File: loopnest.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (606 lines) | stat: -rw-r--r-- 21,349 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
#pragma once

#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include <torch/csrc/Export.h>
#include <torch/csrc/jit/tensorexpr/fwd_decls.h>

namespace torch {
namespace jit {
namespace tensorexpr {

class Expr;
class Var;
class Buf;
class Tensor;
class Function;
class Stmt;
class For;
class Block;
class Store;
class Dtype;

class TORCH_API LoopNest {
 public:
  // A constructor for building a LoopNest from a list of Tensors
  LoopNest(
      const std::vector<Tensor>& output_tensors,
      const std::vector<Tensor>& tensors_to_compute);

  // A convenience constructor for the case when all tensors are output tensors
  LoopNest(const std::vector<Tensor>& output_tensors);

  // A constructor for building a LoopNest from an Stmt and a list of output
  // buffers.
  LoopNest(StmtPtr stmt, std::unordered_set<BufPtr> output_bufs);

  // A constructor for building a LoopNest from another loopnest. It clones the
  // other loopnest's stmt.
  LoopNest(const LoopNest& other);

  StmtPtr root_stmt() const {
    return root_stmt_;
  }

  std::vector<ForPtr> getLoopStmtsFor(Tensor) const;
  std::vector<ForPtr> getLoopStmtsFor(BufPtr) const;
  std::vector<ForPtr> getLoopStmtsFor(StmtPtr) const;
  StmtPtr getLoopBodyFor(Tensor) const;
  StmtPtr getLoopBodyFor(BufPtr) const;

  // Returns the For stmt indexed by 'indices' in the 'root' For stmt.
  //'indices' indicates the path to the returned loop from 'root' in AST, e.g.,
  //
  // root: for(int i...){
  // j_loop: for (int j...){
  // k1_loop:  for (int k1...){
  //            A[i, j, k1] = ....
  //          }
  //          B[i, j] = ...
  // k2_loop:  for (int k2...){
  //            A[i, j, k2] = ...
  //          }
  //        }
  //      }
  //
  // the path from 'root' to 'j_loop' is [0]
  // the path from 'root' to 'k1_loop' is [0, 0]
  // the path from 'root' to 'k2_loop' is [0, 2]
  ForPtr getLoopAt(ForPtr root, const std::vector<int>& indices) const;

  // Returns the For stmt that is immediately enclosing the given stmt.
  static ForPtr getParentLoop(StmtPtr st);

  // Returns the list of For stmts corresponding to the loopnest that is
  // enclosing the given stmt.
  static std::vector<ForPtr> getEnclosingLoopNest(StmtPtr st);

  // Returns a list of all Stmts that write to the given buf.
  std::vector<StmtPtr> getAllWritesToBuf(BufPtr) const;

  // The following methods return the For loops that contain writes to
  // the given buf.
  //
  // For example, consider the following code:
  //   for i1
  //     for j1
  //       a[i1,j1] =
  //   for i2
  //     for j2
  //       for k2
  //         a[i2,j2] =
  //     for j3
  //       a[i2,j3] =

  // Returns a list of For loops which directly contain a Stmt that writes
  // to buf.
  // For the above example:
  //   getAllInnermostLoopsWritingToBuf(a) => {j1, k2, j3}
  std::vector<ForPtr> getAllInnermostLoopsWritingToBuf(BufPtr) const;

  // Returns a list of For loopnests which contain a Stmt that writes to
  // the given buf. Each loopnest here is a vector For loops.
  // For the above example:
  //   getAllLoopNestsWritingToBuf(a) => {{i1,j1}, {i2,j2,k2}, {i2,j3}}
  std::vector<std::vector<ForPtr>> getAllLoopNestsWritingToBuf(BufPtr) const;

  StmtPtr simplify();

  // Sanitize variables and buffer names.
  // The pass assigns predefined names for loop index variables
  // (i,j,k,l,m,n,o,p,i1,j1,k1,...) and ensures these names are not conflicting
  // anywhere. It also removes duplicates from other Buf nad Var names as well
  // as replaces illegal characters in them with underscores.
  //
  // Note: since it's currently technically possible to use the same variable
  // as index in two different loops, this transformation finds such cases and
  // introduces new variables to avoid duplication.
  static StmtPtr sanitizeNames(StmtPtr s);

  bool computeInline(StmtPtr s);
  bool computeInline(BufPtr b);
  void inlineIntermediateBufs(bool allow_duplicated_work);

  // Optimizes conditionals.
  //
  // Currently, only the following pattern of conditionals is optimized.
  // This corresponds to the conditional format that is generated to handle
  // `aten::cat` op.
  //
  //   for (int i = 0; i < 20; i++) {
  //     A[i] = IfThenElse(i<5 ? 1 : 0, B[i], C[i-5])
  //   }
  //
  // Constraints that must be satisfied for this optimization:
  //   * All conditions should be of the form "var < expr".
  //   * All conditions should have the same variable, say v.
  //   * The condition variable found should be the same as the inner-most
  //     loop variable. TODO: Remove this constraint.
  //   * If there are multiple stores that contain conditionals using the same
  //     loop variable, only the first conditional will be optimized.
  //     TODO: Remove this constraint.
  bool optimizeConditionals();

  // Splits the given loop into 2 nested loops with the given factor as the
  // inner loop bound. If the factor does not evenly divide the loop bound,
  // then the remainining iterations are extracted into a tail loop that is
  // added after the given loop.
  //
  // For example, consider the following code:
  //   for (int i = 0; i < 100; ++i) {
  //     A[i] =
  //   }
  //
  // splitWithTail(i, 8, ...) will result in:
  //   for (int i_outer = 0; i_outer < 12; ++i_outer) {
  //     for (int i_inner = 0; i_inner < 8; ++i_inner) {
  //       A[i_outer * 8 + i_inner] =
  //     }
  //   }
  //   for (int i_tail = 0; i_tail < 4; ++i_tail) {
  //     A[i_tail + 96] =
  //   }
  //
  // The given loop will be transformed to the outer loop after splitting.
  // So, the pointer to the input loop should be valid after splitting and
  // will point to the outer loop. The `inner` and `tail` parameters will be
  // set to point to the inner and tail loops that are generated.
  static void splitWithTail(ForPtr f, int factor, ForPtr* inner, ForPtr* tail);
  // A convenience wrapper when the caller does not need to access the
  // split loops.
  static void splitWithTail(ForPtr f, int factor);

  // Splits the given loop into 2 nested loops with the given factor as the
  // inner loop bound. If the factor does not evenly divide the loop bound,
  // then a conditional is inserted into the body to handle the remaining
  // iterations appropriately.
  //
  // For example, consider the following code:
  //   for (int i = 0; i < 100; ++i) {
  //     A[i] =
  //   }
  //
  // splitWithMask(i, 8, ...) will result in:
  //   for (int i_outer = 0; i_outer < 13; ++i_outer) {
  //     for (int i_inner = 0; i_inner < 8; ++i_inner) {
  //       if (i_outer * 8 + i_inner < 100) {
  //         A[i_outer * 8 + i_inner] =
  //       }
  //     }
  //   }
  //
  // The given loop will be transformed to the outer loop after splitting.
  // So, the pointer to the input loop should be valid after splitting and
  // will point to the outer loop. The `inner` parameter will be set to point
  // to the inner loop that is generated.
  static void splitWithMask(ForPtr f, int factor, ForPtr* inner);
  // A convenience wrapper when the caller does not need to access the
  // split loops.
  static void splitWithMask(ForPtr f, int factor);

  // The following methods support loop distribution.
  // For example, consider the following code. This will be used to
  // demonstrate the methods below.
  //
  // S0:  for m
  // S1:    for i
  // S2:      A[i] = 0
  // S3:      for j
  // S4:        A[i] = A[i] +
  // S5:      B[i] = A[i]
  // S6:      for k
  // S7:        B[i] = B[i] +

  // This method distributes the given loop over its body by splitting
  // after every given pivot stmt.
  //
  // NOTE: Pivot stmts that are not in the given loop's body will be ignored.
  //
  // For the above example:
  //   distributeLoop(S1, {S3, S5})
  // will result in:
  // S0:  for m
  // S1:    for i
  // S2:      A[i] = 0
  // S3:      for j
  // S4:        A[i] = A[i] +
  //   :    for i
  // S5:      B[i] = A[i]
  //   :    for i
  // S6:      for k
  // S7:        B[i] = B[i] +
  static std::vector<ForPtr> distributeLoop(
      ForPtr loop,
      const std::unordered_set<StmtPtr>& pivots);

  // This method distributes the given loop over every stmt in its body.
  //
  // For the above example:
  //   distributeLoop(S1)
  // will result in:
  // S0:  for m
  // S1:    for i
  // S2:      A[i] = 0
  //   :    for i
  // S3:      for j
  // S4:        A[i] = A[i] +
  //   :    for i
  // S5:      B[i] = A[i]
  //   :    for i
  // S6:      for k
  // S7:        B[i] = B[i] +
  static std::vector<ForPtr> distributeLoop(ForPtr loop);
  // Same as above, but also distribute parent loops.
  // Returns the result of distributing the outermost loop.
  //
  // For the above example:
  //   distributeLoopAndParents(S1) will result in:
  // S0:  for m
  // S1:    for i
  // S2:      A[i] = 0
  //   :  for m
  //   :    for i
  // S3:      for j
  // S4:        A[i] = A[i] +
  //   :  for m
  //   :    for i
  // S5:      B[i] = A[i]
  //   :  for m
  //   :    for i
  // S6:      for k
  // S7:        B[i] = B[i] +
  static std::vector<ForPtr> distributeLoopAndParents(ForPtr loop);

  // This method distributes the given loop over its body by splitting
  // after every For stmt in its body.
  //
  // For the above example:
  //   distributeLoopOverInnerLoops(S1)
  // will result in:
  // S0:  for m
  // S1:    for i
  // S2:      A[i] = 0
  // S3:      for j
  // S4:        A[i] = A[i] +
  //   :    for i
  // S5:      B[i] = A[i]
  // S6:      for k
  // S7:        B[i] = B[i] +
  static std::vector<ForPtr> distributeLoopOverInnerLoops(ForPtr loop);
  // Same as above, but also distribute parent loops.
  // Returns the result of distributing the outermost loop.
  //
  // For the above example:
  //   distributeLoopAndParentsOverInnerLoops(S1)
  // will result in:
  // S0:  for m
  // S1:    for i
  // S2:      A[i] = 0
  // S3:      for j
  // S4:        A[i] = A[i] +
  //   :  for m
  //   :    for i
  // S5:      B[i] = A[i]
  // S6:      for k
  // S7:        B[i] = B[i] +
  static std::vector<ForPtr> distributeLoopAndParentsOverInnerLoops(
      ForPtr loop);

  // This method performs loop fusion.
  // For example, consider the following code.
  //
  // S1:  for m
  // S2:    A[m] = 0
  // S3:    for j
  // S4:      A[m] = A[m] +
  // S5:  for n
  // S5:    B[n] = A[n]
  // S6:    for k
  // S7:      B[n] = B[n] +
  //
  // fuseLoops({S1, S5}), will return the following loop:
  // S1:  for m
  // S2:    A[m] = 0
  // S3:    for j
  // S4:      A[m] = A[m] +
  // S5:    B[m] = A[m]
  // S6:    for k
  // S7:      B[m] = B[m] +
  //
  // This transformation is unsafe as it simply add all loops into the body of
  // the first loop for fusion without correctness checks.
  //
  // Below are the two requirements to apply unsafeFuseLoops:
  //  * All the loops have the same parent.
  //  * There are no statements between these loops in their parent body.
  static bool unsafeFuseLoops(const std::vector<ForPtr>& loops, ForPtr* fused);

  // Loop fusion is done only when all the conditions below are satisfied.
  //  * All the loops have the same parent.
  //  * There are no statements between these loops in their parent body.
  //  * The start bounds are the same for all loops.
  //  * The stop bounds are the same for all loops.
  //  * Fusing the loops does not violate or add any dependencies.
  static bool fuseLoops(const std::vector<ForPtr>& loops, ForPtr* fused);

  static void reorderAxis(ForPtr a, ForPtr b);

  // Reorder the given list of loops according to the permutation specified.
  // Here `permutation[i]` represents the position of the loop in the input
  // which will end up at position `i` after the reorder.
  //
  // For example, consider the following code:
  //   for p
  //     for q
  //       for r
  //         for s
  //           A[p,q,r,s] =
  //
  // reorder({p, q, r, s}, {2, 3, 0, 1}) will return the list of loops in the
  // following form:
  //    for r
  //      for s
  //        for p
  //          for q
  //            A[p,q,r,s] =
  static std::vector<ForPtr> reorder(
      const std::vector<ForPtr>& loops,
      const std::vector<size_t>& permutation);

  // Tile takes a 2d domain (x, y) and splits it into small rectangular blocks
  // each with shape (x_factor, y_factor). The traversal over the domain turns
  // into an outer iteration over the blocks and an inner traversal over all
  // points in the block.
  // Note that if x dim % x_factor or y dim % y_factor does not equal to 0, the
  // loop body will generate corresponding tailing loops.
  // The transformation is in-place and returns 'xtail'.
  //
  // For example, consider the following code:
  //   for i: [0, 64)
  //     for j: [0, 64)
  //       for k: [0, 32)
  //         A[i, j] = B[i, k] + C[j, k]
  //
  // tile(i, j, 4, 8) will transform "i" for-stmt into the following nested
  // loop:
  //   for i_outer: [0, 16)
  //     for j_outer: [0, 8)
  //       for i_inner: [0, 4)
  //         for j_inner: [0, 8)
  //           for k: [0, 32)
  //             A[i_outer * 4 + i_inner, j_outer * 8 + j_inner] =
  //             B[i_outer * 4 + i_inner, k] + C[j_outer * 8 + j_inner, k]
  //
  // tile(i, j, 4, 9) will transform "i" for-stmt into the following nested
  // loop:
  //   for i_outer: [0, 16)
  //     for j_outer: [0, 7)
  //       for i_inner: [0, 4)
  //         for j_inner: [0, 9)
  //           for k: (0, 32)
  //             A[i_outer * 4 + i_inner, j_outer * 9 + j_inner] =
  //             B[i_outer * 4 + i_inner, k] + C[j_outer * 9 + j_inner, k]
  //     for j_tail: [0, 1)
  //       for i_inner: [0, 4)
  //         for k: (0, 32)
  //           A[i_outer * 4 + i_inner, 7 * 9 + j_tail] =
  //           B[i_outer * 4 + i_inner, k] + C[7 * 9 + j_tail, k]
  ForPtr tile(ForPtr x, ForPtr y, int x_factor, int y_factor);

  // Returns true if the given loops are perfectly nested, i.e., every loop
  // (except the innermost) should have exactly one statement in its body
  // and that statement must be the next inner loop.
  static bool areLoopsPerfectlyNested(const std::vector<ForPtr>& loops);

  // Returns true if the given loop has a loop-carried dependence.
  static bool hasLoopCarriedDependence(ForPtr loop);

  // Unrolls all the iterations of the given loop.
  // Requires that the loop bounds are constant.
  static void fullUnroll(ForPtr f, StmtPtr* unrolled);
  static void fullUnroll(ForPtr f);

  // Unrolls the given loop for the specified factor.
  // This does not require constant bounds for the loop being unrolled.
  static void unroll(ForPtr f, int factor, ForPtr* tail);
  static void unroll(ForPtr f, int factor);

  static bool normalize(ForPtr f);
  static bool isNormalized(ForPtr f);

  static bool flatten(const std::vector<ForPtr>& f, ForPtr* flattened);
  static bool flatten(const std::vector<ForPtr>& f);

  // Compresses the given buffer based on its use in the given Stmts.
  //
  // NOTE: This API assumes that there are no accesses to the given buffer
  // outside the given statement. So, this should be called with the entire
  // kernel statement to avoid incorrect buffer compressions.
  //
  // For example, given the input:
  //
  // for (int i = 0; i < 100; ++i) {
  //   for (int j = 0; j < 200; ++j) {
  //     A[i,j] = sin(i*j)
  //   }
  //   for (int j = 0; j < 199; ++j) {
  //     B[i,j] = A[i,j] + A[i, j+1]
  //   }
  // }
  //
  // compressBuffer(A, ...) will compress buffer A from
  // [100, 200] to [1, 200] and modify the code as follows:
  //
  // for (int i = 0; i < 100; ++i) {
  //   for (int j = 0; j < 200; ++j) {
  //     A[0,j] = sin(i*j)
  //   }
  //   for (int j = 0; j < 199; ++j) {
  //     B[i,j] = A[0,j] + A[0, j+1]
  //   }
  // }
  static void compressBuffer(BufPtr buf, StmtPtr stmt);

  // Compresses all buffers in the given statement.
  //
  // NOTE: This API assumes that there are no accesses to buffers outside
  // the given statement. So, this should be called with the entire
  // kernel statement to avoid incorrect buffer compressions.
  //
  // TODO: Add an IR verifier check to detect invalidly compressed buffers.
  static void compressAllBuffers(StmtPtr stmt);

  // Get 'num' loops from the loopnest starting at 'f'.
  static std::vector<ForPtr> getLoopStmtsInLoopNest(ForPtr f, size_t num);

  // LoopOptions are propagated to tail.
  static void sliceHead(ForPtr f, int factor, ForPtr* head, ForPtr* tail);
  static void sliceHead(ForPtr f, int factor);
  // LoopOptions are propagated to head.
  static void sliceTail(ForPtr f, int factor, ForPtr* head, ForPtr* tail);
  static void sliceTail(ForPtr f, int factor);

  using AccessResult = std::pair<BufPtr, StmtPtr>;
  // Insert a cache for the consumer's usages of the buffer produced in
  // consumer, and redirect reads and writes in the consumer to that cache.
  // Returns a pair of the new cache buffer, and the new rewritten consumer.
  static AccessResult cacheAccesses(
      BufPtr producer,
      const std::string& name,
      StmtPtr consumer);

  // Insert a temporary computation of statement S in the scope of loop AT.
  // S is assumed to be a Store or a Block containing a Store. Along with the
  // computation itself, this transformation inserts Alloc/Free statements for
  // the temporary buffer used in the computation.
  static void computeAt(StmtPtr s, ForPtr at);

  // Rfactor a reduction axis into a normal axis.
  //
  // Requirements:
  //  * S is the reduction store
  //  * S is the only statement in the innermost loop
  //  * There is at least two reduction arguments in S
  //  * OUTER_REDUCTION_FOR loop corresponds to the outermost reduction variable
  //  used in the store and all other reduction variables are index variables of
  //  children loops of OUTER_REDUCTION_FOR
  //  * OUTER_REDUCTION_FOR is a perfect loop nest, i.e. it has only loops
  //  corresponding to the other reduction variables and the store, nested into
  //  each other
  //
  // What it does:
  //   * Introduce a new buffer with an extra dimension of a size equal to the
  //   span of the loop OUTER_REDUCTION_FOR (the new buffer is returned via
  //   RFAC_BUF_PTR)
  //   * Insert an initialization store for the new buffer in
  //   OUTER_REDUCTION_FOR before its nested loop
  //   * Replace the reduction store to the original buffer with the reduction
  //   store to the temp buffer, removing the index var of OUTER_REDUCTION_FOR
  //   from reduction arguments
  //   * Insert a final reduction store over the extra dimension of the new
  //   buffer to the original buffer
  //   * Returns TRUE if the transformation succeeded and FALSE otherwise
  //
  // Example:
  // Original IR:
  // S1: for i      # normal axis
  // S2:   X[i] = 0
  // S3:   for j    # reduction axis
  // S4:     for k  # reduction axis
  // S5:       X[i] = ReduceOp(X[i] + Y[i,j,k], reduce_axis={j,k})
  //
  // After RFACTOR(S5, S3)
  // S1: for i               # normal axis
  // S2:   X[i] = 0
  // S3:   for j             # reduction axis for X, normal axis for X_rfac
  //         X_rfac[i,j] = 0
  // S4:     for k           # reduction axis
  //           X_rfac[i,j] = ReduceOp(X_rfac[i,j] + Y[i,j,k], reduce_axis={k})
  //         X[i] = ReduceOp(X[i] + X_rfac[i,j], reduce_axis={j})
  static bool rfactor(StmtPtr s, ForPtr outer_reduction_for);
  static bool rfactor(
      StmtPtr s,
      ForPtr outer_reduction_for,
      BufPtr* rfac_buf_ptr);

  // Vectorize the given loop. This method requires that the given loop
  // does not perform a reduction.
  // It returns true if vectorization is successful and false otherwise.
  static bool vectorize(ForPtr);

  // Find the inner-most loops and vectorize them. Currently, this only works
  // for the LLVM backend, when no reductions are involved.
  void vectorizeInnerLoops();

  void eliminateDeadStores();

  void prepareForCodegen();

  const std::unordered_set<BufPtr> getInputBufs() const;
  const std::unordered_set<BufPtr> getOutputBufs() const {
    return output_bufs_;
  }
  std::vector<BufPtr> getIntermediateBufs() const;

  // Finds which is the outer For between a and b for loops. If neither of the 2
  // Fors is an ancestor of the other, it returns nullptr.
  static ForPtr findOuterFor(ForPtr a, ForPtr b);

 private:
  void initialize(
      const std::vector<Tensor>& output_tensors,
      const std::vector<Tensor>& tensors_to_compute);

  StmtPtr root_stmt_;

  std::unordered_set<BufPtr> output_bufs_;
};

TORCH_API StmtPtr FlattenIndexes(StmtPtr s);

// TODO: Revisit this once we decide on how dependencies analysis should look
// like. Maybe we would choose to use a different API and BufUse would be
// removed, or if we decide to keep it we need to properly document its API.
struct BufLoadOrStoreUse {
  StmtPtr s;
  bool isStore;
};

/*
 * Returns a map ( Buf -> uses of this Buf), uses are represented as vectors of
 * BufUse elements, which are StmtPtr and a bool isStore flag. The order of uses
 * in the vectors reflects the order in which the uses appear in the given
 * statement.
 */
std::unordered_map<BufPtr, std::vector<BufLoadOrStoreUse>> findLoadOrStoreUses(
    StmtPtr s);

// replaces all invalid characters with underscore
TORCH_API std::string sanitizeName(const std::string& input_name);

} // namespace tensorexpr
} // namespace jit
} // namespace torch