (loops.size() < 2) {
return true;
}
for (size_t i = 0; i < loops.size() - 1; ++i) {
auto loop_body = loops[i]->body();
if (loop_body->nstmts() != 1 || loop_body->front() != loops[i + 1]) {
return false;
}
}
return true;
}
void LoopNest::fullUnroll(ForPtr f, StmtPtr* unrolled) {
BlockPtr p = to<Block>(f->get_parent());
if (!f) {
throw malformed_input("unroll attempted on null loop");
} else if (!p) {
throw malformed_input("unroll attempted on loop with no parent");
}
auto start_expr = IRSimplifier::simplify(f->start());
auto stop_expr = IRSimplifier::simplify(f->stop());
if (!start_expr->isConstant()) {
throw std::runtime_error("Can't unroll due to non-constant loop start!");
}
if (!stop_expr->isConstant()) {
throw std::runtime_error("Can't unroll due to non-constant loop stop!");
}
std::vector<StmtPtr> unrolled_stmts;
int start_val = immediateAs<int>(start_expr);
int stop_val = immediateAs<int>(stop_expr);
for (int current = start_val; current < stop_val; ++current) {
for (auto stmt : f->body()->stmts()) {
unrolled_stmts.push_back(SubstituteInClone(
stmt, {{f->var(), getImmediateByType(f->var()->dtype(), current)}}));
}
}
*unrolled = alloc<Block>(unrolled_stmts);
*unrolled = IRSimplifier::simplify(*unrolled);
p->replace_stmt(f, *unrolled);
}
void LoopNest::fullUnroll(ForPtr f) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
StmtPtr unrolled;
fullUnroll(f, &unrolled);
}
void LoopNest::unroll(ForPtr f, int factor, ForPtr* tail) {
if (factor < 2) {
return;
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner;
splitWithTail(f, factor, &inner, tail);
fullUnroll(inner);
}
void LoopNest::unroll(ForPtr f, int factor) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr tail;
unroll(f, factor, &tail);
}
bool LoopNest::isNormalized(ForPtr f) {
if (f->start()->isConstant()) {
return immediateAs<int>(f->start()) == 0;
}
return false;
}
bool LoopNest::normalize(ForPtr f) {
if (!f) {
throw malformed_input("normalize attempted on null loop");
}
if (isNormalized(f)) {
// No need to normalize anymore here.
return false;
}
auto for_body_normalized = Substitute(
f->body(),
{{f->var(), (VarHandle(f->var()) + ExprHandle(f->start())).node()}});
f->set_body(IRSimplifier::simplify(for_body_normalized));
f->set_stop(IRSimplifier::simplify(alloc<Sub>(f->stop(), f->start())));
f->set_start(immLike(f->stop(), 0));
return true;
}
// This function expects that there are 'num' loops perfectly nested within
// and including 'f'.
std::vector<ForPtr> LoopNest::getLoopStmtsInLoopNest(ForPtr f, size_t num) {
std::vector<ForPtr> loops(num);
ForPtr curr_for = f;
loops[0] = curr_for;
for (size_t i = 1; i < num; ++i) {
TORCH_INTERNAL_ASSERT(
curr_for->body()->nstmts() == 1,
buildErrorMessage("Expected a single stmt in the loop body."));
curr_for = to<For>(curr_for->body()->front());
TORCH_INTERNAL_ASSERT(
curr_for,
buildErrorMessage("Expected the only child stmt to be a For loop."));
loops[i] = curr_for;
}
return loops;
}
bool LoopNest::flatten(const std::vector<ForPtr>& loops, ForPtr* flattened) {
if (loops.empty()) {
throw malformed_input("flatten attempted on empty set of loops");
}
BlockPtr p = to<Block>(loops[0]->get_parent());
if (!p) {
throw malformed_input("flatten attempted on loops with no parent");
}
if (loops.size() == 1) {
// This loop nest is already flattened.
*flattened = loops[0];
return false;
}
// Check if all the loops correspond to a perfect loopnest:
// * every loop except the inner-most should have only one stmt, the For.
// Do not flatten, otherwise.
// This check also ensures we do not flatten reduction loops.
for (size_t i = 0; i < loops.size() - 1; ++i) {
if ((loops[i]->body()->nstmts() != 1) ||
(loops[i]->body()->front() != loops[i + 1])) {
return false;
}
}
// Normalize the loops before flattening.
// We need to normalize them from inner-most to outer because once the outer
// loop is normalized, the given pointers to inner loops point to old code.
// For the same reason, we can't store the normalized inner loops until after
// the outer-most loop is normalized.
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
for (size_t i = 0; i < loops.size(); ++i) {
size_t idx = loops.size() - i - 1;
LoopNest::normalize(loops[idx]);
}
// 'normalized' points to the outer-most loop in the normalized loopnest.
// Collect all the normalized loops.
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
auto normalized_loops = getLoopStmtsInLoopNest(loops.front(), loops.size());
auto flat_var = alloc<Var>(
normalized_loops[0]->var()->name_hint() + "_flat",
normalized_loops[0]->var()->dtype());
VarMapping var_mapping;
ExprPtr stop = immLike(flat_var, 1);
for (size_t i = 0; i < normalized_loops.size(); ++i) {
size_t idx = normalized_loops.size() - i - 1;
auto curr_loop = normalized_loops[idx];
ExprPtr div = alloc<Div>(flat_var, stop);
ExprPtr sub_expr = idx == 0 ? div : alloc<Mod>(div, curr_loop->stop());
var_mapping.push_back(std::make_pair(curr_loop->var(), sub_expr));
stop = alloc<Mul>(curr_loop->stop(), stop);
}
auto flattened_body =
Substitute(normalized_loops.back()->removeBody(), var_mapping);
normalized_loops.front()->set_var(flat_var);
normalized_loops.front()->set_start(immLike(stop, 0));
normalized_loops.front()->set_stop(stop);
normalized_loops.front()->set_body(flattened_body);
*flattened = normalized_loops.front();
return true;
}
bool LoopNest::flatten(const std::vector<ForPtr>& loops) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr flattened;
return flatten(loops, &flattened);
}
void LoopNest::compressBuffer(BufPtr buf, StmtPtr stmt) {
// Loop iterations in NNC IR do not follow sequential semantics by default.
// In other words, the iterations of the loops could be executed in any
// random order without affecting correctness. This constraint in turn
// implies that there can’t be any *inter-iteration* dependences
// (or *loop-carried* dependences) in NNC loops. So, any NNC IR with such
// dependences is considered invalid.
//
// Given the constraint above, for any pair of accesses to a buffer (where
// at least one of the access is a write), the accesses must be
// loop-independent on the innermost loop containing the accesses as well as
// all the loops above it. So, any dimension that uses only those loop
// variables to access the given buffer could be optimized away.
//
// Algorithm:
// * Find all the accesses to the given buf. (A)
// * Find the parent common to all accesses in A. (P)
// * Collect all the loops above P. (L)
// * Collect all the loop variables corresponding to L. (LV)
// * For every access a in A:
// * For the index I in every dimension of a:
// * If the variables in I are all in LV, mark this dimension
// for deletion.
// * For every dimension that is marked for deletion in ALL accesses in A:
// * Update the buffer to set the size of that dimension to 1.
// * Update all accesses in A to set the index in that dimension to 0.
auto writes = WritesToBuf::find(stmt, buf);
auto reads = StmtsReadingBuf::find(stmt, buf);
// Find the parent common to all the buffer accesses.
BlockPtr parent = to<Block>(writes.front()->get_parent());
TORCH_INTERNAL_ASSERT(
parent,
buildErrorMessage(
"Expected parent stmt to be a non-null block in compressBuffer in the fuser."));
for (auto w : writes) {
parent = Block::getSharedParent(parent, w);
}
for (auto r : reads) {
parent = Block::getSharedParent(parent, r);
}
// Collect all the loops that are above the common parent.
auto loops = LoopNest::getEnclosingLoopNest(parent);
std::unordered_set<VarPtr> loop_vars;
for (auto l : loops) {
loop_vars.insert(l->var());
}
// TODO: Need to handle other Stmts / Exprs that read / write buffers.
auto stores = NodeFinder<Store>::find(stmt);
auto loads = NodeFinder<Load>::find(stmt);
// Vector to indicate which dimensions could be compressed away.
std::vector<bool> dims(buf->dims().size(), true);
auto check_indices = [&](const std::vector<ExprPtr>& indices) {
TORCH_INTERNAL_ASSERT(
indices.size() == dims.size(),
buildErrorMessage(
"Expected ranks to match in compressBuffer in the fuser."));
for (size_t i = 0; i < indices.size(); ++i) {
auto index_vars = NodeFinder<Var>::find(indices[i]);
for (auto iv : index_vars) {
if (loop_vars.count(iv) == 0) {
// A variable in this index is not in loop_vars.
// This implies that this dimension cannot be optimized away.
dims[i] = false;
break;
}
}
}
};
for (auto s : stores) {
if (s->buf() == buf) {
check_indices(s->indices());
}
}
for (auto l : loads) {
if (l->buf() == buf) {
check_indices(l->indices());
}
}
bool any_dim_to_compress = false;
for (auto d : dims) {
any_dim_to_compress |= d;
}
if (!any_dim_to_compress) {
return;
}
// Compress buffer by removing the marked dims.
std::vector<ExprPtr> new_dims(buf->dims());
for (size_t i = 0; i < dims.size(); ++i) {
if (dims[i]) {
new_dims[i] = immLike(buf->dims()[i], 1);
}
}
buf->set_dims(new_dims);
// Modify all access to reflect the removed dims.
auto get_new_indices = [&](const std::vector<ExprPtr>& indices) {
TORCH_INTERNAL_ASSERT(
indices.size() == dims.size(),
buildErrorMessage(
"Expected ranks to match in compressBuffer in the fuser."));
std::vector<ExprPtr> new_indices(indices);
for (size_t i = 0; i < dims.size(); ++i) {
if (dims[i]) {
new_indices[i] = immLike(indices[i], 0);
}
}
return new_indices;
};
for (auto s : stores) {
if (s->buf() == buf) {
s->set_indices(get_new_indices(s->indices()));
}
}
for (auto l : loads) {
if (l->buf() == buf) {
l->set_indices(get_new_indices(l->indices()));
}
}
}
void LoopNest::compressAllBuffers(StmtPtr stmt) {
for (auto buf : BufFinder::find(stmt)) {
compressBuffer(buf, stmt);
}
}
std::vector<ForPtr> LoopNest::getLoopStmtsFor(Tensor t) const {
StmtPtr cur_stmt = getLoopBodyFor(t);
return getLoopStmtsFor(cur_stmt);
}
std::vector<ForPtr> LoopNest::getLoopStmtsFor(BufPtr buf) const {
StmtPtr cur_stmt = getLoopBodyFor(buf);
return getLoopStmtsFor(cur_stmt);
}
std::vector<ForPtr> LoopNest::getLoopStmtsFor(StmtPtr s) const {
std::vector<ForPtr> result;
while (s) {
if (auto loop = to<For>(s)) {
result.push_back(loop);
}
s = s->get_parent();
}
std::reverse(result.begin(), result.end());
return result;
}
StmtPtr LoopNest::getLoopBodyFor(Tensor t) const {
return getLoopBodyFor(t.buf());
}
StmtPtr LoopNest::getLoopBodyFor(BufPtr buf) const {
auto writes = WritesToBuf::find(root_stmt_, buf);
// special case for reduction Tensors, ignore the initializer if it's the only
// op:
if (writes.size() == 2) {
if (StorePtr s = to<Store>(writes.back())) {
if (ReduceOpPtr r = to<ReduceOp>(s->value())) {
return (StmtPtr)s; // NOLINT
}
}
}
StmtPtr res = nullptr;
for (auto s : writes) {
if (!res) {
res = s;
continue;
}
res = Block::getSharedParent(res, s);
}
return (StmtPtr)res; // NOLINT
}
ForPtr LoopNest::getParentLoop(StmtPtr st) {
if (st == nullptr) {
return nullptr;
}
auto par = st->get_parent();
if (auto f = to<For>(par)) {
return f;
}
return getParentLoop(par);
}
std::vector<ForPtr> LoopNest::getEnclosingLoopNest(StmtPtr st) {
std::vector<ForPtr> loops;
auto f = getParentLoop(st);
while (f) {
loops.push_back(f);
f = getParentLoop(f);
}
std::reverse(loops.begin(), loops.end());
return loops;
}
std::vector<StmtPtr> LoopNest::getAllWritesToBuf(BufPtr buf) const {
return WritesToBuf::find(root_stmt_, buf);
}
std::vector<ForPtr> LoopNest::getAllInnermostLoopsWritingToBuf(
BufPtr buf) const {
auto writes = getAllWritesToBuf(buf);
std::vector<ForPtr> innermost_loops;
innermost_loops.reserve(writes.size());
for (auto w : writes) {
innermost_loops.push_back(LoopNest::getParentLoop(w));
}
return innermost_loops;
}
std::vector<std::vector<ForPtr>> LoopNest::getAllLoopNestsWritingToBuf(
BufPtr buf) const {
auto writes = getAllWritesToBuf(buf);
std::vector<std::vector<ForPtr>> loopnests;
loopnests.reserve(writes.size());
for (auto w : writes) {
loopnests.emplace_back(LoopNest::getEnclosingLoopNest(w));
}
return loopnests;
}
StmtPtr LoopNest::simplify() {
root_stmt_ = IRSimplifier::simplify(root_stmt_);
return root_stmt_;
}
StmtPtr FlattenIndexes(StmtPtr s) {
IndexFlattener idx_flattener;
return idx_flattener.flatten(s);
}
// Auxiliary class for rewriting we're doing in `compute_at`. See
// LoopNest::computeAt for more details.
class LoopComputeAtRewriter : public IRMutator {
public:
LoopComputeAtRewriter(
BufPtr buf,
BufPtr new_buf,
std::vector<ExprPtr> offsets)
: buf_(buf), new_buf_(new_buf), offsets_(std::move(offsets)) {}
private:
BufPtr buf_;
BufPtr new_buf_;
std::vector<ExprPtr> offsets_;
ExprPtr mutate(LoadPtr v) override {
if (v->buf() != buf_) {
return v;
}
std::vector<ExprPtr> new_indices(v->indices().size());
for (const auto i : c10::irange(v->indices().size())) {
new_indices[i] =
IRSimplifier::simplify(alloc<Sub>(v->indices()[i], offsets_[i]));
}
return alloc<Load>(v->dtype(), new_buf_, new_indices);
}
};
static StorePtr getStoreStmtOfProducer(StmtPtr s) {
if (StorePtr st = to<Store>(s)) {
return st;
}
if (BlockPtr b = to<Block>(s)) {
for (StmtPtr ss : *b) {
if (StorePtr st = to<Store>(ss)) {
return st;
}
}
}
return nullptr;
}
static std::vector<VarPtr> getOuterLoopIndexes(StmtPtr s) {
std::vector<VarPtr> res;
StmtPtr cur = s;
while (cur) {
if (auto l = to<For>(cur)) {
res.push_back(l->var());
}
cur = cur->get_parent();
}
return res;
}
class CacheReplacer : public IRMutator {
public:
CacheReplacer(BufPtr buffer, BufPtr cache, std::vector<ExprPtr>& offsets)
: buf_(buffer), cache_(cache), offsets_(offsets) {}
private:
ExprPtr mutate(LoadPtr v) override {
BufPtr buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
// Map indices to call-parameters.
std::vector<ExprPtr> newIndices;
TORCH_INTERNAL_ASSERT(
offsets_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in CacheReplacer in the fuser."));
for (size_t i = 0; i < v->indices().size(); ++i) {
ExprPtr index = v->indices()[i]->accept_mutator(this);
ExprPtr offset = offsets_[i];
ExprPtr sub = IRSimplifier::simplify(alloc<Sub>(index, offset));
newIndices.push_back(sub);
}
v->set_buf(cache_);
v->set_indices(newIndices);
return v;
}
StmtPtr mutate(StorePtr v) override {
BufPtr buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
ExprPtr newValue = v->value()->accept_mutator(this);
// Map indices to call-parameters.
std::vector<ExprPtr> newIndices;
TORCH_INTERNAL_ASSERT(
offsets_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in CacheReplacer in the fuser."));
for (size_t i = 0; i < v->indices().size(); ++i) {
ExprPtr index = v->indices()[i]->accept_mutator(this);
ExprPtr offset = offsets_[i];
ExprPtr sub = IRSimplifier::simplify(alloc<Sub>(index, offset));
newIndices.push_back(sub);
}
v->set_buf(cache_);
v->set_indices(newIndices);
v->set_value(newValue);
return v;
}
BufPtr buf_;
BufPtr cache_;
std::vector<ExprPtr>& offsets_;
};
LoopNest::AccessResult LoopNest::cacheAccesses(
BufPtr producer,
const std::string& name,
StmtPtr consumer) {
ReduceOpPtr reduceOp{nullptr};
auto stores = NodeFinder<Store>::find(consumer);
for (auto store : stores) {
if (auto ro = to<ReduceOp>(store->value())) {
if (store->buf() != producer) {
continue;
}
if (reduceOp) {
throw std::runtime_error(
"can only cache accesses used by at most a single reduceOp");
return {nullptr, nullptr};
}
reduceOp = ro;
}
}
// Check bounds but don't care about AccessKind.
auto consumer_bounds_info = inferBounds(consumer, false);
auto bounds_it = consumer_bounds_info.find(producer);
if (bounds_it == consumer_bounds_info.end()) {
throw std::runtime_error("consumer does not use the Tensor produced");
return {nullptr, nullptr};
}
TORCH_INTERNAL_ASSERT(
bounds_it->second.size() == 1,
buildErrorMessage(
"Unexpected number of bound info entries in cacheAccesses in the fuser."));
TensorAccessBoundsInfo& info = bounds_it->second[0];
bool hasReads = info.kind == kLoad || info.kind == kMutate;
bool hasWrites = info.kind == kStore || info.kind == kMutate;
std::vector<std::string> var_names = {"i", "j", "k", "l", "m", "n", "o", "p"};
std::vector<ExprPtr> tmp_dims;
std::vector<VarPtr> new_loop_vars;
std::vector<ExprPtr> new_loop_vars_expr;
// Determine the size of the cache, and create a loop var for each dimension.
for (size_t i = 0; i < info.start.size(); ++i) {
ExprPtr dim = IRSimplifier::simplify(alloc<Add>(
alloc<Sub>(info.stop[i], info.start[i]), immLike(info.stop[i], 1)));
tmp_dims.push_back(dim);
new_loop_vars.push_back(
alloc<Var>(var_names[i % var_names.size()], info.stop[i]->dtype()));
new_loop_vars_expr.push_back(new_loop_vars[i]);
}
// Create the var.
BufPtr tmp_buf =
alloc<Buf>(alloc<Var>(name, kHandle), tmp_dims, producer->dtype());
// determine the offsets for calls into the cache based off the loop start of
// each axis.
std::vector<ExprPtr> tmp_params;
for (size_t i = 0; i < new_loop_vars.size(); ++i) {
tmp_params.push_back(alloc<Add>(new_loop_vars[i], info.start[i]));
}
// Replace acceses to the producer in the consumer with the cache.
CacheReplacer replacer(producer, tmp_buf, info.start);
consumer->accept_mutator(&replacer);
// replace the old consumer with the replaced consumer.
BlockPtr consumer_block = to<Block>(consumer);
BlockPtr parent_block = to<Block>(consumer->get_parent());
// if the consumer is a block, we should mutate it in place.
bool is_block = consumer_block != nullptr;
// If there's a reduction and we are operating on the reduce axis, we need to
// initialize the cache with 0s. Also, we can't just write the result straight
// back to the original buffer, since after parallelism the writes will race.
// Instead we need to create a new ReduceOp.
bool on_reduce_axis = false;
if (reduceOp) {
std::set<VarPtr> reduce_args(
reduceOp->reduce_args().begin(), reduceOp->reduce_args().end());
std::set<VarPtr> enclosing_vars;
for (auto enclosing_for_stmt : NodeFinder<For>::find(consumer)) {
enclosing_vars.insert(enclosing_for_stmt->var());
}
for (auto reduce_arg : reduce_args) {
if (enclosing_vars.find(reduce_arg) == enclosing_vars.end()) {
on_reduce_axis = true;
}
}
}
if (reduceOp && on_reduce_axis) {
// reduceOp means we had both loads and stores.
// Init cache to 0.
StmtPtr tmp_init = alloc<Store>(
tmp_buf, new_loop_vars_expr, getImmediateByType(tmp_buf->dtype(), 0));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_init = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_init);
}
if (is_block) {
consumer_block->prepend_stmt(tmp_init);
} else {
parent_block->insert_stmt_before(tmp_init, consumer);
}
// Reduce back to the original buffer:
StmtPtr tmp_store = alloc<Store>(
producer,
tmp_params,
reduceOp->reducer()(
producer,
alloc<Load>(tmp_buf, new_loop_vars_expr),
tmp_params,
{}));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_store);
}
if (is_block) {
consumer_block->append_stmt(tmp_store);
} else {
parent_block->insert_stmt_after(tmp_store, consumer);
}
return std::make_pair(tmp_buf, consumer);
}
if (hasReads) {
// Fill the cache with values from the consumer.
StmtPtr tmp_store = alloc<Store>(
tmp_buf, new_loop_vars_expr, alloc<Load>(producer, tmp_params));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_store);
}
if (is_block) {
consumer_block->prepend_stmt(tmp_store);
} else {
parent_block->insert_stmt_before(tmp_store, consumer);
}
}
if (hasWrites) {
// sync the cache back to the producer buf.
StmtPtr tmp_store = alloc<Store>(
producer, tmp_params, alloc<Load>(tmp_buf, new_loop_vars_expr));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_store);
}
if (is_block) {
consumer_block->append_stmt(tmp_store);
} else {
parent_block->insert_stmt_after(tmp_store, consumer);
}
}
return std::make_pair(tmp_buf, consumer);
}
/*
* WHAT COMPUTE_AT DOES
* ====================
*
* Suppose we have two loops:
*
* for i in 0..100:
* for j in 0..200:
* A[i,j] = sin(i*j)
* for i in 0..100:
* for j in 0..199:
* B[i,j] = A[i,j] + A[i, j+1]
*
* If we compute these loops as is, we would have to allocate two buffers:
* 100x200 for A and 100x199 for B. To decrease the memory usage one can use
* compute_inline primitive, which would result in the following:
*
* for i in 0..100:
* for j in 0..199:
* B[i,j] = sin(i*j) + sin(i*(j+1))
*
* We now need only one buffer - 100x199 for B. However, we're now doing some
* redundant computations: we're calling `sin` twice as much as in the first
* version.
*
* Ultimately, we nede to choose at what point we prefer to compute values of
* A[i,j] - we can do it in the very beginning for the entire buffer A (the
* first option) or compute it on the fly when we compute B (the second option).
* There are also options in between those two: we can compute a part of B which
* is required for a computation of part of B, e.g. for a single row of B. The
* code would then look like:
*
* for i in 0..100:
* for j in 0..200:
* A[j] = sin(i*j)
* for j in 0..199:
* B[i,j] = A[j] + A[j+1]
*
* In this case we're only using 1x200 for A, and we're avoiding redundant
* computations.
*
* The purpose of `compute_at` is to achieve exactly this transformation.
*
* compute_at requires to specify What to compute and Where to compute: in our
* example we would call compute_at(What=`A[i,j] = sin(i*j)`, Where=`for i in
* 0..100`).
*
* More info about compute_at could be found in Halide's tutorials:
* https://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
*
* HOW COMPUTE_AT WORKS
* ====================
*
* The most important part of compute_at is bounds inference: we need to figure
* out what part of the used tensors we need to compute when we move the
* computation to a new scope. In the example above, we need bounds inference to
* tell us that in order to compute A at each iteration of the outer loop, we
* need to compute A within indices [i:i+1,0:200].
*
* This info allows us to conclude that we need a temp buffer of size 1x200.
*
* Once this is known we need to insert statements for allocation and freeing
* the temporary buffer and copy the original computation to fill the temp
* buffer with proper values. When we copy the computation we also must rewrite
* indices used in it: old indices are referring to the old loop and are not
* valid in the new loop.
*
* To easier follow the logic, let's examine an example. Suppose we start from
* the following loop nest:
* for py in 0..100:
* for px in 0..100:
* producer[py,px] = py*px
* for cy in 0..100:
* for cx in 0..100:
* consumer[cy,cx] = producer[cy,cx]
*
* And then we're running `compute_at(producer, cy)`.
*
* What we would like to get is the following loop nest:
* for py in 0..100:
* for px in 0..100:
* producer[py,px] = py*px
* for cy in 0..100:
* Allocate(temp, {1, 100})
* for ty in 0..1:
* for tx in 0..100:
* temp[ty,tx] = (ty+cy)*(tx+0)
* for cx in 0..100:
* consumer[cy,cx] = temp[0,cx]
* Free(temp)
*
* NB: this loop nest can and should be simplified (e.g. the producer loop can
* be removed since its result is no longer used), but this clean-up
* optimization is performed separately (currently, not performed at all).
*
* If we examine the final loop nest, we can identify that the following steps
* needs to be performed:
* - Bounds inference needs to tell us that we need a 1x100 buffer for temp.
* - Allocate and Free statements for this buffer need to be inserted to the
* loop.
* - A new loop-nest should be inserted to the loop CY for computing `temp`
* and it should replicate the loopnest of producer (PY,PX loops). The indices
* in the loop body need to be offset by (cy, 0) - the offsets come from
* bounds inference too.
* - The computation of `consumer` needs to be rewritten so that it uses
* `temp` instead of `producer`. The indices in the corresponding accesses
* also need to be offset.
*/
void LoopNest::computeAt(StmtPtr s, ForPtr f) {
StorePtr st = getStoreStmtOfProducer(s);
if (!st) {
return;
}
// Infer bounds info for all accesses that we make in the loop
auto loop_bounds_info = inferBounds(f->body());
// bounds_it holds bounds info for the store we're trying to move to
// the loop. If its result isn't accessed in the loop at all - do nothing and
// exit early.
auto bounds_it = loop_bounds_info.find(st->buf());
if (bounds_it == loop_bounds_info.end()) {
return;
}
// Compute dimensions of the temp buffer we would need to allocate
std::vector<ExprPtr> dims = getBoundExtents(bounds_it->second);
// TODO: Use name-hint of the producer instead of "temp"
BufPtr temp_buf = alloc<Buf>("temp", dims, st->value()->dtype());
// Generate index variables for 'temp'
std::vector<ExprPtr> temp_indices(dims.size());
for (const auto i : c10::irange(dims.size())) {
// TODO: Use name-hint of the producer indices instead of 'idx'
temp_indices[i] =
alloc<Var>(std::string("idx") + c10::to_string(i), dims[i]->dtype());
}
// Prepare substitute rules for constructing the temp statement from the prod
// statement
// TODO: Instead of going up the loop nest we should go through the indices in
// the original tensor expression. The loops in the nest might've been
// modified (e.g. split or merged) so that the loop indices no longer
// correspond to the indices of the original expression and even their number
// might be different. In that case, the loop below would crash.
std::vector<VarPtr> prod_indices = getOuterLoopIndexes(s);
std::vector<std::pair<VarPtr, ExprPtr>> rewrite_indices_map;
std::vector<ExprPtr> offsets;
for (const TensorAccessBoundsInfo& p : bounds_it->second) {
for (const auto i : c10::irange(p.start.size())) {
if (offsets.size() <= i) {
offsets.push_back(p.start[i]);
} else {
offsets[i] =
IRSimplifier::simplify(alloc<Min>(offsets[i], p.start[i], true));
}
}
}
for (const auto i : c10::irange(prod_indices.size())) {
rewrite_indices_map.push_back(
{prod_indices[i], alloc<Add>(temp_indices[i], offsets[i])});
}
// Construct the temp statement
StmtPtr bd = alloc<Store>(
temp_buf,
temp_indices,
SubstituteInClone(st->value(), rewrite_indices_map));
// Construct the loop nest for the temp computation
for (const auto i : c10::irange(dims.size())) {
// We're creating loops from innermost to outermost, so we need to access
// dimensions in reversed order.
size_t dim_idx = dims.size() - 1 - i;
bd = alloc<For>(
to<Var>(temp_indices[dim_idx]),
immLike(dims[dim_idx], 0),
dims[dim_idx],
bd);
}
// Add constructed stmts to the consumer loop
f->body()->prepend_stmt(bd);
// Rewrite accesses to producer in consumer with accesses to temp
LoopComputeAtRewriter lr(st->buf(), temp_buf, offsets);
StmtPtr new_f = f->accept_mutator(&lr);
if (f != new_f) {
BlockPtr bb = to<Block>(f->get_parent());
bb->replace_stmt(f, new_f);
}
}
class RfactorStoreRewriter : public IRMutator {
public:
RfactorStoreRewriter(
BufPtr old_buf,
const std::vector<ExprPtr>& old_indices,
BufPtr new_buf,
VarPtr reduction_var)
: old_buf_(old_buf),
old_indices_(old_indices),
new_buf_(new_buf),
reduction_var_(reduction_var),
new_indices_(old_indices) {
new_indices_.push_back(reduction_var_);
}
ExprPtr mutate(LoadPtr v) override {
if (v->buf() != old_buf_) {
return IRMutator::mutate(v);
}
TORCH_INTERNAL_ASSERT(
old_indices_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in RfactorStoreRewriter in the fuser."));
bool equal_indices = true;
for (size_t i = 0; i < v->indices().size(); ++i) {
if (!exprEquals(v->indices()[i], old_indices_[i])) {
equal_indices = false;
break;
}
}
if (!equal_indices) {
return IRMutator::mutate(v);
}
return alloc<Load>(new_buf_, new_indices_);
}
ExprPtr mutate(ReduceOpPtr v) override {
ExprPtr body_new = v->body()->accept_mutator(this);
std::vector<VarPtr> new_reduce_args;
for (auto r : v->reduce_args()) {
if (r != reduction_var_) {
new_reduce_args.push_back(r);
}
}
return alloc<ReduceOp>(body_new, new_reduce_args, v->reducer());
}
StmtPtr mutate(StorePtr v) override {
if (v->buf() != old_buf_) {
return IRMutator::mutate(v);
}
TORCH_INTERNAL_ASSERT(
old_indices_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in RfactorStoreRewriter in the fuser."));
bool equal_indices = true;
for (size_t i = 0; i < v->indices().size(); ++i) {
if (!exprEquals(v->indices()[i], old_indices_[i])) {
equal_indices = false;
break;
}
}
if (!equal_indices) {
return IRMutator::mutate(v);
}
ExprPtr new_value = v->value()->accept_mutator(this);
return alloc<Store>(new_buf_, new_indices_, new_value);
}
private:
BufPtr old_buf_;
const std::vector<ExprPtr>& old_indices_;
BufPtr new_buf_;
VarPtr reduction_var_;
std::vector<ExprPtr> new_indices_;
};
bool LoopNest::rfactor(StmtPtr st, ForPtr target_for) {
BufPtr tmp_buf = nullptr;
return rfactor(st, target_for, &tmp_buf);
}
bool LoopNest::rfactor(
StmtPtr st,
ForPtr outer_reduction_for,
BufPtr* rfac_buf_ptr) {
StorePtr reduction_store = to<Store>(st);
ReduceOpPtr reduce_op = to<ReduceOp>(reduction_store->value());
if (!reduce_op) {
// Not a reduction store
return false;
}
auto orig_buf = reduction_store->buf();
auto orig_buf_indices = reduction_store->indices();
VarPtr reduction_var = outer_reduction_for->var();
std::set<VarPtr> reduce_args = {
reduce_op->reduce_args().begin(), reduce_op->reduce_args().end()};
if (reduce_args.size() < 2) {
// Not enough reduction axis to do rfactor
return false;
}
// Verify that outer_reduction_for is a perfect loop nest with all loops being
// reductions
StmtPtr cur = outer_reduction_for;
while (ForPtr cur_for = to<For>(cur)) {
if (!reduce_args.count(cur_for->var())) {
// output axis inside outer_reduction_for are not allowed
return false;
}
reduce_args.erase(cur_for->var());
BlockPtr b = cur_for->body();
if (b->nstmts() != 1) {
return false;
}
cur = b->stmts().front();
}
if (cur != st) {
// The reduction store is not a single stmt in the innermost loop - bail in
// that case
return false;
}
if (!reduce_args.empty()) {
// This is not the outermost reduction axis
return false;
}
// assert: reduce_axis match loop vars from outer_reduction_for and inside
// assert: no other stmts in outer_reduction_for or its child loops
std::vector<ExprPtr> rfac_dims = orig_buf->dims();
ExprPtr extra_dim = IRSimplifier::simplify(
alloc<Sub>(outer_reduction_for->stop(), outer_reduction_for->start()));
rfac_dims.push_back(extra_dim);
ExprPtr rfac_init =
alloc<Cast>(reduce_op->dtype(), reduce_op->reducer().initializer());
*rfac_buf_ptr = alloc<Buf>(
orig_buf->name_hint() + "_rfac",
rfac_dims,
reduce_op->dtype(),
rfac_init);
BufPtr rfac_buf = *rfac_buf_ptr;
// Rewrite the original reduction store to use the temporary rfac buffer:
// 1) X[*indexes] --> T[*indexes + {reduction_var}]
// 2) reduce_axis -= {reduction_var}
RfactorStoreRewriter rfac_rewriter(
orig_buf, orig_buf_indices, rfac_buf, reduction_var);
to<Block>(st->get_parent())
->replace_stmt(st, st->accept_mutator(&rfac_rewriter));
// Insert a store for the final reduction over the temp buffer into the
// original buffer:
// X[*indexes] = ReduceOp(X[*indexes] + T[*indexes + {reduction_var}],
// reduce_axis={reduction_var})
BlockPtr b = outer_reduction_for->body();
TORCH_INTERNAL_ASSERT(
b->nstmts() == 1,
buildErrorMessage(
"Expected to have a single stmt in the block in rfactor transformation in the fuser."));
StmtPtr first_reduction_loop = b->stmts().front();
auto rfac_buf_indices = orig_buf_indices;
rfac_buf_indices.emplace_back(reduction_var);
ExprPtr final_reduce_load = alloc<Load>(rfac_buf, rfac_buf_indices);
outer_reduction_for->body()->insert_stmt_after(
alloc<Store>(
orig_buf,
orig_buf_indices,
reduce_op->reducer()(
orig_buf, final_reduce_load, orig_buf_indices, {reduction_var})),
first_reduction_loop);
// Insert an initialization store for the temp buffer:
// T[a,b,c] = init
outer_reduction_for->body()->insert_stmt_before(
alloc<Store>(rfac_buf, rfac_buf_indices, rfac_init),
first_reduction_loop);
return true;
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|