File: loopnest_randomization.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (750 lines) | stat: -rw-r--r-- 26,122 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#include <algorithm>
#include <random>
#include <stdexcept>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/jit_opt_limit.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>

namespace torch {
namespace jit {
namespace tensorexpr {

namespace randomization_helper {

int64_t max_transformations(int n_max_transforms) {
  // Reuse the env variable PYTORCH_JIT_OPT_LIMIT to control the max number of
  // transformations.  Example - set the env variable
  // PYTORCH_JIT_OPT_LIMIT="loopnest_randomization=10" to set max
  // transformations to 10.  This can be helpful in gradually reducing the
  // number of transformations when we see an error.
  if (!JIT_OPT_ALLOWED) {
    return n_max_transforms;
  }
  int max_transforms = 1;
  while (JIT_OPT_ALLOWED && max_transforms < n_max_transforms) {
    max_transforms++;
  }
  return max_transforms;
}

std::vector<std::vector<ForPtr>> GetAllPerfectlyNestedLoopNests(
    std::vector<ForPtr> loops) {
  // Find the first set of loops that can be reordered
  std::vector<std::vector<ForPtr>> all_nested_loops;
  std::vector<ForPtr> nested_loops;
  if (loops.size() == 0) {
    return all_nested_loops;
  }
  nested_loops.push_back(loops[0]);
  for (size_t i = 1; i < loops.size(); i++) {
    auto last_loop = nested_loops.back();
    auto next_loop = loops[i];
    if (last_loop->body()->nstmts() == 1 &&
        last_loop->body()->front() == next_loop) {
      nested_loops.push_back(next_loop);
    } else {
      if (nested_loops.size() > 1) {
        all_nested_loops.push_back(nested_loops);
      }
      nested_loops.clear();
      nested_loops.push_back(next_loop);
    }
  }
  return all_nested_loops;
}

template <typename T>
std::tuple<std::vector<T>, std::vector<int>> select_n_randomly(
    std::vector<T>& objects,
    int n,
    std::default_random_engine& random_engine) {
  std::vector<int> indices(objects.size());
  std::iota(indices.begin(), indices.end(), 0);
  std::shuffle(indices.begin(), indices.end(), random_engine);

  std::vector<T> selected_objects;
  std::vector<int> selected_indices;
  if (indices.size() < n) {
    return std::make_tuple(selected_objects, selected_indices);
  }
  for (int i = 0; i < n; i++) {
    int index = indices[i];
    selected_indices.push_back(index);
    selected_objects.push_back(objects[index]);
  }
  return std::make_tuple(selected_objects, selected_indices);
}

int find_factor(ForPtr loop) {
  // Find valid factors
  ExprPtr loop_stop = loop->stop();
  auto loop_imm = intValue(loop_stop);
  if (loop_imm) {
    int loop_bound = *loop_imm;
    int factor = rand() % (loop_bound - 1) + 1;
    return factor;
  }
  return -1;
}

void printHistory(int index, std::string message) {
  message = "Random Transform Sequence - Transformations[" +
      std::to_string(index) + "] = " + message;
  GRAPH_DEBUG(message);
}

template <typename T>
std::string join(std::vector<T> indices, char sep = ',') {
  std::string s = "";
  for (const auto& index : indices) {
    s += std::to_string(index) + sep;
  }
  return s;
}

std::string join(std::vector<std::string> indices, char sep = ',') {
  std::string s = "";
  for (const auto& index : indices) {
    s += index + sep;
  }
  return s;
}
template <typename T>
std::string indexOf(const std::vector<T>& objects, const T& object) {
  return std::to_string(std::distance(
      objects.begin(), std::find(objects.begin(), objects.end(), object)));
}

} // namespace randomization_helper

void loopnestRandomization(int64_t seed, LoopNest& l) {
  // This is to help with determinstic testing of randomized infrastructure.
  // When seed value is 1, we perform preset loop transformations. This allows
  // testing of interface.
  if (seed == 1) {
    l.simplify();
    return;
  }

  std::default_random_engine random_engine(seed);
  std::srand(seed);
  // Set the maximum allowed number of transformations beyong which it is hard
  // to track and debug. Arbitratily choosing 20 as maximum number.
  int max_allowed_transformations = 20;
  int n_transforms = randomization_helper::max_transformations(
      std::rand() % max_allowed_transformations);
  std::string message = "";
  // clang-format off
  //   Transformations list:
  //
  //       StmtPtr simplify();
  //       bool computeInline(BufPtr b);
  //       void inlineIntermediateBufs(bool allow_duplicated_work);
  //       bool optimizeConditionals();
  //       static void splitWithTail(ForPtr f, int factor);
  //       static void splitWithMask(ForPtr f, int factor);
  //       static std::vector<ForPtr> distributeLoop(ForPtr loop, const std::unordered_set<StmtPtr>& pivots);
  //       static std::vector<ForPtr> distributeLoop(ForPtr loop);
  //       static std::vector<ForPtr> distributeLoopAndParents(ForPtr loop);
  //       static std::vector<ForPtr> distributeLoopOverInnerLoops(ForPtr loop);
  //       static std::vector<ForPtr> distributeLoopAndParentsOverInnerLoops(ForPtr loop);
  //       static bool fuseLoops(const std::vector<ForPtr>& loops, ForPtr* fused);
  //       static void reorderAxis(ForPtr a, ForPtr b);
  //       static std::vector<ForPtr> reorder(const std::vector<ForPtr>& loops, const std::vector<size_t>& permutation);
  //       ForPtr tile(ForPtr x, ForPtr y, int x_factor, int y_factor);
  //       static void fullUnroll(ForPtr f);
  //       static bool normalize(ForPtr f);
  //       static bool flatten(const std::vector<ForPtr>& f, ForPtr* flattened);
  //       static void compressBuffer(BufPtr buf, StmtPtr stmt);
  //       static void compressAllBuffers(StmtPtr stmt);
  //       static void sliceHead(ForPtr f, int factor, ForPtr* head, ForPtr* tail);
  //       static void sliceHead(ForPtr f, int factor);
  //       static void sliceTail(ForPtr f, int factor, ForPtr* head, ForPtr* tail);
  //       static void sliceTail(ForPtr f, int factor);
  //       static AccessResult cacheAccesses(BufPtr producer, const std::string& name, StmtPtr consumer);
  //       static void computeAt(StmtPtr s, ForPtr at);
  //       static bool rfactor(StmtPtr s, ForPtr outer_reduction_for);
  //       static bool vectorize(ForPtr);
  //       void vectorizeInnerLoops();
  //       void eliminateDeadStores();
  //       void prepareForCodegen();
  // clang-format on
  enum TransformKind {
    SIMPLIFY = 0,
    COMPUTE_INLINE,
    INLINE_ALL,
    OPT_COND,
    SPLIT_TAIL,
    SPLIT_MASK,
    DIST1,
    DIST2,
    DIST3,
    DIST4,
    DIST5,
    FUSE_LOOPS,
    REORDER_AXIS,
    REORDER,
    TILE,
    FULL_UNROLL,
    NORMALIZE,
    FLATTEN,
    COMPRESS_BUFFER,
    COMPRESS_ALL_BUFFERS,
    SLICE_HEAD,
    SLICE_TAIL,
    CACHE_ACCESSES,
    COMPUTE_AT,
    RFACTOR,
    VECTORIZE,
    VECTORIZE_INNER_LOOPS,
    ELIMINATE_DEAD_STORES,
    MAX_TRANSFORM,
  };
  bool can_inline = true;
  try {
    for (int n_transform = 0; n_transform < n_transforms; n_transform++) {
      int transform = std::rand() % MAX_TRANSFORM;
      switch (transform) {
        case SIMPLIFY: {
          message = "simplify();\n";
          randomization_helper::printHistory(n_transform, message);
          l.simplify();
          break;
        }
        case COMPUTE_INLINE: {
          if (can_inline) {
            auto bufs = NodeFinder<Buf>::find(l.root_stmt());
            if (bufs.size() > 0) {
              int buf_number = std::rand() % (int)bufs.size();
              message =
                  "computeInline(" + bufs[buf_number]->name_hint() + ");\n";
              randomization_helper::printHistory(n_transform, message);
              l.computeInline(bufs[buf_number]);
            }
          }
          break;
        }
        case INLINE_ALL: {
          if (can_inline) {
            int allow_dup = std::rand() % 2;
            message =
                "inlineIntermediateBufs(" + std::to_string(allow_dup) + ");\n";
            randomization_helper::printHistory(n_transform, message);
            l.inlineIntermediateBufs(allow_dup);
            can_inline = false;
          }
          break;
        }
        case OPT_COND: {
          message = "optimizeConditionals();\n";
          randomization_helper::printHistory(n_transform, message);
          l.optimizeConditionals();
          break;
        }
        case SPLIT_TAIL: {
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];
          int factor = (std::rand() % 20) + 1;
          message = "splitWithTail(loops[" + std::to_string(loop_n) + "], " +
              std::to_string(factor) + ");\n";
          randomization_helper::printHistory(n_transform, message);
          l.splitWithTail(loop, factor);
          break;
        }
        case SPLIT_MASK: {
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];
          int factor = (std::rand() % 20) + 1;
          message = "splitWithMask(loops[" + std::to_string(loop_n) + "], " +
              std::to_string(factor) + ")\n";
          randomization_helper::printHistory(n_transform, message);
          l.splitWithMask(loop, factor);
          break;
        }
        case DIST1: {
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];
          std::vector<StmtPtr> stmts(
              loop->body()->begin(), loop->body()->end());
          if (stmts.size() == 0) {
            break;
          }
          int n_pivots = (std::rand() % (int)stmts.size()) + 1;
          std::vector<StmtPtr> pivots;
          std::vector<int> chosen_indices;
          std::tie(pivots, chosen_indices) =
              randomization_helper::select_n_randomly<StmtPtr>(
                  stmts, n_pivots, random_engine);
          std::unordered_set<StmtPtr> pivots_set(pivots.begin(), pivots.end());
          message = "distributeLoop(loops[" + std::to_string(loop_n) +
              "], pivots=stmts(" + randomization_helper::join(chosen_indices) +
              "))\n";
          randomization_helper::printHistory(n_transform, message);
          l.distributeLoop(loop, pivots_set);
          break;
        }
        case DIST2: {
          auto loops = NodeFinder<For>::find(l.root_stmt());

          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          message = "distributeLoop(loops[" + std::to_string(loop_n) + "])\n";
          randomization_helper::printHistory(n_transform, message);
          l.distributeLoop(loop);
          break;
        }
        case DIST3: {
          auto loops = NodeFinder<For>::find(l.root_stmt());

          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          message = "distributeLoopAndParents(loops[" + std::to_string(loop_n) +
              "])\n";
          randomization_helper::printHistory(n_transform, message);
          l.distributeLoopAndParents(loop);
          break;
        }
        case DIST4: {
          auto loops = NodeFinder<For>::find(l.root_stmt());

          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          message = "distributeLoopOverInnerLoops(loops[" +
              std::to_string(loop_n) + "])\n";
          randomization_helper::printHistory(n_transform, message);
          l.distributeLoopOverInnerLoops(loop);
          break;
        }
        case DIST5: {
          auto loops = NodeFinder<For>::find(l.root_stmt());

          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          message = "distributeLoopAndParentsOverInnerLoops(loops[" +
              std::to_string(loop_n) + "])\n";
          randomization_helper::printHistory(n_transform, message);
          l.distributeLoopAndParentsOverInnerLoops(loop);
          break;
        }
        case FUSE_LOOPS: {
          // Get all the loops
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() <= 1) {
            break;
          }

          // Find a random number of loops to fuse
          int num_loops_to_fuse =
              std::max(2, (int)(std::rand() % (int)loops.size()));

          std::vector<ForPtr> loops_to_fuse;
          std::vector<int> chosen_indices;
          std::tie(loops_to_fuse, chosen_indices) =
              randomization_helper::select_n_randomly<ForPtr>(
                  loops, num_loops_to_fuse, random_engine);

          message = "fuseLoops(loops[" +
              randomization_helper::join(chosen_indices) + "], &fused_loop);\n";
          randomization_helper::printHistory(n_transform, message);
          // Fuse the loops
          ForPtr fused_loop;
          l.fuseLoops(loops_to_fuse, &fused_loop);
          break;
        }

        case REORDER_AXIS: {
          // Get all the loops
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() <= 1) {
            break;
          }

          // Find pairs of axes that can be reordered
          std::vector<std::pair<ForPtr, ForPtr>> valid_pairs;
          for (int i = 0; i < loops.size(); i++) {
            for (int j = i + 1; j < loops.size(); j++) {
              if (LoopNest::findOuterFor(loops[i], loops[j])) {
                valid_pairs.emplace_back(loops[i], loops[j]);
              }
            }
          }

          // Choose a pair randomly
          if (valid_pairs.size() == 0) {
            break;
          }
          int valid_pair_n = std::rand() % (int)valid_pairs.size();
          auto loop_pair = valid_pairs.at(valid_pair_n);
          auto first_loop = std::get<0>(loop_pair);
          auto second_loop = std::get<1>(loop_pair);

          std::string first_index =
              randomization_helper::indexOf(loops, first_loop);
          std::string second_index =
              randomization_helper::indexOf(loops, second_loop);
          message = "reorderAxis(loops[";
          message += first_index;
          message += "], loops[";
          message += second_index + "]);\n";
          randomization_helper::printHistory(n_transform, message);
          // reorder the axis
          l.reorderAxis(first_loop, second_loop);
          break;
        }

        case REORDER: {
          // Get all the loops
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() <= 1) {
            break;
          }

          // Find all perfectly nested loop nests
          auto all_nested_loops =
              randomization_helper::GetAllPerfectlyNestedLoopNests(loops);
          if (all_nested_loops.size() == 0) {
            break;
          }

          // Randomly pick a set of consecutive loops to reorder
          int index = rand() % (int)all_nested_loops.size();
          auto nested_loops = all_nested_loops.at(index);

          // Create a random permutation for reordering
          std::vector<size_t> permutation(nested_loops.size());
          std::iota(permutation.begin(), permutation.end(), 0);
          std::shuffle(permutation.begin(), permutation.end(), random_engine);

          // Generate a good history message
          std::vector<std::string> indices;
          indices.reserve(nested_loops.size());
          for (const auto& l : nested_loops) {
            indices.push_back(randomization_helper::indexOf(loops, l));
          }
          message = "reorder(loops[" + randomization_helper::join(indices) +
              "], permutation=[" + randomization_helper::join(permutation) +
              "]);\n";
          randomization_helper::printHistory(n_transform, message);
          // reorder
          l.reorder(nested_loops, permutation);
          break;
        }

        case TILE: {
          // Get all the loops
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() <= 1) {
            break;
          }

          // Tile needs two perfectly nested loops. To find such loops, we find
          // all perfectly nested loop nests, randomly pick one of them, and
          // randomly pick 2 consecutive loops in that loop nest.
          // Find all perfectly nested loop nests
          auto all_nested_loops =
              randomization_helper::GetAllPerfectlyNestedLoopNests(loops);
          if (all_nested_loops.size() == 0) {
            break;
          }

          int index = rand() % (int)all_nested_loops.size();
          auto nested_loops = all_nested_loops.at(index);
          if (nested_loops.size() < 2) {
            break;
          }
          int loop_number = rand() % ((int)nested_loops.size() - 1);
          auto x_loop = nested_loops.at(loop_number);
          auto y_loop = nested_loops.at(loop_number + 1);

          int x_factor = randomization_helper::find_factor(x_loop);
          int y_factor = randomization_helper::find_factor(y_loop);
          if (x_factor == -1 || y_factor == -1) {
            break;
          }

          std::string x_loop_index =
              randomization_helper::indexOf(loops, x_loop);
          std::string y_loop_index =
              randomization_helper::indexOf(loops, y_loop);
          message = "tile(loops[";
          message += x_loop_index;
          message += "], loops[";
          message += y_loop_index + "], ";
          message += std::to_string(x_factor);
          message += ", " + std::to_string(y_factor) + ");\n";
          randomization_helper::printHistory(n_transform, message);
          // tile
          l.tile(x_loop, y_loop, x_factor, y_factor);
          break;
        }

        case FULL_UNROLL: {
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          message = "fullUnroll(loops[" + std::to_string(loop_n) + "]);\n";
          randomization_helper::printHistory(n_transform, message);
          LoopNest::fullUnroll(loop);
          break;
        }

        case NORMALIZE: {
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          message = "normalize(loops[" + std::to_string(loop_n) + "]);\n";
          randomization_helper::printHistory(n_transform, message);
          l.normalize(loop);
          break;
        }

        case FLATTEN: {
          // Get all the loops
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() <= 1) {
            break;
          }

          // Find all perfectly nested loop nests
          auto all_nested_loops =
              randomization_helper::GetAllPerfectlyNestedLoopNests(loops);
          if (all_nested_loops.size() == 0) {
            break;
          }

          // Randomly pick a set of consecutive loops to flatten
          int index = rand() % (int)all_nested_loops.size();
          auto nested_loops = all_nested_loops.at(index);

          // Generate a good history message
          std::vector<std::string> indices;
          indices.reserve(nested_loops.size());
          for (const auto& l : nested_loops) {
            indices.push_back(randomization_helper::indexOf(loops, l));
          }
          message =
              "flatten(loops[" + randomization_helper::join(indices) + "]);\n";
          randomization_helper::printHistory(n_transform, message);
          // flatten
          l.flatten(nested_loops);
          break;
        }

        case COMPRESS_BUFFER: {
          auto buffers = NodeFinder<Buf>::find(l.root_stmt());
          int buffer_n = std::rand() % (int)buffers.size();
          auto buffer = buffers[buffer_n];

          message = "compressBuffer(buffers[" + std::to_string(buffer_n) +
              "], l.root_stmt());\n";
          randomization_helper::printHistory(n_transform, message);
          l.compressBuffer(buffer, l.root_stmt());
          break;
        }

        case COMPRESS_ALL_BUFFERS: {
          auto buffers = BufFinder::find(l.root_stmt());

          message = "compressAllBuffers(l.root_stmt());\n";
          randomization_helper::printHistory(n_transform, message);
          l.compressAllBuffers(l.root_stmt());
          break;
        }

        case SLICE_HEAD: {
          // Get all the loops
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          int factor = randomization_helper::find_factor(loop);
          if (factor == -1) {
            break;
          }
          message = "sliceHead(loops[" + std::to_string(loop_n) + "]);\n";
          randomization_helper::printHistory(n_transform, message);
          l.sliceHead(loop, factor);
          break;
        }

        case SLICE_TAIL: {
          // Get all the loops
          auto loops = NodeFinder<For>::find(l.root_stmt());
          if (loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)loops.size();
          auto loop = loops[loop_n];

          int factor = randomization_helper::find_factor(loop);
          if (factor == -1) {
            break;
          }
          message = "sliceTail(loops[" + std::to_string(loop_n) + "]);\n";
          randomization_helper::printHistory(n_transform, message);
          l.sliceTail(loop, factor);
          break;
        }

        case CACHE_ACCESSES: {
          // TODO - Implement cache_access
          break;
        }

        case COMPUTE_AT: {
          // To find valid compute at pairs, we need to collect the producer
          // consumer pairs. For now, we do not collect all such pairs for
          // simplicity. For now, we collect producer and the immediate parent
          // loop of the consumer. We could collect all the consumer enclosing
          // loops, but then we will have to clean up the ones that are shared
          // with the producer encloser loop. Currently, we only test on the
          // immediate parent loop.
          auto buffers = BufFinder::find(l.root_stmt());
          std::vector<std::pair<StmtPtr, ForPtr>> producer_consumer_pairs;

          for (const auto& buffer : buffers) {
            auto producers = l.getAllWritesToBuf(buffer);
            auto consumers = StmtsReadingBuf::find(l.root_stmt(), buffer);
            if (producers.size() != 1 || consumers.empty()) {
              continue;
            }

            for (const auto& producer : producers) {
              for (const auto& consumer : consumers) {
                auto parent_loop = LoopNest::getParentLoop(consumer);
                auto pc_pair = std::make_pair(producer, parent_loop);
                producer_consumer_pairs.push_back(pc_pair);
              }
            }
          }

          if (producer_consumer_pairs.size() == 0) {
            break;
          }

          // Choose a random pair
          int pair_n = std::rand() % (int)producer_consumer_pairs.size();
          auto pc_pair = producer_consumer_pairs.at(pair_n);
          auto store = std::get<0>(pc_pair);
          auto for_ptr = std::get<1>(pc_pair);

          // TODO - come up with better message
          message = "computeAt(....);\n";
          randomization_helper::printHistory(n_transform, message);
          l.computeAt(store, for_ptr);
          break;
        }

        case RFACTOR: {
          // TODO - Implement rfactor
          break;
        }

        case VECTORIZE: {
          auto loops = NodeFinder<For>::find(l.root_stmt());
          std::vector<ForPtr> innermost_loops;

          for (const auto& loop : loops) {
            bool containsSubLoops = false;
            if (BlockPtr body = to<Block>(loop->body())) {
              for (const StmtPtr& stmt : *body) {
                if (ForPtr f2 = to<For>(stmt)) {
                  containsSubLoops = true;
                }
              }
            }

            if (!containsSubLoops) {
              innermost_loops.push_back(loop);
            }
          }

          if (innermost_loops.size() == 0) {
            break;
          }
          int loop_n = std::rand() % (int)innermost_loops.size();
          auto loop = innermost_loops[loop_n];

          message = "vectorize(loops[" + std::to_string(loop_n) + "]);\n";
          randomization_helper::printHistory(n_transform, message);
          l.vectorize(loop);
          break;
        }

        case VECTORIZE_INNER_LOOPS: {
          message = "vectorizeInnerLoops();\n";
          randomization_helper::printHistory(n_transform, message);
          l.vectorizeInnerLoops();
          break;
        }

        case ELIMINATE_DEAD_STORES: {
          message = "eliminateDeadStores();\n";
          randomization_helper::printHistory(n_transform, message);
          l.eliminateDeadStores();
          break;
        }

        // TODO: Add remaining transforms
        default:
          break;
      }
    }
  } catch (...) {
    std::cout << "EXCEPTION THROWN!\n";
    std::cout << "SEED: " << seed << "\n";
    throw std::runtime_error("Random test failed");
  }
  message = "End of transformations;\n";
  randomization_helper::printHistory(n_transforms, message);
  return;
}

} // namespace tensorexpr
} // namespace jit
} // namespace torch