1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
|
#include <torch/csrc/jit/tensorexpr/mem_dependency_checker.h>
#include <c10/util/irange.h>
#include <fstream>
namespace torch {
namespace jit {
namespace tensorexpr {
namespace analysis {
const char* AccessToString(AccessType a) {
switch (a) {
case AccessType::Input:
return "Input";
case AccessType::Output:
return "Output";
case AccessType::Load:
return "Load";
case AccessType::Store:
return "Store";
case AccessType::Call:
return "Call";
case AccessType::AtomicAdd:
return "AtomicAdd";
case AccessType::Alloc:
return "Alloc";
case AccessType::Free:
return "Free";
default:
break;
}
return "Unknown";
}
void getDependencyChain(
const std::shared_ptr<AccessInfo>& info,
DependencySet& dependencies) {
if (!dependencies.insert(info).second) {
return;
}
for (auto& dep : info->dependencies()) {
getDependencyChain(dep.second, dependencies);
}
}
void getDependentsChain(
const std::shared_ptr<AccessInfo>& info,
DependencySet& dependents) {
if (!dependents.insert(info).second) {
return;
}
for (auto& dep : info->dependents()) {
getDependencyChain(dep.second, dependents);
}
}
// AccessInfo
std::vector<ExprPtr> AccessInfo::getIndices() const {
std::vector<ExprPtr> indices;
if (expr_) {
if (auto load = to<Load>(expr_)) {
indices = load->indices();
}
} else {
if (auto store = to<Store>(stmt_)) {
indices = store->indices();
}
}
return indices;
}
void AccessInfo::addDependency(const std::shared_ptr<AccessInfo>& write) {
auto res = dependencies_.emplace(write->id(), write);
TORCH_INTERNAL_ASSERT(
res.second,
buildErrorMessage("Duplicate entry in mem dep checker in the fuser."));
}
void AccessInfo::addDependent(const std::shared_ptr<AccessInfo>& read) {
auto res = dependents_.emplace(read->id(), read);
TORCH_INTERNAL_ASSERT(
res.second,
buildErrorMessage("Duplicate entry in mem dep checker in the fuser."));
}
bool AccessInfo::hasDependency(const std::shared_ptr<AccessInfo>& info) const {
return dependencies_.count(info->id()) != 0;
}
DependencySet AccessInfo::getDirectDependencies() {
DependencySet res;
for (auto& depPair : dependencies_) {
res.insert(depPair.second);
}
return res;
}
DependencySet AccessInfo::getIndirectDependencies() {
DependencySet res;
for (auto& depPair : dependencies_) {
getDependencyChain(depPair.second, res);
}
return res;
}
DependencySet AccessInfo::getDirectDependents() {
DependencySet res;
for (auto& depPair : dependents_) {
res.insert(depPair.second.lock());
}
return res;
}
DependencySet AccessInfo::getIndirectDependents() {
DependencySet res;
for (auto& depPair : dependencies_) {
getDependentsChain(depPair.second, res);
}
return res;
}
bool AccessInfo::isRead() const {
switch (type_) {
case AccessType::Output:
case AccessType::Load:
case AccessType::Call:
case AccessType::AtomicAdd:
return true;
default:
break;
}
return false;
}
bool AccessInfo::isWrite() const {
switch (type_) {
case AccessType::Input:
case AccessType::Store:
case AccessType::AtomicAdd:
case AccessType::Alloc:
case AccessType::Free:
return true;
default:
break;
}
return false;
}
void AccessInfo::print() const {
std::cout << id_ << ". " << AccessToString(type_) << ": " << *var_ << "[";
if (bounds_.size() > 0) {
for (size_t i = 0; i < bounds_.size() - 1; ++i) {
bounds_[i].print();
std::cout << ", ";
}
size_t i = bounds_.size() - 1;
bounds_[i].print();
}
std::cout << "]";
if (!dependencies_.empty()) {
std::cout << " - depends on: ";
for (auto& pair : dependencies_) {
std::cout << pair.second->id() << " ";
}
}
if (!dependents_.empty()) {
std::cout << " - dependents: ";
for (auto& pair : dependents_) {
std::cout << pair.second.lock()->id() << " ";
}
}
std::cout << "\n";
}
void AccessInfo::dumpDOT(std::ostream& os) const {
if (type_ == AccessType::Input || type_ == AccessType::Output ||
type_ == AccessType::Alloc) {
os << "n" << id_ << " [\n";
os << "label = \"" << AccessToString(type_) << "\\n " << *var_ << "[";
if (bounds_.size() > 0) {
for (size_t i = 0; i < bounds_.size() - 1; ++i) {
os << *IRSimplifier::simplify(
alloc<Add>(bounds_[i].end, immLike(bounds_[i].end, 1)))
<< ", ";
}
size_t i = bounds_.size() - 1;
os << *IRSimplifier::simplify(
alloc<Add>(bounds_[i].end, immLike(bounds_[i].end, 1)));
os << "]\"\n ";
}
if (isWrite()) {
os << "\tshape = \"invhouse\"\n";
} else {
os << "\tshape = \"house\"\n";
}
} else {
os << "n" << id_ << " [\n";
os << "label = \"" << AccessToString(type_) << " (#" << id_ << ")\\n";
os << "buf : " << *var_ << "\\n";
os << "bounds : \[";
if (bounds_.size() > 0) {
for (size_t i = 0; i < bounds_.size() - 1; ++i) {
os << "(" << *bounds_[i].start << ", " << *bounds_[i].end << "), ";
}
size_t i = bounds_.size() - 1;
os << "(" << *bounds_[i].start << ", " << *bounds_[i].end << ")]";
}
os << "\"\n";
os << "\tshape = \"box\"\n";
}
os << "\tstyle=\"filled\"\n";
os << "\tcolor=\"" << AccessTypeColour() << "\"\n";
std::string edgeColour;
if (isWrite()) {
edgeColour = "cornflowerblue";
} else {
edgeColour = "goldenrod";
}
os << "]\n";
for (auto& pair : dependencies_) {
os << "n" << pair.second->id() << " -> "
<< "n" << id_ << " [color=\"" << edgeColour << "\"]\n";
}
}
const char* AccessInfo::AccessTypeColour() const {
switch (type_) {
case AccessType::Input:
case AccessType::Output:
return "palegreen";
case AccessType::Load:
return "peachpuff";
case AccessType::Store:
return "dodgerblue";
case AccessType::Call:
return "violet";
case AccessType::Alloc:
case AccessType::Free:
return "sandybrown";
default:
break;
}
return "white";
}
// MemDependencyChecker
//
MemDependencyChecker::MemDependencyChecker() {
currentScope_ = std::make_shared<Scope>(nullptr, nullptr);
}
MemDependencyChecker::MemDependencyChecker(
const std::unordered_set<BufPtr>& inputs,
const std::unordered_set<BufPtr>& outputs) {
for (auto s : inputs) {
inputs_[s] = nullptr;
}
for (auto s : outputs) {
outputs_[s] = nullptr;
}
currentScope_ = std::make_shared<Scope>(nullptr, nullptr);
}
MemDependencyChecker::MemDependencyChecker(
const std::vector<BufHandle>& inputs,
const std::vector<BufHandle>& outputs) {
for (auto& s : inputs) {
inputs_[s.node()] = nullptr;
}
for (auto& s : outputs) {
outputs_[s.node()] = nullptr;
}
currentScope_ = std::make_shared<Scope>(nullptr, nullptr);
}
bool MemDependencyChecker::allowLoopExecutionOrderAnalysis(bool allow) {
std::swap(allowExecutionOrderAnalysis_, allow);
return allow;
}
const std::vector<std::shared_ptr<AccessInfo>>& MemDependencyChecker::
getHistory() const {
return currentScope_->accesses_;
}
void MemDependencyChecker::dumpDAG(const std::string& filename) const {
std::ofstream dotfile(filename);
dotfile << "digraph {\n";
for (auto& wi : getHistory()) {
wi->dumpDOT(dotfile);
}
dotfile << "}\n";
dotfile.close();
}
// dependsDirectly, dependsIndirectly and friends:
DependencySet MemDependencyChecker::getAllWriteDependencies(
const DependencySet& products) {
DependencySet writes;
for (auto& info : products) {
DependencySet dependencies;
getDependencyChain(info, dependencies);
for (auto& other : dependencies) {
if (other->isWrite()) {
writes.insert(other);
}
}
}
return writes;
}
bool MemDependencyChecker::dependsDirectly(ExprPtr A, StmtPtr B) {
return dependsDirectlyHelper(A, B);
}
bool MemDependencyChecker::dependsDirectly(StmtPtr A, StmtPtr B) {
return dependsDirectlyHelper(A, B);
}
bool MemDependencyChecker::dependsDirectly(BufPtr O, StmtPtr B) {
auto outputAccess = output(O);
auto bWrites = getAllWritesWithin(B);
for (auto& depPair : outputAccess->dependencies()) {
if (bWrites.count(depPair.second) != 0) {
return true;
}
}
return false;
}
bool MemDependencyChecker::dependsDirectly(StmtPtr A, BufPtr I) {
auto aReads = getAllReadsWithin(A);
auto inputAccess = input(I);
for (auto& depPair : inputAccess->dependents()) {
if (aReads.count(depPair.second) != 0) {
return true;
}
}
return false;
}
bool MemDependencyChecker::dependsDirectly(ExprPtr A, BufPtr I) {
auto aReads = getAllReadsWithin(A);
auto inputAccess = input(I);
for (auto& depPair : inputAccess->dependents()) {
if (aReads.count(depPair.second) != 0) {
return true;
}
}
return false;
}
bool MemDependencyChecker::dependsDirectly(
const std::shared_ptr<AccessInfo>& A,
const std::shared_ptr<AccessInfo>& B) {
return A->hasDependency(B) && B->isWrite();
}
bool MemDependencyChecker::dependsIndirectly(ExprPtr A, StmtPtr B) {
return dependsIndirectlyHelper(A, B);
}
bool MemDependencyChecker::dependsIndirectly(StmtPtr A, StmtPtr B) {
return dependsIndirectlyHelper(A, B);
}
bool MemDependencyChecker::dependsIndirectly(BufPtr O, StmtPtr B) {
auto outputAccess = output(O);
DependencySet dependencies;
getDependencyChain(outputAccess, dependencies);
auto bWrites = getAllWritesWithin(B);
for (auto& dep : dependencies) {
if (bWrites.count(dep) != 0) {
return true;
}
}
return false;
}
bool MemDependencyChecker::dependsIndirectly(StmtPtr A, BufPtr I) {
auto aReads = getAllReadsWithin(A);
auto inputAccess = input(I);
auto aDeps = getAllWriteDependencies(aReads);
return aDeps.count(inputAccess) != 0;
}
bool MemDependencyChecker::dependsIndirectly(ExprPtr A, BufPtr I) {
auto aReads = getAllReadsWithin(A);
auto inputAccess = input(I);
auto aDeps = getAllWriteDependencies(aReads);
return aDeps.count(inputAccess) != 0;
}
bool MemDependencyChecker::dependsIndirectly(BufPtr O, BufPtr I) {
auto outputAccess = output(O);
auto inputAccess = input(I);
return dependsIndirectly(outputAccess, inputAccess);
}
bool MemDependencyChecker::dependsIndirectly(
const std::shared_ptr<AccessInfo>& A,
const std::shared_ptr<AccessInfo>& B) {
if (!B->isWrite()) {
return false;
}
DependencySet dependencies;
getDependencyChain(A, dependencies);
if (dependencies.count(B) == 0) {
return false;
}
return true;
}
std::shared_ptr<AccessInfo> MemDependencyChecker::accessFor(StmtPtr A) const {
auto bound = stmtToAccess_.equal_range(A);
for (auto it = bound.first; it != bound.second; ++it) {
if (it->second->expr() == nullptr) {
return it->second;
}
}
return nullptr;
}
std::shared_ptr<AccessInfo> MemDependencyChecker::accessFor(ExprPtr A) const {
// TODO exprs can have multiple accesses... we're returning the first but that
// isn't great. Can't do much here.
auto bound = exprToAccess_.equal_range(A);
if (bound.first != exprToAccess_.end()) {
return bound.first->second;
}
return nullptr;
}
std::unordered_set<std::shared_ptr<AccessInfo>> MemDependencyChecker::
accessesWithin(StmtPtr A) const {
auto it = scopeToAccesses_.find(A);
if (it != scopeToAccesses_.end()) {
return std::unordered_set<std::shared_ptr<AccessInfo>>(
it->second.begin(), it->second.end());
}
std::unordered_set<std::shared_ptr<AccessInfo>> ret;
auto bound = stmtToAccess_.equal_range(A);
for (auto it = bound.first; it != bound.second; ++it) {
ret.insert(it->second);
}
return ret;
}
std::unordered_set<std::shared_ptr<AccessInfo>> MemDependencyChecker::
accessesWithin(ExprPtr A) const {
return {accessFor(A)};
}
std::shared_ptr<AccessInfo> MemDependencyChecker::input(BufPtr b) const {
auto it = inputs_.find(b);
if (it == inputs_.end()) {
return nullptr;
}
return it->second;
}
std::shared_ptr<AccessInfo> MemDependencyChecker::output(BufPtr b) const {
auto it = outputs_.find(b);
if (it == outputs_.end()) {
return nullptr;
}
return it->second;
}
// Node visitors:
void MemDependencyChecker::visit(StorePtr v) {
StmtPtr last = lastStmt_;
lastStmt_ = v;
v->value()->accept(this);
for (ExprPtr ind : v->indices()) {
ind->accept(this);
}
lastStmt_ = last;
// Create a new AccessInfo for the store.
VarPtr var = v->buf()->base_handle();
auto info = std::make_shared<AccessInfo>(
nextAccess_++, AccessType::Store, v, var, getIndicesBounds(v->indices()));
// Add a dependency to any accesses that are within the scope of this store
// (ie. the RHS).
auto bound = stmtToAccess_.equal_range(v);
for (auto it = bound.first; it != bound.second; ++it) {
info->addDependency(it->second);
it->second->addDependent(info);
}
stmtToAccess_.emplace(v, info);
// This write is open, and will close any open writes that it totally
// overlaps.
auto& history = currentScope_->openWrites_[var];
updateWriteHistory(history, info, info->id());
currentScope_->accesses_.push_back(info);
}
void MemDependencyChecker::visit(LoadPtr v) {
// Create a temporary scope to hold any loads that occur within the indices of
// this load.
auto indicesScope =
std::make_shared<Scope>(currentScope_->block, currentScope_);
currentScope_ = indicesScope;
for (ExprPtr ind : v->indices()) {
ind->accept(this);
}
// Create a new AccessInfo for the load.
VarPtr var = v->buf()->base_handle();
auto load = std::make_shared<AccessInfo>(
nextAccess_++,
AccessType::Load,
v,
lastStmt_,
var,
getIndicesBounds(v->indices()));
// If there were loads in the indices, this load depends on them, and merge
// them in.
if (!indicesScope->accesses_.empty()) {
for (auto& access : indicesScope->accesses_) {
load->addDependency(access);
access->addDependent(load);
}
mergeScope(indicesScope, indicesScope->parent, false);
}
currentScope_ = indicesScope->parent;
stmtToAccess_.emplace(lastStmt_, load);
exprToAccess_.emplace(v, load);
// This is a read, and does not close any accesses - but we need to establish
// dependencies on accesses in the same scope.
// Intentionally using operator[], we want it to be created if it does not
// exist.
auto& writeHistory = currentScope_->openWrites_[var];
updateWriteHistory(writeHistory, load, load->id());
currentScope_->accesses_.push_back(load);
}
// This check determines if two accesses within a loop are "safe" from loop-self
// dependence. This function does not consider overlap in bound range, but
// rather the stride of the bound relative to the loop variable. This is the
// section of the code which considers iteration order, if allowed.
bool executionSafetyCheck(
const std::shared_ptr<AccessInfo>& info,
const std::shared_ptr<AccessInfo>& other,
const std::vector<ExprPtr>& aStrides,
const std::vector<ExprPtr>& oStrides,
bool parallelized) {
if (aStrides.empty() || oStrides.empty()) {
return false;
}
TORCH_INTERNAL_ASSERT(
info->bounds().size() == other->bounds().size(),
buildErrorMessage(
"Dimension mismatch for two accesses in mem dep checker in the fuser."));
for (size_t b = 0; b < info->bounds().size(); ++b) {
ExprPtr aIndexStride = aStrides[b];
ExprPtr oIndexStride = oStrides[b];
// can't be safe on this index if we can't determine stride.
if (!aIndexStride->isConstant() || !oIndexStride->isConstant()) {
continue;
}
ExprPtr minStride =
IRSimplifier::simplify(alloc<Min>(aIndexStride, oIndexStride, true));
ExprPtr maxStride =
IRSimplifier::simplify(alloc<Max>(aIndexStride, oIndexStride, true));
// If the first access has no stride don't apply safety).
if (immediateEquals(minStride, 0)) {
continue;
}
ExprPtr modCheck = IRSimplifier::simplify(alloc<Mod>(maxStride, minStride));
// if the strides can't have easily inferable distinct offsets, they're not
// safe.
if (!immediateEquals(modCheck, 0)) {
continue;
}
// If the loop has a defined execution order (ie. sequential for) then
// the order of execution can provide safety from overlaps.
// Specifically if the difference in first access position for any
// axis is the same sign as the common stride, then they will not
// overlap.
ExprPtr startDiff = IRSimplifier::simplify(
alloc<Sub>(info->bounds()[b].start, other->bounds()[b].start));
bool diffNegative = immediateIsNegative(startDiff);
bool strideNegative = immediateIsNegative(minStride);
// Invert the startDiff so mod works.
if (diffNegative != strideNegative) {
startDiff =
IRSimplifier::simplify(alloc<Sub>(immLike(startDiff, 0), startDiff));
}
// If both accesses have the same stride, and the difference in start
// element is smaller than this stride then the entire range is distinct.
if (exprEquals(minStride, maxStride)) {
ExprPtr check1 = IRSimplifier::simplify(
alloc<CompareSelect>(startDiff, minStride, kLT));
if (check1->isConstant() && immediateEquals(check1, 1)) {
return true;
}
}
startDiff = IRSimplifier::simplify(alloc<Mod>(startDiff, minStride));
CompareSelectOperation op = strideNegative ? kLT : kGT;
ExprPtr check = IRSimplifier::simplify(
alloc<CompareSelect>(startDiff, immLike(startDiff, 0), op));
// If the start difference modulo the minimum stride is offset from that
// stride, then the ranges have distinct strides.
if (check->isConstant() && immediateEquals<int>(check, 1)) {
return true;
}
// If we can consider execution order and the difference in offset is
// opposite signed to the stride then the read occurs in the past and we can
// infer safety.
if (!parallelized && diffNegative == strideNegative &&
immediateEquals(startDiff, 0)) {
return true;
}
}
return false;
}
void MemDependencyChecker::visit(ForPtr v) {
VarPtr var = v->var();
StmtPtr last = lastStmt_;
lastStmt_ = v;
v->var()->accept(this);
// Loads inside the For's start and stop expression are special.
// They exist in the enclosing scope, but accesses within the loop body may
// depend on them via usage of the loop variable.
// The way we handle this is to create a new scope so we have an easily
// accessible list of the acceses within the extents.
auto extentsScope =
std::make_shared<Scope>(currentScope_->block, currentScope_);
currentScope_ = extentsScope;
v->start()->accept(this);
v->stop()->accept(this);
currentScope_ = currentScope_->parent;
auto newScope = std::make_shared<Scope>(v->body(), currentScope_);
currentScope_ = newScope;
v->body()->accept(this);
lastStmt_ = last;
// Ok now we need to determine whether accesses in the loop depend on
// other loop iterations.
//
// This is the real challenge here, it depends on both the fully expanded
// bounds and the symbolic bounds.
// The indices must change monotonically to avoid intersection. This is
// hard to determine, so here's our heuristic I hope it's conservative
// enough.
// the size of at least one dependent index must be >= the size of the
// loop.
// First step is to infer the stride relative to each dimension of each
// access, which we do via substituting the loop var with (var+1) into the
// indices expr.
std::vector<std::vector<ExprPtr>> loopStrides;
loopStrides.resize(currentScope_->accesses_.size());
for (size_t a = 0; a < currentScope_->accesses_.size(); ++a) {
auto& info = currentScope_->accesses_[a];
std::vector<ExprPtr> indices = info->getIndices();
std::vector<ExprPtr>& loopIndicesStride = loopStrides[a];
loopIndicesStride.resize(indices.size());
// index expr must depend on the loop var in some way to have a stride.
for (const auto i : c10::irange(indices.size())) {
VarFinder vf;
if (vf.find(indices[i]).count(var) == 0) {
loopIndicesStride[i] = immLike(indices[i], 0);
} else {
// If we've previously swapped the start and end of this bound, we
// should apply the substitution to the reverse of the bounds.
if (info->bounds()[i].swapped) {
info->bounds()[i].end = IRSimplifier::simplify(
SubstituteInClone(info->bounds()[i].end, {{var, v->start()}}));
info->bounds()[i].start = IRSimplifier::simplify(SubstituteInClone(
info->bounds()[i].start,
{{var, alloc<Sub>(v->stop(), immLike(v->stop(), 1))}}));
} else {
info->bounds()[i].start = IRSimplifier::simplify(
SubstituteInClone(info->bounds()[i].start, {{var, v->start()}}));
info->bounds()[i].end = IRSimplifier::simplify(SubstituteInClone(
info->bounds()[i].end,
{{var, alloc<Sub>(v->stop(), immLike(v->stop(), 1))}}));
}
ExprPtr zeroStep = indices[i];
ExprPtr oneStep = SubstituteInClone(
indices[i], {{var, alloc<Add>(var, immLike(var, 1))}});
loopIndicesStride[i] =
IRSimplifier::simplify(alloc<Sub>(oneStep, zeroStep));
// If the start < end then swap the order of the bound.
ExprPtr diff = IRSimplifier::simplify(
alloc<Sub>(info->bounds()[i].end, info->bounds()[i].start));
if (diff->isConstant() && immediateIsNegative(diff)) {
info->bounds()[i].swap();
}
// If this access uses the loop var, it depends on loads used to compute
// the loop var.
for (auto& extentLoad : extentsScope->accesses_) {
info->addDependency(extentLoad);
extentLoad->addDependent(info);
}
}
}
}
// Now we need to update the bounds in openWrites since that is what we use to
// merge.
for (auto& openWritePair : currentScope_->openWrites_) {
for (auto& pair : openWritePair.second) {
IndexBounds& bounds = pair.first;
// The bounds may not contain the loop var, but in that case Substitute
// does nothing.
for (auto& bound : bounds) {
bound.start = IRSimplifier::simplify(
SubstituteInClone(bound.start, {{var, v->start()}}));
bound.end = IRSimplifier::simplify(SubstituteInClone(
bound.end, {{var, alloc<Sub>(v->stop(), immLike(v->stop(), 1))}}));
// If the start < end then swap the order of the bound.
ExprPtr diff =
IRSimplifier::simplify(alloc<Sub>(bound.end, bound.start));
if (diff->isConstant() && immediateIsNegative(diff)) {
bound.swap();
}
}
}
}
// TODO this isn't a scalable way to determine parallelism.
bool parallelized = v->loop_options().is_gpu_block_index() ||
v->loop_options().is_gpu_thread_index();
// Store buffers allocated at this scope.
std::unordered_set<VarPtr> local_intermediates;
// Scanning from the top of the loop, we look for accesses which may depend
// on a previous or parallel loop iteration.
for (size_t a = 0; a < currentScope_->accesses_.size(); ++a) {
auto& info = currentScope_->accesses_[a];
if (info->type() == AccessType::Alloc) {
local_intermediates.insert(info->var());
continue;
}
if (!info->isRead()) {
continue;
}
// Vars that don't carry outside this scope can't have loop self dependence.
if (local_intermediates.count(info->var())) {
continue;
}
// Copy the bounds so we can keep track of open bounds internally without
// affecting the merge into the enclosing scope. The open portion of the
// bounds may be cut into multiple independent slices.
std::vector<IndexBounds> openBounds({info->bounds()});
// Scan from the bottom of the loop.
for (size_t j = currentScope_->accesses_.size() - 1; j > a; --j) {
std::shared_ptr<AccessInfo> other = currentScope_->accesses_[j];
if (!other->isWrite()) {
continue;
}
if (info->var() != other->var()) {
continue;
}
if (info->hasDependency(other)) {
continue;
}
// Whether or not the accesses within the loop are dependent on other
// iterations depends whether the loop could be parallelized, the
// difference in their strides and their start offset.
bool iterationsDistinct = executionSafetyCheck(
info,
other,
loopStrides[a],
loopStrides[j],
!allowExecutionOrderAnalysis_ || parallelized);
if (iterationsDistinct) {
continue;
}
std::vector<IndexBounds> newBoundSlices;
for (auto& b : openBounds) {
OverlapKind overlap = overlaps(b, other->bounds());
if (overlap == OverlapKind::NoOverlap) {
newBoundSlices.push_back(b);
continue;
}
// It's dependent, link it to other.
info->addDependency(other);
other->addDependent(info);
if (overlap == OverlapKind::Contains) {
continue;
}
// Otherwise update openBounds.
auto slices = subtractIndicesBounds(b, other->bounds(), overlap);
std::move(
slices.begin(), slices.end(), std::back_inserter(newBoundSlices));
}
if (newBoundSlices.empty()) {
break;
}
openBounds.swap(newBoundSlices);
}
}
std::vector<std::shared_ptr<AccessInfo>> mergedAccesses;
mergedAccesses.reserve(
extentsScope->accesses_.size() + currentScope_->accesses_.size());
std::copy(
extentsScope->accesses_.begin(),
extentsScope->accesses_.end(),
std::back_inserter(mergedAccesses));
std::copy(
currentScope_->accesses_.begin(),
currentScope_->accesses_.end(),
std::back_inserter(mergedAccesses));
scopeToAccesses_.emplace(v, mergedAccesses);
// it's a little faster to merge without closing, and since no writes can
// occur within the start and stop exprs we'll do that.
mergeScope(extentsScope, extentsScope->parent, false);
mergeScope(currentScope_, currentScope_->parent, true);
currentScope_ = currentScope_->parent;
}
void MemDependencyChecker::visit(CondPtr v) {
StmtPtr last = lastStmt_;
lastStmt_ = v;
auto enclosingScope =
std::make_shared<Scope>(currentScope_->block, currentScope_);
// condition is in enclosing scope.
v->condition()->accept(this);
BlockPtr true_stmt = v->true_stmt();
BlockPtr false_stmt = v->false_stmt();
// Create scopes so the Block visitor doesn't create and merge a new scope.
auto trueScope = std::make_shared<Scope>(true_stmt, enclosingScope);
auto falseScope = std::make_shared<Scope>(false_stmt, enclosingScope);
if (true_stmt) {
currentScope_ = trueScope;
true_stmt->accept(this);
}
if (false_stmt) {
currentScope_ = falseScope;
false_stmt->accept(this);
}
// TODO(nickg): this logic isn't quite correct, if a write's Bound range is
// present in both the true and false branches then we can close overlapping
// accesses in the enclosing scope. Without that analysis future accesses
// may be dependent on a write of a common range in all three of the
// enclosing, true and false scope. This is a false positve so not too bad
// in the short term, I think.
// Merge both true and false branches into the parent, but don't close any
// accesses.
mergeScope(trueScope, enclosingScope, false);
mergeScope(falseScope, enclosingScope, false);
// Merge the enclosing scope into it's parent.
mergeScope(enclosingScope, enclosingScope->parent, false);
currentScope_ = enclosingScope;
scopeToAccesses_.emplace(v, enclosingScope->accesses_);
currentScope_ = enclosingScope->parent;
lastStmt_ = last;
}
void MemDependencyChecker::visit(IfThenElsePtr v) {
// condition is in enclosing scope.
v->condition()->accept(this);
ExprPtr true_value = v->true_value();
ExprPtr false_value = v->false_value();
auto enclosingScope = currentScope_;
// Create scopes to hold downstream Loads. It's safe to put nullptr for the
// Scope's Block as it is only used by Stmts, not Exprs.
auto trueScope = std::make_shared<Scope>(nullptr, enclosingScope);
auto falseScope = std::make_shared<Scope>(nullptr, enclosingScope);
if (true_value) {
currentScope_ = trueScope;
true_value->accept(this);
}
if (false_value) {
currentScope_ = falseScope;
false_value->accept(this);
}
// This doesn't have the same issue as Cond where there could be false
// positives from the enclosing scope since there are no Exprs which are
// writes.
// Merge both true and false branches into the parent, but don't close any
// accesses.
mergeScope(trueScope, enclosingScope, false);
mergeScope(falseScope, enclosingScope, false);
currentScope_ = enclosingScope;
}
void MemDependencyChecker::visit(CompareSelectPtr v) {
// condition is in enclosing scope.
v->lhs()->accept(this);
v->rhs()->accept(this);
ExprPtr true_value = v->ret_val1();
ExprPtr false_value = v->ret_val2();
auto enclosingScope = currentScope_;
// Create scopes to hold downstream Loads. It's safe to put nullptr for the
// Scope's Block as it is only used by Stmts, not Exprs.
auto trueScope = std::make_shared<Scope>(nullptr, enclosingScope);
auto falseScope = std::make_shared<Scope>(nullptr, enclosingScope);
if (true_value) {
currentScope_ = trueScope;
true_value->accept(this);
}
if (false_value) {
currentScope_ = falseScope;
false_value->accept(this);
}
// This doesn't have the same issue as Cond where there could be false
// positives from the enclosing scope since there are no Exprs which are
// writes.
// Merge both true and false branches into the parent, but don't close any
// accesses.
mergeScope(trueScope, enclosingScope, false);
mergeScope(falseScope, enclosingScope, false);
currentScope_ = enclosingScope;
}
// Inserts accesses for a map of buffers (ie. for inputs and outputs).
void MemDependencyChecker::insertBuffers(
std::unordered_map<BufPtr, std::shared_ptr<AccessInfo>>& bufs,
AccessType type) {
for (auto& pair : bufs) {
BufPtr b = pair.first;
VarPtr var = b->base_handle();
IndexBounds bounds;
for (auto d : b->dims()) {
bounds.push_back(
{immLike(d, 0),
IRSimplifier::simplify(alloc<Sub>(d, immLike(d, 1)))});
}
auto info =
std::make_shared<AccessInfo>(nextAccess_++, type, nullptr, var, bounds);
bufs[b] = info;
auto& history = currentScope_->openWrites_[var];
updateWriteHistory(history, info, info->id());
currentScope_->accesses_.push_back(info);
}
}
void MemDependencyChecker::visit(BlockPtr v) {
auto prev_scope = currentScope_;
// handle kernel inputs.
if (prev_scope->block == nullptr) {
insertBuffers(inputs_, AccessType::Input);
}
if (currentScope_->block != v) {
currentScope_ = std::make_shared<Scope>((BlockPtr)v, prev_scope);
}
for (auto s : *v) {
s->accept(this);
}
for (auto v : currentScope_->localVars) {
knownVarBounds_.erase(v);
}
for (auto& pair : currentScope_->shadowedVarBounds) {
knownVarBounds_[pair.first] = pair.second;
}
scopeToAccesses_.emplace(v, currentScope_->accesses_);
if (currentScope_ != prev_scope) {
mergeScope(currentScope_, prev_scope, true);
currentScope_ = prev_scope;
}
// handle kernel outputs.
if (prev_scope->block == nullptr) {
insertBuffers(outputs_, AccessType::Output);
}
}
void MemDependencyChecker::visit(LetPtr v) {
StmtPtr last = lastStmt_;
lastStmt_ = v;
IRVisitor::visit(v);
lastStmt_ = last;
VarPtr var = v->var();
if (knownVarBounds_.count(var) != 0) {
currentScope_->shadowedVarBounds[var] = knownVarBounds_[var];
}
currentScope_->localVars.insert(var);
knownVarBounds_[var] = {v->value(), v->value()};
}
// Don't support AtomicAdd yet, it's a bit more complex since it's both a read
// and a write. It's only inserted during Cuda codegen so this should be okay.
void MemDependencyChecker::visit(AtomicAddPtr v) {
throw std::runtime_error("MemDependencyChecker AtomicAdd unimplemented");
}
void MemDependencyChecker::visit(AllocatePtr v) {
StmtPtr last = lastStmt_;
lastStmt_ = v;
IRVisitor::visit(v);
VarPtr var = v->buffer_var();
IndexBounds bounds;
// TODO: remove the "buf_flat_size" process below and extend the buf bound
// check to support N-d indices access and 1-d index access.
// "Allocate" stmt is based on "Buf" which supports N-d indices access and 1-d
// index access. Currently the write bound check in memory analysis cannot
// identify 1-d index access for N-d bufs. Thus we flatten N-d bufs here to
// avoid failing the bound check. But this is not the correct approach and
// should be fixed.
ExprPtr flat_size = buf_flat_size(v->buf());
flat_size =
IRSimplifier::simplify(alloc<Sub>(flat_size, immLike(flat_size, 1)));
bounds.push_back({immLike(flat_size, 0), flat_size});
auto info = std::make_shared<AccessInfo>(
nextAccess_++, AccessType::Alloc, nullptr, var, bounds);
intermediates_[var] = info;
auto& history = currentScope_->openWrites_[var];
history.emplace_back(std::make_pair(info->bounds(), info));
currentScope_->accesses_.push_back(info);
lastStmt_ = last;
}
void MemDependencyChecker::visit(FreePtr v) {
StmtPtr last = lastStmt_;
lastStmt_ = v;
IRVisitor::visit(v);
VarPtr var = v->buffer_var();
auto it = intermediates_.find(var);
TORCH_INTERNAL_ASSERT(
it != intermediates_.end(),
buildErrorMessage(
"Expected to find '" + var->name_hint() +
"' in intermediate vars in mem dep checker in the fuser."));
IndexBounds bounds = it->second->bounds();
auto info = std::make_shared<AccessInfo>(
nextAccess_++, AccessType::Free, nullptr, var, bounds);
auto& history = currentScope_->openWrites_[var];
updateWriteHistory(history, info, info->id());
currentScope_->accesses_.push_back(info);
lastStmt_ = last;
}
void MemDependencyChecker::updateWriteHistory(
std::list<BoundRelationship>& writeHistory,
const std::shared_ptr<AccessInfo>& info,
size_t latestAccessToClose,
bool closeOverlapped,
bool insert) {
bool isWrite = info->isWrite();
for (auto it = writeHistory.begin(); it != writeHistory.end();) {
auto& indexBounds = it->first;
std::shared_ptr<AccessInfo> other = it->second;
if (info->hasDependency(other)) {
++it;
continue;
}
OverlapKind overlap = overlaps(indexBounds, info->bounds());
if (overlap == OverlapKind::NoOverlap) {
++it;
continue;
}
// Only writes can close open accesses.
if (!isWrite) {
info->addDependency(other);
other->addDependent(info);
++it;
continue;
}
// If we're not closing accesses we can stop here.
if (!closeOverlapped || other->id() > latestAccessToClose) {
++it;
continue;
}
if (overlap == OverlapKind::ContainedOrEqual) {
// Total overlap is easy - the new access totally replaces the old.
it = writeHistory.erase(it);
} else {
// The new write partially overlaps a previous write. We want to keep
// both, but only track the unconvered part of the earlier write.
// Determine the slices of the earlier bound not covered by info.
auto newBounds =
subtractIndicesBounds(indexBounds, info->bounds(), overlap);
// Erase the old slice.
it = writeHistory.erase(it);
// Add all new slices.
for (auto& b : newBounds) {
writeHistory.insert(it, std::make_pair(b, other));
}
// No need to increment the iterator since it has been updated after
// `erase` above.
}
}
if (insert && isWrite) {
writeHistory.emplace_back(std::make_pair(info->bounds(), info));
}
}
void MemDependencyChecker::mergeScope(
const std::shared_ptr<Scope>& child,
const std::shared_ptr<Scope>& parent,
bool closeOverlapped) {
if (child->accesses_.empty()) {
return;
}
// Update dependencies, but don't add new open writes yet.
for (auto& info : child->accesses_) {
// Intentionally using operator[], we want it to be created if it does not
// exist.
auto& writeHistory = parent->openWrites_[info->var()];
size_t latestAccessToClose = child->accesses_.front()->id();
updateWriteHistory(
writeHistory, info, latestAccessToClose, closeOverlapped, false);
}
// Copy open writes up.
for (auto& pair : child->openWrites_) {
VarPtr var = pair.first;
// Intentionally using operator[], we want it to be created if it does not
// exist.
auto& writeHistory = parent->openWrites_[var];
for (auto& rel : pair.second) {
writeHistory.push_back(rel);
}
}
// the parent scope is responsible for holding all accesses now.
parent->accesses_.insert(
parent->accesses_.end(),
std::make_move_iterator(child->accesses_.begin()),
std::make_move_iterator(child->accesses_.end()));
}
// A visitor which applies known Bounds to symbolic expressions.
class VarBoundBinder : public IRVisitor {
public:
VarBoundBinder(const VarBoundMap& vars) : vars_(vars) {}
Bound getBounds(ExprPtr e) {
min_ = e;
max_ = e;
e->accept(this);
min_ = IRSimplifier::simplify(min_);
max_ = IRSimplifier::simplify(max_);
return {min_, max_};
}
private:
void visit(VarPtr v) override {
auto it = vars_.find(v);
if (it == vars_.end()) {
return;
}
min_ = SubstituteInClone(min_, {{v, it->second.start}});
max_ = SubstituteInClone(max_, {{v, it->second.end}});
}
ExprPtr min_{nullptr};
ExprPtr max_{nullptr};
const VarBoundMap& vars_;
};
std::vector<Bound> MemDependencyChecker::getIndicesBounds(
const std::vector<ExprPtr>& indices) {
std::vector<Bound> bounds;
bounds.reserve(indices.size());
VarBoundBinder binder(knownVarBounds_);
for (auto s : indices) {
bounds.push_back(binder.getBounds(s));
}
return bounds;
}
} // namespace analysis
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|